
15-110 Check6-2 - Written Portion

Name:

AndrewID:

#1 - Recognize Analyses - 6pts

Each of the following snippets of code performs a basic data analysis that we discussed
in class. Select what each snippet does from the options provided below.

assume scores is a 1D list of integers

scores.sort()

print(scores[len(scores) // 2])

☐ mean
☐ median
☐ mode

☐ bucketing
☐ basic probability
☐ joint probability

☐ removes duplicates
☐ marks missing data
☐ removes outliers

assume petList is a list of dictionaries, data entries about pets

adoptedDogCount = 0

for pet in petList:

 if pet["species"] == "dog" and pet["status"] == "adopted":

adoptedDogCount += 1

print(adoptedDogCount / len(PetList))

☐ mean
☐ median
☐ mode

☐ bucketing
☐ basic probability
☐ joint probability

☐ removes duplicates
☐ marks missing data
☐ removes outliers

assume data is a 2D list of data entries

i = 0

while i < len(data):

 if data[i] in data[:i]:

data.pop(i)

 else:

i += 1

☐ mean
☐ median
☐ mode

☐ bucketing
☐ basic probability
☐ joint probability

☐ removes duplicates
☐ marks missing data
☐ removes outliers

#2 - Matplotlib - 9pts

For each of the following lines of matplotlib code from lecture, write a short statement
that explains at a high level what the code does. Some lines of code have been
modified slightly.

ax.hist(data, bins=5)

flavors = ["vanilla", "chocolate", "strawberry"]

ax.set_xticklabels(flavors)

menMeans = [20, 35, 30, 35, 27]

menStd = [2, 3, 4, 1, 2]

mensInd = np.arange(5)

rects1 = ax.bar(mensInd, menMeans, 20, yerr=menStd)

#3 - Monte Carlo Methods - 9pts

For each of the following questions, use Monte Carlo methods to find the answer to
the given question. You can use the monteCarlo(trials) function from the notes to
average results over 100,000 trials; you just need to update the runTrial() function
for each question.

Please submit your answer as a decimal probability (like 0.45; 100% = 1, 50% = 0.5),
and round your answer for each question to have only 2 digits after the decimal point.

What is the probability that, if you roll a die twice, the second roll will be either 2 larger
or 2 smaller than the first?

For example, you could roll a 4 and then a 6, or a 4 and then a 2.

Pick a random odd number between 1 and 99. What is the probability that that number
is a multiple of 7?

Hint: make a list of all odd numbers between 1 and 99, then use random.choice()

Make a list with six values (two "red", two "green" , two "blue") and shuffle it. What is
the probability that the first two values in the list are both "red"?

Hint: use the destructive function random.shuffle()

#4 - Advanced Simulation - 6pts

Recall the zombie outbreak simulation we wrote in class. The following questions test
your understanding of how all the code works together.

Which of the following segments of code set up the original number of zombies?

☐ for zombie in range(5): data["creatures"].append(...

☐ move = random.choice([[-1, 0], [1, 0], [0, -1], [0, 1]])

☐ creature["species"] = "zombie"

Which of the following segments of code made a zombie move in a random direction?

☐ row = creature["row"] ; col = creature["col"]

☐ creature["row"] += move[0] ; creature["col"] += move[1]

☐ zombiePositions.append([creature["row"], creature["col"]])

Which of the following segments of code determined whether or not a specific human
was infected?

☐ data["rate"] = 0.5

☐ if creature["species"] == "human": color = "purple" ;

else: color = "green"

☐ odds = random.random() ; if odds < data["rate"]: ...

#5 - Game Trees - 9pts

Nim (https://en.wikipedia.org/wiki/Nim) is a simple game for two players. The game
starts with a pot containing some number of marbles on the table. Players take turns
removing marbles from the pot. Each player must choose to remove 1, 2, or 3 marbles
on their turn. Whoever removes the last marble loses.

