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UNIT 5C
Merge Sort
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Course Announcements
• Exam rooms for Lecture 1, 2:30 ‐ 3:20

– Sections A, B, C, D  at Rashid

– Sections E, F, G at Baker A51 (Giant Eagle 
Auditorium) 

• Exam rooms for Lecture 2, 3:30 – 4:20

– Sections H, I, J, K at Rashid

– Sections L, M  at PH125C

– Section N at PH125B

• Bring your CMU id !
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Divide and Conquer

• In the military: strategy to gain or maintain power

• In computation:

– Divide the problem into “simpler” versions of 
itself.

– Conquer each problem using the same process 
(usually recursively).

– Combine the results of the “simpler” versions 
to form your final solution.

• Examples: Towers of Hanoi, fractals, Binary Search, 
Merge Sort
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Merge Sort

• Input: Array A of n elements.

• Result: Returns a new array containing the same 
elements in non‐decreasing order.

• General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)

2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the

final sorted array.
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Divide (Split)
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84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

84 27 49 91 32 53 63 17

Conquer (Merge)
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17 27 32 49 53 63 84 91

27 49 84 91 17 32 53 63

27 84 49 91 32 53 17 63

84 27 49 91 32 53 63 17
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Example 1: Merge

array a      array b      array c 

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29 31

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29 31 44

Example 1: Merge (cont’d)

array a      array b      array c 

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62  29 31 74 80  12 29 31 44 58

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62 29 31 74 80  12 29 31 44 58 62

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

12 44 58 62 29 31 74 80  12 29 31 44 58 62 74 80
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Example 2: Merge

array a      array b      array c 

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19 26

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19 26 31

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44 19 26 31 44

0  1  2  3 0  1  2  3 0  1  2  3  4  5  6  7

58 67 74 90  19 26 31 44  19 26 31 44 58 67 74 90

Merge

• Input: Two arrays a and b.
– Each array must be sorted already in non‐decreasing order.

• Result: Returns a new array containing the same 
elements merged together into a new array in non‐
decreasing order.

• We’ll need two variables to keep track of where we 
are in arrays a and b:  index_a and index_b.

1. Set index_a equal to 0.

2. Set index_b equal to 0.

3. Create an empty array c.
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Merge (cont’d)

4. While index_a < the length of array a and
index_b < the length of array b, do the following:

a. If a[index_a] ≤ b[index_b], then do the following:

i. append a[index_a] on to the end of array c

ii. add 1 to index_a

Otherwise, do the following:

i. append b[index_b] on to the end of array c

ii. add 1 to index_b
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Merge (cont’d)

(Once we finish step 4, we’ve added all of the elements of 
either array a or array b to array c. The other array still has 
some elements left that need to be added to array c.)

5.  If index_a < the length of array a, then:

append all remaining elements of array a on to the 
end of array c

Otherwise: 
append all remaining elements of array b on to the 
end of array c

6.  Return array c as the result.
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Merge in Ruby
def merge(a, b)

index_a = 0

index_b = 0

c = []

while index_a < a.length and index_b < b.length do

if a[index_a] <= b[index_b] then

c << a[index_a]

index_a = index_a + 1

else

c << b[index_b]

index_b = index_b + 1

end

end
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Merge in Ruby (cont’d)

if (index_a < a.length) then

for i in (index_a..a.length‐1) do

c << a[i]

end

else

for i in (index_b..b.length‐1) do

c << b[i]

end

end

return c

end
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Merge Sort: Base Case

• General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)

2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the

final sorted array.

• What is the base case?
If the list has only 1 element, it is already sorted
so just return the list as the result.
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Merge Sort: Halfway Point

• General algorithm for merge sort:

1. Sort the first half using merge sort. (recursive!)

2. Sort the second half using merge sort. (recursive!)

3. Merge the two sorted halves to obtain the

final sorted array.

• How do we determine the halfway point where we 
want to split the array list?

First half: 0..list.length/2‐1

Second half: list.length/2..list.length‐1
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Merge Sort in Ruby

def msort(list)

return list if list.length == 1    # base case

halfway = list.length/2

list1 = list[0..halfway‐1]

list2 = list[halfway..list.length‐1]

newlist1 = msort(list1)             # recursive!

newlist2 = msort(list2) # recursive!

newlist = merge(newlist1, newlist2)

return newlist

end
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Analyzing Efficiency

• If you merge two lists of size i/2 into one new list of 
size i, what is the maximum number of appends 
that you must do?

• Clearly, each element must be appended to the 
new list at some point, so the total number of 
appends is i.

• If you have a set of pairs of lists that need to be 
merged (two pairs at a time), and the total number 
of elements in all of the lists combined is n, the 
total number of appends will be n.
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How many group merges?

• How many group merges does it take to go from 
n groups of size 1 to 1 group of size n?

• Example: Merge sort on 32 elements.

– Break down to groups of size 1 (base case).

– Merge 32 lists of size 1 into 16 lists of size 2.

– Merge 16 lists of size 2 into 8 lists of size 4.

– Merge 8 lists of size 4 into 4 lists of size 8.

– Merge 4 lists of size 8 into 2 lists of size 16.

– Merge 2 lists of size 16 into 1 list of size 32.

• In general: log2n group merges must occur.
15110 Principles of Computing, 
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5 = log232

Putting it all together
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It takes n appends to merge all pairs to the next higher level.

It 
ta

ke
s 

lo
g 2

n
ite

ra
tio

ns
 t

o
go

 fr
om

 n
 g

ro
up

s 
of

 s
iz

e 
1 

to
a 

si
ng

le
 g

ro
up

 o
f s

iz
e 

n.

Total number 
of elements
per level is
always n.  



11

Big O

• In the worst case, merge sort requires
O(n log n) time to sort an array with n elements.

Number of operations Order of Complexity

n log2n O(n log n)

4n log10n O(n log n)

n log2n + 2n O(n log n)
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O(N log N)

n
(amount of data)

Number of
Operations

16 32 64

64
160

384

96

224

n log2n = O(n log n)

(not drawn to scale)

For an n log2 n algorithm,
the performance is better
than a quadratic algorithm
but just a little worse than
a linear algorithm.
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Comparing Insertion Sort to Merge Sort
(Worst Case)

n isort (n(n+1)/2) msort (n log2n)

8 36 24

16 136 64

32 528 160

210 524,800 10,240

220 549,756,338,176 20,971,520

For array sizes less than 100, there’s not much 
difference between these sorts, but for larger arrays
sizes, there is a clear advantage to merge sort.
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Sorting and Searching

• Recall that if we wanted to use binary search, 
the array must be sorted.

– What if we sort the array first using merge sort?

• Merge sort  O(n log n)   (worst case)

• Binary search O(log n)   (worst case)

• Total time: O(n log n) + O(log n) = O(n log n)
(worst case)
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Comparing Big O Functions 
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n
(amount of data)

Number of
Operations

O(2n)

O(1)

O(n log n)

O(log n)

O(n2)

O(n)

Merge Sort: Iteratively
(optional)

• If you are interested, the textbook discusses an 
iterative version of merge sort which you can 
read on your own.

• This version uses an alternate version of the 
merge function that is not shown in the 
textbook but is given in the RubyLabs gem.
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Quick Sort

• Uses the  technique of divide‐and‐conquer

1. Pick a pivot

2. Divide the array into two subarrays, those that 
are smaller and those that are greater 

3. Put the pivot in the middle, between the two 
sorted arrays  
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