
15-110 Hw6 - Language Modeling 
 
Hw6 and its checks are organized differently from the other assignments. If you haven't 
already done so, you should read the ​Hw6 General Guide​ to understand how this 
assignment works. 
 
Project Description 
 

 
 
In this project, you will build and test your own language model based on the works of 
two famous folklore and fairytale authors, Andersen and the Grimm Brothers. A 
language model​ is a machine learning model that holds information about how 
common certain words are in a specific author's books. You'll use the language model 
you create to generate text that is similar to the texts written by these two authors, and 
compare how often they used different words and phrases. 
 
In the first week, you will parse the text of the provided corpuses into new formats, to 
make generating language models possible. In the second week, you'll implement three 
simple language models: a uniform model, a unigram model, and a bigram model. You'll 
compute probabilities and generate new text using these models. In the third week, 
you'll create visualizations that compare the two texts based on these models. 
 
Click on the following links to read the instructions for each week's assignment: 

Check6-1 - due Monday 11/23 at noon EST 

Check6-2 - due Friday 12/04 at noon EST 

Hw6 - due Friday 12/11 at noon EST 
 

 



Check6-1 - due Monday 11/23 at noon EST 
 
In the first stage, you will reformat two text corpuses (from Andersen and Grimm) to 
build data that you'll use to generate language models. To do this, you will need to write 
functions that build the vocabulary of a text, count the number of ​unigrams ​(individual 
words) that appear, and count the number of ​bigrams ​(pairs of words) that appear. 
 
Step 0: ​Written Assignment ​[45pts] 
 
In addition to completing the steps described below, there is a short written assignment 
on the week's material. You can find the written assignment on the course website. 
 
Step 1: ​Load Words From Text ​[5pts] 
 
Write a function ​loadBook(filename)​ that takes a filename, opens it, and creates a 2D 
list where each row is a sentence in the book and each column is one word or symbol in 
that sentence in order. The 2D list is called a ​corpus ​of text. The file you are given is 
already cleaned - each line is a single sentence, all words are lowercases, and all 
punctuation is separated out by spaces. You should read in the file, and for each line, 
split it by spaces; then append that list to your list of lists. For example, 
 
"hello and welcome to 15-110 . 

we're happy to have you ." 

 
would produce a 2D list 
 
[ ["hello","and","welcome","to","15-110","."], 

  ["we're","happy","to","have","you","."] ] 

 
To test your function, run ​testLoadBook()​. 
 
Note: ​to keep the starter file from becoming too crowded, all the tests have been moved 
to the file ​hw6_language_tests.py​, which you can open and read while debugging. 
The functions in this file are called at the bottom of ​hw6_language.py​. ​If you change 
the filename of ​hw6_language.py​, you will need to change the filename imported 
by ​hw6_language_tests.py​ in the first line of the file too​. 
 
 



Step 2: ​Find Corpus Length ​[5pts] 
 
Write a function ​getCorpusLength(corpus)​ which is given a 2D list of words and 
symbols in a text and returns the total number of ​unigrams​ (single words or symbols) 
that occur in that list. Examples of unigrams include ​"hello"​, ​","​, and ​"world"​. 
 
corpus = [ ["hello", "world"], 

           ["hello", "world", "again"] ] 

get_corpus_length(corpus) -> 5 

 
In the example from ​loadBook​, ​getCorpusLength​ would return ​12​. 
 
To test your function, run ​testGetCorpusLength()​. 
 
Step 3: ​Build Unigram Vocabulary ​[10pts] 
 
Given a 2D list ​corpus​, write a function ​buildVocabulary(corpus)​ that creates a new 
list and iterates through the corpus, adding only words that are not present in the new 
list already. In other words, it should return a list of all unique unigrams. 
 
corpus = [ ["hello", "world"], 

           ["hello", "world", "again"] ] 

build_vocabulary(corpus) -> ["hello", "world", "again"] 

 
corpus = [ ["hello","and","welcome","to","15-110","."], 

           ["we're","happy","to","have","you","."] ] 

build_vocabulary(corpus) -> ["hello", "and", "welcome", "to", 

"15-110", ".", "we're", "happy", "have", "you"] 

 
To test your function, run ​testBuildVocabulary()​. 
 