Assume you want to build a basic AI that can play Nim using a game tree. In this game,
the pot will start with 16 marbles, and the state of the game is the number of marbles in
the pot. On the next page, draw the root node and the first two levels of the game tree
(you do not have to draw any levels past that), with the number of marbles as the value
of each node. Annotate your game tree to show which actions are taken by the AI vs.
the opponent, assuming the AI gets the first turn.

You can do this with a picture of a physical drawing or an online image editing tool (like
Google Drawings). To upload the image, use the same approach you used on Hw5.

What is the maximum depth of this game tree? (A node with only the root has depth 1).

Assume that the AI uses minimax to find the best action to take on its turn. When
comparing the results on the level right below the root, should the AI pass the
maximum or minimum result to the top level with the root?

☐ Maximum
☐ Minimum

https://en.wikipedia.org/wiki/Nim

#6 - Heuristics - 6pts

Consider the two-player game Draughts, or Checkers
(https://en.wikipedia.org/wiki/Draughts). This game is too complex for an AI to build a
full game tree; it would need to use heuristics instead, to support fast search for the
next move to make.

Which of the following factors could be included to build a well-designed heuristic for a
Draughts game state? Select all that apply.

❏ How many pieces each player has on the board
❏ How many 'king' pieces each player has on the board
❏ Whether the players are calling the game 'draughts' or 'checkers'
❏ Where pieces are located (closer to the opponent's side = better)

Which of the following best describes how an AI could choose its next move, using that
heuristic? Select only one answer.

❏ Apply the heuristic to the current board, and use the resulting score to choose

which move to take
❏ Build a game tree to some set depth, score the leaves with the heuristic

algorithm, and then apply minimax to get the result
❏ Build the next level of the game tree, then apply the heuristic to find the

best-scoring child. Then generate all of that child's next moves, and apply the
heuristic again. Continue until an end state is reached to get the next move

❏ Choose one of the possible moves randomly

https://en.wikipedia.org/wiki/Draughts

	mean: Off
	median: Off
	mode: Off
	bucketing: Off
	basic probability: Off
	joint probability: Off
	removes duplicates: Off
	marks missing data: Off
	removes outliers: Off
	mean_2: Off
	median_2: Off
	mode_2: Off
	bucketing_2: Off
	basic probability_2: Off
	joint probability_2: Off
	mean_3: Off
	median_3: Off
	mode_3: Off
	bucketing_3: Off
	basic probability_3: Off
	joint probability_3: Off
	removes duplicates_2: Off
	marks missing data_2: Off
	removes outliers_2: Off
	removes duplicates_3: Off
	marks missing data_3: Off
	removes outliers_3: Off
	axhistdata bins5:
	axsetxticklabelsflavors:
	rects1 axbarmensInd menMeans 20 yerrmenStd:
	For example you could roll a 4 and then a 6 or a 4 and then a 2:
	Hint make a list of all odd numbers between 1 and 99 then use randomchoice:
	Hint use the destructive function randomshuffle:
	for zombie in range5: Off
	move randomchoice1 0 1 0 0 1 0 1: Off
	creaturespecies zombie: Off
	row creaturerow col creaturecol: Off
	creaturerow move0 creaturecol move1: Off
	zombiePositionsappendcreaturerow creaturecol: Off
	datarate 05: Off
	if creaturespecies human: Off
	odds randomrandom if odds datarate: Off
	What is the maximum depth of this game tree A node with only the root has depth 0:
	Maximum: Off
	Minimum: Off
	How many pieces each player has on the board: Off
	How many king pieces each player has on the board: Off
	Whether the players are calling the game draughts or checkers: Off
	Where pieces are located closer to the opponents side better: Off
	Apply the heuristic to the current board and use the resulting score to choose: Off
	Build a game tree to some set depth score the leaves with the heuristic: Off
	Build the next level of the game tree then apply the heuristic to find the: Off
	Choose one of the possible moves randomly: Off
	Text1:
	Text2:
	Button3:

