
15-110 Check3 - Written Portion

Name:

AndrewID:

#1 - Tracing Lists - 5pts

Trace the code below, then fill in the table with what it prints (one row per line).
You might not need to use all of the rows.

#2 - Aliasing and Mutability - 20pts

The following code creates and modifies lists. Determine each list’s values after the
code has run.

Variable List Values

a

b

c

d

Select all of the pairs of lists that are aliased at the end of the code.

☐ a and b
☐ a and c
☐ a and d
☐ b and c
☐ b and d
☐ c and d
☐ None of the lists are aliased

#3 - Base Cases and Recursive Cases - 15pts

Assume you want to write a function recursiveSum that takes a positive integer, n,
and recursively computes the sum from one to n.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your base case ?

What do you return in the base case?

What is the recursive call on a smaller problem in the recursive case?

How do you use the recursive call's result to solve the whole problem for n in the
recursive case?

15-110 Check3 - Programming Portion

Each of these problems should be solved in the starter file available on the course
website. Submit your code to the Gradescope assignment Check3 - Programming for
autograding.

All programming problems may also be checked by running the starter file, which calls
the function testAll() to run test cases on all programs.

#1 - interleave(lst1, lst2) - 15pts

Write a non-destructive function interleave (lst1, lst2) which takes two lists and
returns a new list that contains the elements of the two lists, interleaved in the order
they originally appeared. You may assume the lists will be the same length.

For example, interleave(["a", "b", "c"] , [1, 2, 3]) would produce
["a", 1, "b", 2, "c", 3] .

#2 - onlyOdds(lst) - 15pts

Write a non-destructive function onlyOdds(lst) that takes a list of integers and
returns a new list containing only the odd elements of lst . Note that this should not
return the odd indexes- it should return the odd elements!

For example, onlyOdds([1, 2, 3, 4, 5, 6]) returns [1, 3, 5] , and
onlyOdds([4, 1, 70, 35, -9]) returns [1, 35, -9]

#3 - removeEvens(lst) - 15pts

Write a destructive function removeEvens(lst) that takes a list of integers and
destructively removes the even elements of the provided list so that it contains only the
original odd elements at the end of the function. This function should not return
anything; we'll instead test it by checking whether the input list was modified properly.

For example, removeEvens([1, 2, 3, 4, 5, 6]) modifies the list to be [1, 3, 5] ,
while removeEvens ([4, 1, 70, 35, -9]) modifies the list to be [1, 35, -9].

Hint : this is tricky because lst will change as the function runs. You should use an
appropriate loop to account for this - see the course slides! Also, make sure to check for
aliasing issues.

#4 - recursiveReverse(lst) - 15pts

Write a function recursiveReverse (lst) that takes a list as input and returns a new
list which has the same elements, but in reverse order. This function must use
recursion in a meaningful way; a solution that uses a loop, built-in reverse functions, or
a slice with a negative step will receive no points.

For example, recursiveReverse([1, 2, 3]) should return [3, 2, 1] .

	List Valuesa:
	List Valuesb:
	List Valuesc:
	List Valuesd:
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	What condition do you need to check for your base case:
	What do you return in the base case:
	What is the recursive call on a smaller problem in the recursive case:
	recursive case:
	Text1:
	Text2:
	Text3:
	Text4:
	Text5:
	Text6:
	Text7:
	Text8:
	Text9:
	Text10:
	Text11:
	Text12:
	Text13:
	Text14:

