UNIT 4C
Iteration: Scalability & Big O

Course Announcements

• No collaboration on assignments, including in the help sessions. If you need help, ask a CA.

• Questions about grading?
 – Ask your CA to explain the grade.
 – If issue can’t be resolved, talk to Dave or Dilsun.
 – You have one week from the time you get your grades on an assignment to contest the grading.

• First written exam is Monday, October 1.
 – We will have a review session on Sunday.
Loop Invariants Again

• What is a loop invariant?
 – A statement about the computation that remains true every time around the loop.

• Why are they useful?
 – They form the basis of an inductive proof that the algorithm produces the desired result.

Example: Sum Of Array Elements

```python
def sum(list):
    result = 0
    index = 0
    while index < list.length:
        result = result + list[index]
        index = index + 1
    return result

>> sum([3, 7, 2, 4, 6])
```


What Is the Invariant?

- Must be true at start of body: a precondition.
- Might not be true in the middle of the body.
- Must be true at end of body: a postcondition.

index <= list.length and
result == sum of list[0..index-1]

Example: Sum Of Array Elements

```python
def sum(list):
    result = 0
    index = 0
    while index < list.length do
        result = result + list[index]
        index = index + 1
    end
    return result
end
```

>> sum([3, 7, 2, 4, 6])

result is 0
index is 0
result is 3
index is 1
Example: Sum Of Array Elements

```python
def sum(list):
    result = 0
    index = 0
    while index < list.length:
        result = result + list[index]
        index = index + 1
    return result
```

```
>> sum([3, 7, 2, 4, 6])
```

The Loop Invariant Is Always True

```
>> sum([3, 7, 2, 4, 6])
result index
0 0
3 1
10 2
12 3
16 4
22 5
```

```
index <= list.length and result == sum of list[0..index-1]
```
After the Loop

- When do we exit the WHILE loop?
 - When index == list.length

- What does the invariant tell us at this point?
 - result == sum of list[0..index-1]
 - So result == sum of list[0..list.length-1]
 - But that’s everything in the list!

- Therefore, the result returned by sum must be the sum of every element in the list.
- We’ve proved the function is correct.

Efficiency

- A computer program should be totally correct, but it should also
 - execute as quickly as possible (time-efficiency)
 - use memory wisely (storage-efficiency)

- How do we compare programs (or algorithms in general) with respect to execution time?
 - various computers run at different speeds due to different processors
 - compilers optimize code before execution
 - the same algorithm can be written differently depending on the programming paradigm
Counting Operations

• We measure time efficiency by counting the number of operations performed by the algorithm.

• But what is an “operation”?
 – assignment statements
 – comparisons
 – function calls
 – return statements
 – ...

Linear Search: Best Case

```python
# let n = the length of list.
def search(list, key):
    index = 0
    while index < list.length do
        if list[index] == key then
            return index
        end
        index = index + 1
    end
    return nil
end
Total: 4
```
Linear Search: Worst Case

let n = the length of list.
def search(list, key)
 index = 0
 while index < list.length do
 if list[index] == key then
 return index
 end
 index = index + 1
 end
 return nil
end
Total: 3n+3

Counting Operations

- How do we know that each operation we count takes the same amount of time? (We don’t.)
- So generally, we look at the process more abstractly and count whatever operation depends on the amount or size of the data we’re processing.
- For linear search, we would count the number of times we compare elements in the array to the key.
Linear Search: Best Case Simplified

```python
# let n = the length of list.
def search(list, key):
    index = 0
    while index < list.length do
        if list[index] == key then
            return index
        end
        index = index + 1
    end
    return nil
end
Total: 1
```

Linear Search: Worst Case Simplified

```python
# let n = the length of list.
def search(list, key):
    index = 0
    while index < list.length do
        if list[index] == key then
            return index
        end
        index = index + 1
    end
    return nil
end
Total: n
```
Order of Complexity

- For very large n, we express the number of operations as the (time) order of complexity.
- Order of complexity is often expressed using Big-O notation:

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$3n+3$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$2n+8$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.

O(n) ("Linear")

Number of Operations vs. n (amount of data)
For a linear algorithm, if you double the amount of data, the amount of work you do doubles (approximately).

For a constant-time algorithm, if you double the amount of data, the amount of work you do stays the same.
Linear Search

• Best Case: $O(1)$

• Worst Case: $O(n)$

• Average Case: $\?$
 – Depends on the distribution of queries
 – But can’t be worse than $O(n)$

Insertion Sort: Worst Case

```python
# let n = the length of list.
def isort!(list)
    a = list.clone
    n
    i = 1
    while i != a.length do
        move_left(a, i)
        n-1
        i = i + 1
    end
    return a
end
```

Insertion Sort: Worst Case

let n = the length of list.
def move_left(a, i)
 x = a.slice!(i)
 j = i-1
 while j >= 0 && a[j] > x do
 j = j - 1
 end
 a.insert(j+1, x)
end

but how long do slice! and insert take?

move_left (alternate version)

let n = the length of list.
def move_left(a, i)
 x = a[i]
 j = i-1
 while j >= 0 && a[j] > x do
 a[j+1] = a[j]
 j = j - 1
 end
 a[j+1] = x
end
Insertion Sort: Worst Case

- So the total number of operations is
 (n for list.clone) + (n-1 move_left’s)
- But each move_left performs i+1 operations, where i varies from 1 to n-1:
- n-1 move_left’s = 2 + 3 + 4 + ... + n operations
- Since 1 + 2 + ... + n = n(n+1)/2,
 n-1 move_left’s = n(n+1)/2 – 1
- The total number of operations is:
 n + n(n+1)/2 – 1 = n + n^2/2 + n/2 – 1 = n^2/2 + 3n/2 – 1

Order of Complexity

<table>
<thead>
<tr>
<th>Number of operations</th>
<th>Order of Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>n^2</td>
<td>O(n^2)</td>
</tr>
<tr>
<td>n^2/2 + 3n/2 - 1</td>
<td>O(n^2)</td>
</tr>
<tr>
<td>2n^2 + 7</td>
<td>O(n^2)</td>
</tr>
</tbody>
</table>

Usually doesn't matter what the constants are... we are only concerned about the highest power of n.
For a quadratic algorithm, if you double the amount of data, the amount of work you do quadruples (approximately).
Insertion Sort

- Worst Case: $O(n^2)$
- Best Case: ?
- Average Case: ?

We’ll compare these algorithms with others soon to see how scalable they really are based on their order of complexities.