Step 4: ​Count Unigrams ​[10pts] 
 
Now we'll organize the data to later support a unigram model. A ​unigram model​ is a 
model where each word gets the probability X/N, where X is the number of times that 
word appears in the data and N is the total number of words in the data. In other words, 
each word’s probability depends on how often that word shows up in the data.  
 



Given a 2D list ​corpus​, write a function ​countUnigrams(corpus)​ which returns a 
dictionary where the keys are the unigrams in the corpus's vocabulary and the values 
are how often each key occurs in the actual corpus (the 2D list). 
 
corpus = [ ["hello", "world"], 

           ["hello", "world", "again"] ] 

count_unigrams(corpus) -> { "hello": 2, "world": 2, "again": 1 } 

 
To test this function, run ​testCountUnigrams()​. 
 
Step 5: ​Count the Start Words ​[10pts] 
 
For the next model, we'll need to keep track of ​start​ words; that is, words that start 
sentences. 
 
Given a 2D list ​corpus​, write a function ​getStartWords(corpus)​ that creates a new 
list and iterates through the 2D list, adding the first word in each sentence if it has not 
been added before. In other words, it should return a list of all unique start words. 
 
corpus = [ ["hello", "world"], 

           ["hello", "world", "again"] ] 

get_start_words(corpus) -> ["hello"] 

 
corpus = [ ["hello","and","welcome","to","15-110","."], 

           ["we're","happy","to","have","you","."] ] 

get_start_words(corpus) -> ["hello","we're"] 

 
To test this function, run ​testGetStartWords()​. 
 
Then, given a 2D list ​corpus​, write a function ​countStartWords(corpus)​ which 
returns a dictionary that maps start words to how many times each start word appeared. 
The count of a start word should ​only​ include the number of times it was seen at the 
beginning of a sentence; in other words; don't include inner-words in the count. 
 
corpus = [ ["hello", "world"], 

           ["hello", "world", "again"] ] 

count_start_words(corpus) -> { "hello": 2 } 

 
To test this function, run ​testCountStartWords()​. 



Step 6: ​Count Bigrams ​[15pts] 
 
Our final model will use bigrams instead of unigrams. A ​bigram ​is a pair of words that 
appear next to each other. Often, looking at the frequency of pairs of words helps us 
more accurately predict which word goes next in a sentence, as opposed to only 
considering the general frequencies of words. 
 
A ​bigram model​ is a model where each pair of words ​"x y"​ gets the probability X/N, 
where X is the number of times that ​"x y"​ appears in the data (in that specific order) 
and N is the number of times that ​"x"​ appears in the data. 
 
Write a function ​countBigrams(corpus)​ that returns a 2D dictionary with the counts of 
each unique bigram in the corpus. In order to do this, you will: 
 

● Step 1: Create a new dictionary 
● Step 2: Iterate through each sentence of the corpus. 
● Step 3: For each sentence, loop through the indexes of the words in that 

sentence from ​0​ to ​n-1​ (don't include the last word). Each pair of words will be 
sentence[i]​ and ​sentence[i+1]​. 

● Step 4: If ​sentence[i]​ is not in your main dictionary, add it with an empty 
dictionary as the value. 

● Step 5: Check if ​sentence[i+1]​ is in ​sentence[i]​'s dictionary. If it is not, add 
sentence[i+1]​ as a key with the value ​1​. If it is in the dictionary, add ​1​ to its 
associated value. 

 
This function should return a dictionary of dictionaries (2D dictionary) representing the 
counts of all bigrams of words. 
 
corpus = [ ["hello", "world"], 

           ["hello", "world", "again"] ] 

bigram_count = count_bigrams(corpus) 

bigram_count -> { "hello": { "world": 2 }, "world": { "again": 1 } } 

bigram_count["hello"]["world"] -> 2 

 
To test this function, run ​testCountBigrams()​. 
 
Once you've finished all six steps, you can test your functions on larger files! Try printing 
the variables in ​runWeek1()​ to see what you get. 

