
1

UNIT 5C
Merge Sort

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

1

Course Announcements
• Exam rooms for Lecture 1, 2:30 ‐ 3:20

– Sections A, B, C, D at Rashid

– Sections E, F, G at Baker A51 (Giant Eagle
Auditorium)

• Exam rooms for Lecture 2, 3:30 – 4:20

– Sections H, I, J, K at Rashid

– Sections L, M at PH125C

– Section N at PH125B

• Bring your CMU id !

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

2

2

Divide and Conquer

• In the military: strategy to gain or maintain power

• In computation:

– Divide the problem into “simpler” versions of
itself.

– Conquer each problem using the same process
(usually recursively).

– Combine the results of the “simpler” versions
to form your final solution.

• Examples: Towers of Hanoi, fractals, Binary Search,
Merge Sort

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

3

Merge Sort

• Input: Array A of n elements.

• Result: Returns a new array containing the same
elements in non‐decreasing order.

• General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)

2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the

final sorted array.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

4

3

Divide (Split)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

5

84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

Conquer (Merge)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

6

17 27 32 49 53 63 84 91

27 49 84 91 17 32 53 63

27 84 49 91 32 53 17 63

84 27 49 91 32 53 63 17

4

Example 1: Merge

array a array b array c

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44

Example 1: Merge (cont’d)

array a array b array c

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44 58

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44 58 62

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

12 44 58 62 29 31 74 80 12 29 31 44 58 62 74 80

5

Example 2: Merge

array a array b array c

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31 44

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7

58 67 74 90 19 26 31 44 19 26 31 44 58 67 74 90

Merge

• Input: Two arrays a and b.
– Each array must be sorted already in non‐decreasing order.

• Result: Returns a new array containing the same
elements merged together into a new array in non‐
decreasing order.

• We’ll need two variables to keep track of where we
are in arrays a and b: index_a and index_b.

1. Set index_a equal to 0.

2. Set index_b equal to 0.

3. Create an empty array c.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

10

6

Merge (cont’d)

4. While index_a < the length of array a and
index_b < the length of array b, do the following:

a. If a[index_a] ≤ b[index_b], then do the following:

i. append a[index_a] on to the end of array c

ii. add 1 to index_a

Otherwise, do the following:

i. append b[index_b] on to the end of array c

ii. add 1 to index_b

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

11

Merge (cont’d)

(Once we finish step 4, we’ve added all of the elements of
either array a or array b to array c. The other array still has
some elements left that need to be added to array c.)

5. If index_a < the length of array a, then:

append all remaining elements of array a on to the
end of array c

Otherwise:
append all remaining elements of array b on to the
end of array c

6. Return array c as the result.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

12

7

Merge in Ruby
def merge(a, b)

index_a = 0

index_b = 0

c = []

while index_a < a.length and index_b < b.length do

if a[index_a] <= b[index_b] then

c << a[index_a]

index_a = index_a + 1

else

c << b[index_b]

index_b = index_b + 1

end

end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

13

Merge in Ruby (cont’d)

if (index_a < a.length) then

for i in (index_a..a.length‐1) do

c << a[i]

end

else

for i in (index_b..b.length‐1) do

c << b[i]

end

end

return c

end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

14

8

Merge Sort: Base Case

• General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)

2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the

final sorted array.

• What is the base case?
If the list has only 1 element, it is already sorted
so just return the list as the result.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

15

Merge Sort: Halfway Point

• General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)

2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the

final sorted array.

• How do we determine the halfway point where we
want to split the array list?

First half: 0..list.length/2‐1

Second half: list.length/2..list.length‐1

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

16

9

Merge Sort in Ruby

def msort(list)

return list if list.length == 1 # base case

halfway = list.length/2

list1 = list[0..halfway‐1]

list2 = list[halfway..list.length‐1]

newlist1 = msort(list1) # recursive!

newlist2 = msort(list2) # recursive!

newlist = merge(newlist1, newlist2)

return newlist

end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

17

Analyzing Efficiency

• If you merge two lists of size i/2 into one new list of
size i, what is the maximum number of appends
that you must do?

• Clearly, each element must be appended to the
new list at some point, so the total number of
appends is i.

• If you have a set of pairs of lists that need to be
merged (two pairs at a time), and the total number
of elements in all of the lists combined is n, the
total number of appends will be n.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

18

10

How many group merges?

• How many group merges does it take to go from
n groups of size 1 to 1 group of size n?

• Example: Merge sort on 32 elements.

– Break down to groups of size 1 (base case).

– Merge 32 lists of size 1 into 16 lists of size 2.

– Merge 16 lists of size 2 into 8 lists of size 4.

– Merge 8 lists of size 4 into 4 lists of size 8.

– Merge 4 lists of size 8 into 2 lists of size 16.

– Merge 2 lists of size 16 into 1 list of size 32.

• In general: log2n group merges must occur.
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

5 = log232

Putting it all together

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

20

It takes n appends to merge all pairs to the next higher level.

It
ta

ke
s

lo
g 2

n
ite

ra
tio

ns
 t

o
go

 fr
om

 n
 g

ro
up

s
of

 s
iz

e
1

to
a

si
ng

le
 g

ro
up

 o
f s

iz
e

n.

Total number
of elements
per level is
always n.

11

Big O

• In the worst case, merge sort requires
O(n log n) time to sort an array with n elements.

Number of operations Order of Complexity

n log2n O(n log n)

4n log10n O(n log n)

n log2n + 2n O(n log n)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

21

15-105 Principles of
Computation, Carnegie
Mellon University -
CORTINA

22

O(N log N)

n
(amount of data)

Number of
Operations

16 32 64

64
160

384

96

224

n log2n = O(n log n)

(not drawn to scale)

For an n log2 n algorithm,
the performance is better
than a quadratic algorithm
but just a little worse than
a linear algorithm.

12

Comparing Insertion Sort to Merge Sort
(Worst Case)

n isort (n(n+1)/2) msort (n log2n)

8 36 24

16 136 64

32 528 160

210 524,800 10,240

220 549,756,338,176 20,971,520

For array sizes less than 100, there’s not much
difference between these sorts, but for larger arrays
sizes, there is a clear advantage to merge sort.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

23

Sorting and Searching

• Recall that if we wanted to use binary search,
the array must be sorted.

– What if we sort the array first using merge sort?

• Merge sort O(n log n) (worst case)

• Binary search O(log n) (worst case)

• Total time: O(n log n) + O(log n) = O(n log n)
(worst case)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

24

13

Comparing Big O Functions

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

25

n
(amount of data)

Number of
Operations

O(2n)

O(1)

O(n log n)

O(log n)

O(n2)

O(n)

Merge Sort: Iteratively
(optional)

• If you are interested, the textbook discusses an
iterative version of merge sort which you can
read on your own.

• This version uses an alternate version of the
merge function that is not shown in the
textbook but is given in the RubyLabs gem.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

26

14

Quick Sort

• Uses the technique of divide‐and‐conquer

1. Pick a pivot

2. Divide the array into two subarrays, those that
are smaller and those that are greater

3. Put the pivot in the middle, between the two
sorted arrays

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

27

