
11/5/2012

1

UNIT 10C
Concurrency: Pipelining
& Distributed Processing

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

1

Review

• Multitasking ‐ The coordination of several
computational processes on one processor
or several cores.

• A critical section is a section of computer code that
must only be executed by one process or thread at
a time.

• Deadlock is the condition when two or more
processes are all waiting for some shared resource
that other processes of the group hold, causing all
processes to wait forever without proceeding.

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

2

11/5/2012

2

Activity: Sorting Network Simulation

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

3

Input: [5, 1, 6, 3, 4, 2]

How many steps does this take . . . sequentially? concurrently?

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

4

11/5/2012

3

Pipelining

• Pipelining is similar to an assembly line.

– Instead of completing one computation before
starting another, each computation is split into
simpler sub‐steps, and computations are started
as others are in progress.

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

5

Laundry Without Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

6

0 30 60 90 120 150 180 210 240 270 300 330 360 min.

Washing, Drying and Ironing four loads of laundry.

W D I W D I W D I W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITHOUT
PIPELINING:
6 hr

11/5/2012

4

Laundry With Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

7

0 30 60 90 120 150 180 210 240 270 300 330 360 min.

Washing, Drying and Ironing four loads of laundry.

W D I

W D I

W D I

W D I

W D I

Washing (30 min) Drying (45 min) Ironing (15 min)

WITH
PIPELINING:
3 hr 45 min

The length of the
pipeline depends
on the length of
the longest step.

Pipelining in Computing

• Fetch instruction from memory
• Decode the instruction
• Read data from registers
• Execute the instruction
• Write the result into a register

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

8

F D R E W

F D R E W

F D R E W

F D R E W

11/5/2012

5

Dealing with Dependencies

ADD R3, R1

ADD R5, R3

ADD R8, R7

ADD R11, R10

ADD R3, R1

ADD R8, R7

ADD R11, R10

ADD R5, R3

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

9

This instruction depends on the result
of the previous instruction. (This will
hold up the pipeline.)

"Add the contents of R1 and R3
and store the results in R3.”

Reorder the instructions to minimize
the delay on the pipeline due to the
dependency, if possible.

Dealing with Dependencies

A: ADD R3, R1

SUB R6, R4

JMN A, R6

MOV R3, R1

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

10

“Jump to label A if R6 != 0."

The JMN instruction will stall in the
pipeline since the final values of
R6 is not known yet.

Possible solutions:
1. Assume the jump occurs. If we find later that

R6 is equal to 0, clear the pipeline and
begin computing with the MOV instruction.

2. Start decoding the ADD and MOV instructions.
When we know if R6 is equal to 0 or not, send the appropriate
instructions into the pipeline for completion.

11/5/2012

6

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

11

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1

student2

student3

student4

student5

student6

student7

student8

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

12

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2

student3

student4

student5

student6

student7

student8

0 + 95*0.15 + 90*0.1 + 93*0.15 + 91*0.15 + 85*0.15 + 92*0.3 = 91.2

11/5/2012

7

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

13

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

0 + 73*0.15 + 80*0.1 + 75*0.15 + 63*0.15 + 79*0.15 + 75*0.3 = 74.0

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

14

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

0 + 85*0.15 + 73*0.1 + 80*0.15 + 85*0.15 + 88*0.15 + 91*0.3 = 85.3

....and so on...

11/5/2012

8

Matrix Multiplication

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

15

hw paper exam1 exam2 exam3 final

student1 95 90 93 91 85 92

student2 73 80 75 63 79 75

student3 85 73 80 85 88 91

student4 50 65 50 60 56 47

student5 100 95 98 96 96 90

student6 75 75 75 75 75 75

student7 90 80 80 90 100 100

student8 88 80 80 70 60 55

weight

hw 0.15

paper 0.1

exam1 0.15

exam2 0.15

exam3 0.15

final 0.3

average

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

If each multiply/add takes 1 time unit,
this non-pipelined matrix multiplication takes 48 time units.

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

16

95

73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

Student6

student7

student8

student1

student2

student3

student4

student5

student6

student7

student8

0

W

N

S

E=W+(N*S)

KEY:

11/5/2012

9

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

17

73 90

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

14.250

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

18

85 80 93

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

10.95 23.250

W

N

S

E=W+(N*S)

KEY:

11/5/2012

10

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

19

50 73 75 91

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

12.75 18.95 37.20

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

20

100 65 80 63 85

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

7.5 20.05 30.2 50.850

W

N

S

E=W+(N*S)

KEY:

11/5/2012

11

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

21

75 95 50 85 79 92

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

15.0 14.0 32.05 39.65 63.60

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

22

90 75 98 60 88 75

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1

student2

student3

student4

student5

student6

student7

student8

11.25 24.5 21.5 44.8 51.5 91.20

W

N

S

E=W+(N*S)

KEY:

11/5/2012

12

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

23

88 80 75 96 56 91

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2

student3

student4

student5

student6

student7

student8

13.5 18.75 39.2 30.5 58.0 74.00

W

N

S

E=W+(N*S)

KEY:

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

24

80 80 75 96 47

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3

student4

student5

student6

student7

student8

13.2 21.5 30.0 53.6 38.9 85.30

W

N

S

E=W+(N*S)

KEY:

11/5/2012

13

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

25

80 90 75 90

70 100 75

60 100

55

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3 85.3

student4

student5

student6

student7

student8

21.2 33.5 41.25 68.0 53.00

W

N

S

E=W+(N*S)

KEY:

....and so on...

Faster Matrix Multiplication
using Pipelining

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

26

0.15 0.1 0.15 0.15 0.15 0.3
average

student1 91.2

student2 74.0

student3 85.3

student4 53.0

student5 95.0

student6 75.0

student7 92.0

student8 69.2

0

If each multiply/add takes 1 time unit,
this pipelined matrix multiplication takes only 13 time units.

11/5/2012

14

Distributed Systems

• A distributed system is an application that consists of
processes that

– execute on multiple computers connected through a
network, and

– cooperate to accomplish a task.

• Advantages

– Reconfigurable: add or rearrange new parts

– Geographically distributed: Low communication delays for

remote users

– Scalable: can add more processors as demand increases

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

27

Render Farms

• A render farm is high

performance computer

system, e.g. a

computer cluster, built to

render computer‐

generated imagery (CGI), typically for film and

television visual effects.

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

28

11/5/2012

15

Render Farms

• Rendering

– flatten a 3‐d space to a 2‐d

– lighting (raytracing)

– potential concurrency
• frames

• pixels within a frame

• Many Disney animated movies use this technique

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

29

Challenge of Distributed Computing:
Reliability in Context of Failure

Failure is the defining difference between distributed and local
programming, so you have to design distributed systems with
the expectation of failure. Imagine asking people, “If the
probability of something happening is one in 1013, how often
would it happen?” Common sense would be to answer,
“Never.” That is an infinitely large number in human terms.
But if you ask a physicist, she would say, “All the time. In a
cubic foot of air, those things happen all the time.” When you
design distributed systems, you have to say, “Failure happens
all the time.” So when you design, you design for failure. It is
your number one concern.

— Ken Arnold

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

30

11/5/2012

16

Examples of Failures

• permanent network failures

• dropped messages between sender and receiver

• an individual computer breaks

• a process crashes or goes into an infinite loop

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

31

Can We Fix These Failures?

• Replication/Redundancy

• RAID (redundant array of independent disks) is a
storage technology that combines multiple disk
drive components into a logical unit. RAID is now
used as an umbrella term for computer data
storage schemes that can divide and replicate
data among multiple physical drives.

• A transaction log is a history of actions executed
by a database management system to
guarantee backup over crashes or hardware
failures. 15110 Principles of Computing, Carnegie

Mellon University ‐ CORTINA
32

11/5/2012

17

Summary

• pipelining

– assembly line: different sub‐steps run concurrently

– Processor Pipelining:
• runs a sequence of instructions faster

• splits each into, e.g., fetch, decode, read, execute, write

• separate hardware for each pipeline stage

• Distributed Systems

– multiple processes distributed across multiple machines

– Examples:
• render farms

• Google

15110 Principles of Computing, Carnegie
Mellon University ‐ CORTINA

33

