UNIT 5A
Recursion: Basics

Feedback in Autolab

• When your CAs grade your programming assignments, they should be leaving feedback if you don’t get full credit on a problem.
• Click on the score to see the feedback.
• If you still have questions about why an answer wasn’t correct, ask your CA.
Recursion

• A “recursive” function is one that calls itself.
• Infinite loop? Not necessarily.

• The recursive function calls itself on a *smaller* version of the problem to be solved.

• Recursion looks more like this:
Recursive Definitions

• Every recursive definition includes two parts:
 – Base case (non-recursive)
 A simple case that can be done without solving the same problem again.
 – Recursive case(s)
 One or more cases that are “simpler” versions of the original problem.
 • By “simpler”, we sometimes mean “smaller” or “shorter” or “closer to the base case”.

Example: Factorial

• $N! = N \times (N-1) \times (N-2) \times \cdots \times 1$

• $5! = 5 \times 4 \times 3 \times 2 \times 1$
• $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$
• So $6! = 6 \times 5!$
• And $5! = 5 \times 4!$
• And $4! = 4 \times 3!$
• What is the base case? $0! = 1$
Factorial in Ruby (Recursive)

```ruby
def factorial(n)
    if n == 0
        % base case
        return 1
    else
        % recursive case
        return n * factorial(n-1)
    end
end
```

Tracing Factorial

```ruby
factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) = 1 * factorial(0)
factorial(0) = 1
```
Tracing Factorial

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) = 1 * factorial(0) = 1 * 1 = 1
factorial(0) = 1
Tracing Factorial

factorial(5) = 5 * factorial(4)
factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2) = 3 * 2 = 6
factorial(2) = 2 * factorial(1) = 2 * 1 = 2
factorial(1) = 1 * factorial(0) = 1 * 1 = 1
factorial(0) = 1
Tracing Factorial

\[
\begin{align*}
\text{factorial}(5) &= 5 \times \text{factorial}(4) = 5 \times 24 = 120 \\
\text{factorial}(4) &= 4 \times \text{factorial}(3) = 4 \times 6 = 24 \\
\text{factorial}(3) &= 3 \times \text{factorial}(2) = 3 \times 2 = 6 \\
\text{factorial}(2) &= 2 \times \text{factorial}(1) = 2 \times 1 = 2 \\
\text{factorial}(1) &= 1 \times \text{factorial}(0) = 1 \times 1 = 1 \\
\text{factorial}(0) &= 1
\end{align*}
\]

Recursive vs. Iterative Solutions

- For every recursive function, there is an equivalent iterative solution.
- For every iterative function, there is an equivalent recursive solution.
- But some problems are easier to solve one way than the other way.
Factorial Function (Iterative)

```python
def factorial (n):
    result = 1
    for i in 1..n do
        result = result * i
    end
    return result
end
```

Fibonacci Sequence

- Start with 1 pair of baby rabbits.
- Babies take 1 month to reach maturity.
- Mature rabbits produce 1 new pair of babies every month.
- After a year, how many rabbits do you have?
Recursive Fibonacci

- Base case: we start with nothing.
 - fib(0) is 0
- In the first month we have 1 baby rabbit:
 - fib(1) is 1
- At n>1 months, the number of rabbits is:
 \# of rabbits from last month \quad fib(n-1)
 +
 \# of babies born this month \quad ???
Recursive Fibonacci

• How many babies are born in month n?
 — One baby for every adult who was alive at n-1

• How many adults were alive in month n-1?
 — As many as the total number of rabbits at n-2

• Therefore:
 \[\text{fib}(n) = \text{fib}(n-1) + \text{fib}(n-2) \]

Recursive Fibonacci in Ruby

```ruby
def fib(n)
  if n == 0 or n == 1
    return n
  else
    return fib(n-1) + fib(n-2)
  end
end

>> (0..20).each { |i| p [i, fib(i)] }
```
Recursive Definition

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1
Fibonacci Numbers in Nature

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc.
• Number of branches on a tree.
• Number of petals on a flower.
• Number of spirals on a pineapple.

Iterative Fibonacci

```python
def fib(n):
    x = 0
    next_x = 1
    for i in 1..n do
        x, next_x = next_x, x+next_x
    end
    return x
end
```

Much faster than the recursive version. Why?
GCD

def gcd2(x, y)
 if y == 0 then
 return x
 else
 return gcd2(y, x % y)
 end
end

Recursive sum of a list

def sumlist(list)
 n = list.length
 if n == 0 then
 return 0
 else
 return list[0] + sumlist(list[1..n-1])
 end
end

Base case:
The sum of an empty list is 0.

Recursive case:
The sum of a list is the first element + the sum of the rest of the list.
Towers of Hanoi

- A puzzle invented by French mathematician Edouard Lucas in 1883.
- At a temple far away, priests were led to a courtyard with three pegs and 64 discs stacked on one peg in size order.
 - Priests are only allowed to move one disc at a time from one peg to another.
 - Priests may not put a larger disc on top of a smaller disc at any time.
- The goal of the priests was to move all 64 discs from the leftmost peg to the rightmost peg.
- According to the story, the world would end when the priests finished their work.

Towers of Hanoi

Problem: Move n discs from peg A to peg C using peg B.

1. Move n-1 discs from peg A to peg B using peg C. (recursive step)

2. Move 1 disc from peg A to peg C.

3. Move n-1 discs from peg B to C using peg A. (recursive step)
Towers of Hanoi in Ruby

```ruby
def hanoi (disks, from, temp, to)
  n = disks.length
  if n > 1 then
    towers(disks[1..n-1], from, to, temp)
  end
  print "Move ",disks[0]," from ", from,
       " to ", to, "\n"
  if n > 1 then
    hanoi(disks[1..n-1], temp, from, to)
  end
end

In irb: towers([4,3,2,1], "A", "B", "C")
```

How many moves do the priests need to move 64 discs?

Geometric Recursion (Fractals)

- A recursive operation performed on successively smaller regions.

![Sierpinski's Triangle](http://fusionanomaly.net/recursion.jpg)
Sierpinski’s Triangle

Sierpinski’s Carpet