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UNIT 10C
Concurrency: Pipelining 
& Distributed Processing
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Review

• Multitasking ‐ The coordination of several 
computational processes on one processor
or several cores.

• A critical section is a section of computer code that 
must only be executed by one process or thread at 
a time.

• Deadlock is the condition when two or more 
processes are all waiting for some shared resource 
that other processes of the group hold, causing all 
processes to wait forever without proceeding.
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Activity: Sorting Network Simulation
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Input: [5, 1, 6, 3, 4, 2]

How many steps does this take . . . sequentially? concurrently?
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Pipelining

• Pipelining is similar to an assembly line.

– Instead of completing one computation before 
starting another, each computation is split into 
simpler sub‐steps, and computations are started 
as others are in progress.
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Laundry Without Pipelining
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0       30      60     90     120    150   180    210    240   270    300   330    360 min. 

Washing, Drying and Ironing four loads of laundry.

W D I W D I W D I W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITHOUT
PIPELINING:
6 hr



11/5/2012

4

Laundry With Pipelining
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0       30      60     90     120    150   180    210    240   270    300   330    360 min. 

Washing, Drying and Ironing four loads of laundry.

W D I

W D I

W D I

W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITH
PIPELINING:
3 hr 45 min

The length of the
pipeline depends
on the length of
the longest step.

Pipelining in Computing

• Fetch instruction from memory
• Decode the instruction
• Read data from registers
• Execute the instruction 
• Write the result into a register
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Dealing with Dependencies

ADD R3, R1

ADD R5, R3

ADD R8, R7

ADD R11, R10

ADD R3, R1

ADD R8, R7

ADD R11, R10

ADD R5, R3
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This instruction depends on the result
of the previous instruction. (This will
hold up the pipeline.)

"Add the contents of R1 and R3
and store the results in R3.”

Reorder the instructions to minimize
the delay on the pipeline due to the
dependency, if possible.

Dealing with Dependencies

A: ADD R3, R1

SUB R6, R4

JMN A, R6

MOV R3, R1
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“Jump to label A if R6 != 0."

The JMN instruction will stall in the
pipeline since the final values of
R6 is not known yet.

Possible solutions:
1. Assume the jump occurs. If we find later that

R6 is equal to 0, clear the pipeline and 
begin computing with the MOV instruction.

2. Start decoding the ADD and MOV instructions.
When we know if R6 is equal to 0 or not, send the appropriate
instructions into the pipeline for completion.
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Matrix Multiplication
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hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1

student2

student3

student4

student5

student6

student7

student8

Matrix Multiplication
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hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2

student3

student4

student5

student6

student7

student8

0 + 95*0.15 + 90*0.1 + 93*0.15 + 91*0.15 + 85*0.15 + 92*0.3 = 91.2 
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Matrix Multiplication
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hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

0 + 73*0.15 + 80*0.1 + 75*0.15 + 63*0.15 + 79*0.15 + 75*0.3 = 74.0 

Matrix Multiplication
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hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

0 + 85*0.15 + 73*0.1 + 80*0.15 + 85*0.15 + 88*0.15 + 91*0.3 = 85.3

....and so on...
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Matrix Multiplication
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hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

If each multiply/add takes 1 time unit,
this non-pipelined matrix multiplication takes 48 time units.

Faster Matrix Multiplication 
using Pipelining
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95

73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

Student6

student7

student8

student1

student2

student3

student4

student5

student6

student7

student8

0

W

N

S

E=W+(N*S)

KEY:
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Faster Matrix Multiplication 
using Pipelining
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73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

14.250

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication 
using Pipelining
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85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

10.95 23.250

W

N

S

E=W+(N*S)

KEY:
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Faster Matrix Multiplication 
using Pipelining
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50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

12.75 18.95 37.20

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication 
using Pipelining
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100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

7.5 20.05 30.2 50.850

W

N

S

E=W+(N*S)

KEY:
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Faster Matrix Multiplication 
using Pipelining
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75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

15.0 14.0 32.05 39.65 63.60

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication 
using Pipelining
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90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

11.25 24.5 21.5 44.8 51.5 91.20

W

N

S

E=W+(N*S)

KEY:
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Faster Matrix Multiplication 
using Pipelining
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88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2

student3

student4

student5

student6

student7

student8

13.5 18.75 39.2 30.5 58.0 74.00

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication 
using Pipelining

15110 Principles of Computing, Carnegie 
Mellon University ‐ CORTINA

24

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

13.2 21.5 30.0 53.6 38.9 85.30

W

N

S

E=W+(N*S)

KEY:
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Faster Matrix Multiplication 
using Pipelining
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80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

21.2 33.5 41.25 68.0 53.00

W

N

S

E=W+(N*S)

KEY:

....and so on...

Faster Matrix Multiplication 
using Pipelining
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0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

0

If each multiply/add takes 1 time unit,
this pipelined matrix multiplication takes only 13 time units.
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Distributed Systems

• A distributed system is an application that consists of 
processes that

– execute on multiple computers connected through a 
network, and

– cooperate to accomplish a task.

• Advantages

– Reconfigurable: add or rearrange new parts

– Geographically distributed: Low communication delays for 

remote users

– Scalable: can add more processors as demand increases
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Render Farms

• A render farm is high 

performance computer 

system, e.g. a

computer cluster, built to 

render computer‐

generated imagery (CGI), typically for film and

television visual effects.
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Render Farms

• Rendering

– flatten a 3‐d space to a 2‐d

– lighting (raytracing)

– potential concurrency
• frames

• pixels within a frame

• Many Disney animated movies use this technique
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Challenge of Distributed Computing: 
Reliability in Context of Failure

Failure is the defining difference between distributed and local 
programming, so you have to design distributed systems with 
the expectation of failure. Imagine asking people, “If the 
probability of something happening is one in 1013, how often 
would it happen?” Common sense would be to answer, 
“Never.” That is an infinitely large number in human terms. 
But if you ask a physicist, she would say, “All the time. In a 
cubic foot of air, those things happen all the time.” When you 
design distributed systems, you have to say, “Failure happens 
all the time.” So when you design, you design for failure. It is 
your number one concern.

— Ken Arnold
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Examples of Failures

• permanent network failures

• dropped messages between sender and receiver

• an individual computer breaks

• a process crashes or goes into an infinite loop

15110 Principles of Computing, Carnegie 
Mellon University ‐ CORTINA

31

Can We Fix These Failures?

• Replication/Redundancy

• RAID (redundant array of independent disks) is a 
storage technology that combines multiple disk 
drive components into a logical unit. RAID is now 
used as an umbrella term for computer data 
storage schemes that can divide and replicate 
data among multiple physical drives.

• A transaction log is a history of actions executed 
by a database management system to 
guarantee backup over crashes or hardware 
failures. 15110 Principles of Computing, Carnegie 

Mellon University ‐ CORTINA
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Summary

• pipelining

– assembly line: different sub‐steps run concurrently

– Processor Pipelining:
• runs a sequence of instructions faster

• splits each into, e.g., fetch, decode, read, execute, write

• separate hardware for each pipeline stage

• Distributed Systems

– multiple processes distributed across multiple machines

– Examples:
• render farms

• Google
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