 



Check6-2 - due Friday 12/04 at noon EST 
 
In the second stage, you'll actually generate the three language models (uniform, 
unigram, and bigram), which will make it possible to identify the most common words in 
the vocabularies and generate new text. To do this, you will first need to write functions 
that produce probabilities for each word in the corpus. 
 
Before you start this second stage, go to the bottom of the starter file and uncomment 
the four test lines associated with Week 2. 
 
Step 0: ​Written Assignment ​[45pts] 
 
In addition to completing the steps described below, there is a short written assignment 
on the week's material. You can find the written assignment on the course website. 
 
Step 1: ​Compute Uniform Probabilities ​[5pts] 
 
Our final language model, the ​uniform model​, is a model where all words get the 
probability 1/N, where N is the size of the vocabulary. Since we can compute the list of 
all of the words in the corpus using ​buildVocabulary(corpus)​, the uniform model can 
predict the next word in a text by just randomly choosing one of the words. 
 
Write a function ​buildUniformProbs(unigrams)​ which takes a list of unique unigrams 
and returns a new list of the same length where ​1/len(unigrams)​ is the value at each 
index. Each index of this new list represents the probability that the corresponding index 
in ​unigrams​ would be chosen at random. Return the list of probabilities. 
 
To test this function, run ​testBuildUniformProbs()​. 
 
Step 2: ​Compute Unigram Probabilities ​[10pts] 
 
Another way to predict the words in the text is by how frequently they occur. You 
computed the counts of all the unigrams last week. Now we will use those counts to 
compute the probability of each word being randomly chosen from the whole book. 
 
Write a function ​buildUnigramProbs(unigrams, unigramCounts, totalCount) 
which takes a list of all of the unique words in the book, a dictionary mapping unique 



unigrams to counts, and the total count of words in the book, and returns a new list of 
the probabilities of each word. 
 
In order to do this, you should make a new empty list, then iterate through the indexes 
of the unigram list. Look up the count of the index's corresponding unigram in 
unigramCounts​, then divide the unigram count by the ​totalCount​ and append that 
resulting probability to the list. 
 
The probability at each index will be the probability that the word at the same index in 
unigrams​ would be chosen at random from the book. Return the list of probabilities. 
 
To test this function, run ​testBuildUnigramProbs()​. 
 
Step 3: ​Compute Bigram Probabilities ​[10pts] 
 
Finally, we can also think about how the probability of one word changes based on the 
word before it. Think about the word "Happy". The words "birthday" and "Halloween" 
probably occur at a much higher rate after "Happy" than after other words. 
 
Write a function ​buildBigramProbs(unigramCounts, bigramCounts)​ that takes the 
frequencies of single words (​unigramCounts​) and of pairs of words (​bigramCounts​) 
and returns a new ​nested dictionary​. 
 
Each key of the dictionary is a word in the vocabulary, and each key maps to the bigram 
probability dictionary for that word. A single word's bigram probability dictionary is like a 
reduced version of the unigram probability results- it keeps track of all the words that 
can come after the 'start' word, and the probability for each of them. 
 
As an example, if we're processing the sentence ​"It is very nice, it is super 
cool"​, our result dictionary would look like this: 
 
{ "it"    : { "words" : ["is"],            "probs" : [1]        }, 

  "is"    : { "words" : ["very", "super"], "probs" : [0.5, 0.5] }, 

  "very"  : { "words" : ["nice"],          "probs" : [1]        }, 

  "nice"  : { "words" : ["it"],            "probs" : [1]        }, 

  "super" : { "words" : ["cool"],          "probs" : [1]        } } 

  
Note that ​"cool"​ is not included as a key in the outer dictionary because it is never the 
first word in a bigram. 



 
To create this dictionary, follow these steps: 
 

1. Make a new dictionary 
2. Iterate through each key (we'll call it ​prevWord​) in ​bigramCount 

a. note that ​bigramCount[prevWord]​ is a dictionary of all the words that 
occurred after the previous word in the book 

b. make two new lists, one for the words (keys) in ​bigramCount[prevWord]​, 
and one for the probabilities of those words 

c. iterate through all of the keys in ​bigramCount[prevWord]​, appending the 
word to the word list and the word's probability to the probability list. 

i. Note 1: You can determine the probability by dividing the count by 
unigramCount[prevWord]​, which is the total number of times the 
previous word occurred. 

ii. Note 2: this isn't 100% accurate, because we might have fewer total 
word occurrences in ​bigramCount​ than ​unigramCount​ if ​prevWord 
occurred at the end of a sentence. But this usually only happens to 
punctuation, so we'll say this is good enough for now. 

d. make a temporary dictionary mapping the string ​"words"​ to the word list 
and the string ​"probs"​ to the list of probabilities. 

e. add to the new dictionary (from the outer level) the key ​prevWord​; the 
value is the dictionary from part d. In other terms, each previous word 
maps to a dictionary containing words and probabilities. 

3. Return the new dictionary. 
 
To test this function, run ​testBuildBigramProbs()​. 
 
Step 4: ​Get Most Likely Words ​[10pts] 
 
Write a function ​getTopWords(count, words, probs, ignoreList)​ which takes a 
number of words, a list of words, and a list of the corresponding probabilities, plus a list 
of words to ignore. It finds the top ​count​ words with the highest probabilities, then 
returns a dictionary mapping those highest probability words to their probabilities. Only 
include words that aren't in the list of words ​ignoreList​. 
 
For example, if you call ​getTopWords​ with ​count​ set to ​10​, it will return a dictionary 
mapping the top 10 words to their probabilities. 
 



One way to do this is to create an empty dictionary which will hold the known highest 
probability words. Then repeatedly search for the highest probability word that is not 
already a key in that dictionary and not in ​ignoreList​. Once you've gone through all 
the words and found the highest probability word that meets those requirements, add it 
to the dictionary. Continue the process until the length of the dictionary is equal to 
count​. 
 
To test this function, run ​testGetTopWords()​. 
 
Step 5: ​Generate Sentences with Unigrams ​[10pts] 
 
Now we can use the language models to do more interesting things! Write a function 
generateTextFromUnigrams(count, words, probs)​ which takes in the number of 
words to generate, the word list, and the corresponding probabilities, and returns a 
string generated by concatenating probabilistically-chosen words together. 
 
Use the function ​choices(words, weights=probs)​ from the random library to 
generate a random word sampled according to the given probability distribution. 
choices​ returns a list containing the word it picked, so you'll need to index into the first 
element of that list. 
 
Don't forget to add spaces between words! And return the text once you've added the 
number of words specified by ​count​. 
 
To test this function, run ​testGenerateTextFromUnigrams()​. 
 
Step 6: ​Generate Sentences with Bigrams ​[10pts] 
 
The text generated from the unigram model kind of looks like gibberish, but we can do 
better. Write the function ​generateTextFromBigrams(count, startWords, 
startWordProbs, bigramProbs)​ which takes in the number of words to generate, the 
start word list, the start word probabilities, and the bigram probabilities dictionary, and 
outputs a string of ​count​ words generated probabilistically. 
 
In order to generate words, we follow one of two cases: 
 

● First, if nothing has been added to the string yet, or the last word added was a 
period (indicating the end of a sentence), use the ​choices​ function with 
startWords​ and ​startWordProbs​ to generate a new word and add it to the text. 



 
● Otherwise, look up the last word generated in the ​bigramProbs​ dictionary. Use 

the ​"words"​ and ​"probs"​ lists in the dictionary as parameters to ​choices​, then 
add the returned word onto the text you've generated so far. 

 
Don't forget to include spaces between words! And return the text once you've added 
the number of words specified by ​count​. 
 
To test this function, run ​testGenerateTextFromBigrams()​. 
 
 
Once you've finished all six steps, you can test your functions on larger files! Try 
running ​runWeek2()​, and observe the most frequent words and the text produced by 
your functions (which is based on text from the Grimm and Andersen files combined). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hw6 - due Friday 12/11 at noon EST 
 
In the final stage, you will use matplotlib and the functions you wrote for the earlier 
stages to generate graphs that compare and contrast the different authors. 
 
Before you start this last stage, go to the bottom of the starter file and uncomment the 
two test lines associated with Week 3. 
 
Step 0-A: ​Complete Check6-1 ​[20pts] 
 
If you got a perfect score on Check6-1 (the project part), congratulations; this step is 
already done! Go to the next step. 
 
Otherwise, go back to your Gradescope feedback on Check6-1 and use it to update 
your Check6-1 code. This is your chance to implement any features you might have 
missed before, and fix any code that isn't working. 
 
Step 0-B: ​Complete Check6-2 ​[20pts] 
 
If you got a perfect score on Check6-2 (the project part), congratulations; this step is 
already done! Go to the next step. 
 
Otherwise, go back to your Gradescope feedback on Check6-2 and use it to update 
your Check6-2 code. This is your chance to implement any features you might have 
missed before, and fix any code that isn't working. 
 
Step 1: ​Install matplotlib and numpy ​[0pts] 
 
In order to use the matplotlib library, you will need to install it on your machine. If you do 
not have a personal computer, note that the cluster machines on Gates 5 should have 
matplotlib installed already. 
 
To install matplotlib and one of its dependencies, numpy, we recommend that you use 
the pip tool included in your Python installation. This tool will manage the installation 
process for you, which is much easier than trying to install a module manually. To use 
pip, open Pyzo and run the following lines of code in the interpreter: 
 



pip install numpy 

pip install matplotlib 

 
If an error message occurs, try googling it to find a solution. TAs can also help debug 
installation errors via Piazza or in office hours. 
 
You can test whether the modules are correctly installed by running the following 
commands in your interpreter. If they do not give you an error, you're good to go! 
 
import numpy 

import matplotlib 
 
Step 2: ​Review Provided Code ​[0pts] 
 
Drawing graphs with matplotlib requires a lot of setup code, and we want you to draw 
quite a few graphs, so we've provided a few functions for you to use, to simplify things. 
You will write some functions that call the functions we've provided. 
 
You should definitely know what each of the following functions do, and we recommend 
that you look over their code at the bottom of the file quickly, to get a sense of how they 
work. 
 

● barPlot: ​generates a bar chart from a dictionary. The x values are the keys in the 
dictionary; the y values are the key's values. 

● sideBySideBarPlots: ​generates two bar charts side-by-side, for easy 
comparison. The x values are the values in the ​xValues​ list, and the y values for 
the two plots are the values in the ​values1​ and ​values2​ lists. 

● scatterPlot: ​generates a scatter plot with a line marking where x = y. The x 
values are the values in ​xs​, and the y values are the values in ​ys​. 

 
Step 3: ​Graph the Top 50 Words ​[10pts] 
 
Write a function ​graphTop50Words(corpus)​ which takes as input a corpus, uses the 
functions from previous weeks to compute the unigrams and the unigram probabilities, 
and then computes the top 50 most frequent words according to the probabilities (using 
getTopWords​ and the global ignore list defined above to eliminate common words with 
no meaning). 
 



Then, using the most common 50 words and their probabilities, call the ​barPlot 
function with a good title to display the words. 
 
To test this function, run ​runWeek3()​ and check the first graph that is generated. The 
first word should occur a lot more than the rest, and then there should be a downwards 
slope. 
 
Step 4: ​Graph the Top Starting Words ​[10pts] 
 
Write a function ​graphTopStartWords(corpus)​ which takes as input a corpus and 
uses the functions from previous weeks to compute the start words and the start word 
probabilities, then computes the top 50 most frequent start words according to the 
probabilities (using ​getTopWords​ and the global ignore list defined above to eliminate 
common words with no meaning). 
 
Then, using the most common start words and their probabilities, call the ​barPlot 
function with a good title to display the words. 
 
To test this function, run ​runWeek3()​ and check the second graph that is generated. 
The first three words should show a probability above 2%; the rest should slope 
downwards from there. 
 
