
15-110 Hw3 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Hw3 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - addToAll(lst, x) - 5pts

Write the function addToAll(lst, x) which takes a list of numbers and a number and
destructively modifies the list so that every element has x added to it. For example, if
lst = [1, 2, 3], calling the function addToAll(lst, 2) will change lst to hold
[3, 4, 5] .

#2 - letterFrequency(s) - 5pts

Write a function letterFrequency (s) which takes a string and returns a list of 26
elements, where each element is the number of times that the corresponding letter of
the alphabet occurs in the string. The 0th index corresponds to "a", the 1st corresponds
to "b", etc., until the 25th element corresponds to "z".

For example, letterFrequency ("Hello World") should return:
[0,0,0,1,1,0,0,1,0,0,0,3,0,0,2,0,0,1,0,0,0,0,1,0,0,0].

Note: you can ignore any non-letter characters that occur in the string, but you should
make sure both upper- and lower-case letters are counted as the same.

Hint: the easiest way to get an index based on a letter is to use the ord (c) method,
which takes a one-character string as input and returns the ASCII value of that
character. Offset this number by ord("a") or ord ("A") to get the index you need.

#3 - onlyPositive(lst) - 5pts

Write a function onlyPositive(lst) that takes as input a 2D list and returns a new 1D
list that contains only the positive elements of the original list, in the order they originally
occurred. You may assume the list only has numbers in it.

Example: onlyPositive([[1, 2, 3] , [4, 5, 6]]) returns [1, 2, 3, 4, 5, 6],
onlyPositive ([[0, 1, 2] , [-2, -1, 0], [10, 9, -9]] returns [1, 2, 10, 9],
and onlyPositive([[-4, -3] , [-2, -1]]) returns [].

#4 - recursiveCount(lst, item) - 5pts

Write a function recursiveCount (lst, item) that takes a list and a value as input
and returns a count of the number of times that item occurs in the list. This function
must use recursion in a meaningful way; a solution that uses a loop or built-in count
functions will receive no points.

For example, recursiveCount ([2, 4, 6, 8, 10] , 6) returns 1,
recursiveCount([4, 4, 8, 4], 4) returns 3, and
recursiveCount([1, 2, 3, 4], 5) returns 0.

#5 - recursiveMax(lst) - 5pts

Write a function recursiveMax(lst) that takes a list as input and returns the maximum
value in the list. You may assume the list contains at least one element. This function
must use recursion in a meaningful way; a solution that uses a loop or built-in max
functions will receive no points.

For example, recursiveMax([1, 2, 3]) returns 3, and
recursiveMax ([2, 4, 6, 9, 10, 2, 6]) returns 10.

Hint: consider what properties the recursive result has if the function works as
expected.