Step 5: ​Graph the Top Bigrams ​[10pts] 
 
Write a function ​graphTopNextWords(corpus, word)​ which takes a corpus and word 
and graphs the top 10 words that appear after that word in the corpus, not counting 
words in the global ignore list. 
 
Hint:​ use ​buildBigramProbs​ to get all possible next words after ​word​, and 
getTopWords​ to narrow them down to the top 10. 
 
To test this function, run ​runWeek3()​ and check the third, fourth, fifth, and sixth graphs 
that are generated. The third and fifth graphs represent bigrams collected from the 
Grimm text; the fourth and sixth represent bigrams from Andersen. Try comparing them 
to find similarities and differences! 
 
 
 
 



Step 6: ​Compare Probabilities Across Two Books ​[30pts] 
 
As the final step of the project, we'll compare the probabilities of the most common 
words in two books with two different approaches - a side-by-side bar chart, and a 
scatterplot. 
 
First, write a function ​setupChartData(corpus1, corpus2, topWordCount)​ which 
takes two corpuses (corpora) and a number of top-words to count. It should find the top 
n unigrams in ​corpus1​ (ignoring words in the ignore list), and the top n unigrams in 
corpus2​ (again ignoring words in the ignore list). Combine these lists together to make 
one top-words list. Note that some words may appear in both, and should not be 
repeated. For example, if ​topWordCount​ was set to 50, the combined list could have 
anywhere from 50 (all overlap) to 100 (no overlap) words. 
 
Then find the probabilities of all the top words in ​corpus1​, and put them in a list. You 
can do this by finding the index of the word in the main unigrams list, then indexing into 
that location in the unigram probability list. Make another list of probabilities in ​corpus2​. 
If a word does not occur in a corpus, it should be assigned the probability ​0​. 
 
When you've created the three lists - the top words and the two probability lists - return 
all three by using a dictionary. This dictionary should map the key ​"topWords"​ to the 
top-words list, the key ​"corpus1Probs"​ to the ​corpus1​ probabilities, and the key 
"corpus2Probs"​ to the ​corpus2​ probabilities. We'll use this data to draw charts in a 
moment. 
 
To test this function, run ​testSetupChartData()​. This is called for you in ​runWeek3()​. 
 
Now we can finally draw the charts! write the function 
graphTopWordsSideBySide(corpus1, name1, corpus2, name2, numWords, 

title)​ which takes two corpuses (corpora) and their names, the number of words to 
graph, and a title. Call ​setupChartData​ on the corpora, looking for the top ​numWords 
words, to acquire the necessary data. Then call ​sideBySideBarPlots​ to show the 
differences in probabilities across those top unigrams. Use ​name1​ and ​name2​ as the 
category names, and the provided title. 
 
Finally, write a function ​graphTopWordsInScatterplot(corpus1, corpus2, 
numWords, title)​ which takes two corpuses (corpora). It should also call 
setupChartData​ on the provided values to gather the probability data for the ​numWords 
top words. Once you've produced the probability lists, use the ​scatterPlot​ function to 



show the probabilities of ​corpus1​ on the x axis and ​corpus2​ on the y axis. Again, make 
sure to include the title that is provided as a parameter. 
 
Note​: when calling ​scatterPlot​, the parameters ​x​, ​y​, and ​labels​ must be lists. 
 
You can test these final two functions by running ​runWeek3()​ and checking the final 
two charts that are generated. In particular, for the side-by-side barplot, make sure it 
has a y range from 0 to 0.0175, and that one of the words (greda) only has a bar for 
Andersen, not for Grimm. For the scatterplot, the word 'he' should be separated from 
the others a bit, and in the main cluster the word 'i' should be above the x=y line, while 
'she' is below it (Andersen used 'I' more often; Grimm used 'she' more often). 
 
 
Now you're done! Enjoy looking through the charts and models you've made to find 
interesting features of the books you've analyzed. 
 
If you want to analyze more books beyond what we've provided, you can do that too! 
Search for the text of the book you want online, then download it into a .txt file with ​_raw 
at the end of the name, and put that file in the ​data​ folder. Then run ​clean_file.py​. 
This will generate a new version of the file with ​_clean​ at the end, which you can use 
with your own code! 


