Distributed Systems

15-640 (Section B)
Fall 2017
14 – Data Intensive Computing + MapReduce
Announcements

• P2 Release (PAXOS): release 10/28
 • Individual Project

• Mid Term Pickup and Regrade Request
 • Andrew ID starts from “a”–“n”, Lisa or Victoria (WEAN 5125)
 • Wednesday 3-5pm. Friday 9-11am, 3-5pm. Monday 9-12, 1-5pm.
 • Andrew ID Starts from “o” – ”z”, Erin (GHC 7123)
 • Tuesday – Friday -- 8:30am-10:30am, 11:15-1:15pm, 2:30 – 4:30pm
 • All Regrade requests must be submitted in writing, explaining why you think you deserve more points, latest by Nov 3rd
 • Midterm solutions will be posted Wednesday / Thursday
Today’s Topics

• Super computers
 • Traditional high-performance computing (HPC)

• Cluster computing
 • MapReduce
 • Implementation

• Alternatives to MapReduce
Typical HPC Machine

- Compute Nodes
 - High end processor(s)
 - Lots of RAM
- Network
 - Specialized
 - Very high performance
- Storage Server
 - RAID-based disk array
HPC Machine Example

Sunway TaihuLight

- Cores: 10,649,600
- Memory: 1,310,720 GB
- Architecture: Sunway SW26010
 - No caches, 65 cores / on-chip group @ 1.45 GHz
 - Sunway RaiseOS 2.0.5
- 93,014.6 TFlop/s
HPC Programming Model

- Programs described at very low level
 - Specify detailed control of processing & communications
- Rely on small number of software packages
 - Written by specialists
 - Limits classes of problems & solution methods
Bulk Synchronous Programming

• Solving Problem Over Grid
 • E.g., finite-element computation

• Partition into Regions
 • p regions for p processors

• Map Region per Processor
 • Local computation sequential
 • Periodically communicate boundary values with neighbors
Typical HPC Operation

- **Characteristics**
 - Long-lived processes
 - Make use of spatial locality
 - Hold all program data in memory (no disk access)
 - High bandwidth communication

- **Strengths**
 - High utilization of resources
 - Effective for many scientific applications

- **Weaknesses**
 - Requires careful tuning of application to resources
 - Intolerant of any variability
HPC Fault Tolerance

- **Checkpoint**
 - Periodically store state of all processes
 - Significant I/O traffic

- **Restore**
 - When failure occurs
 - Reset state to that of last checkpoint
 - All intervening computation wasted

- **Performance Scaling**
 - Very sensitive to number of failing components
Today’s Topics

• Super computers
 • Traditional high-performance computing (HPC)
• Cluster computing
 • MapReduce
 • Implementation
• Alternatives to MapReduce
Google Data Centers

- Dalles, Oregon
- Hydroelectric power @ 2¢ / KW Hr
- $600M, 50 Megawatts
- Enough to power 60,000 homes

- Engineered for maximum modularity & power efficiency
- Container: 1160 servers, 250KW
- Server: 2 disks, 2 processors
Typical Cluster Machine

- Collocate Compute + Storage
 - Medium-performance processors
 - Modest memory
 - 1-2 disks
- Network
 - Conventional Ethernet switches
 - 10s-100 Gb/s
Machines with Disks

• Lots of storage for cheap
 • 3 TB @ $150
 (5¢ / GB)
 • Compare 2007:
 0.75 TB @ $266
 35¢ / GB

• Drawbacks
 • Long and highly variable delays
 • Not very reliable

• HPC: no local disks
Oceans of Data, Skinny Pipes

- 1 Terabyte
 - Easy to store
 - Hard to move

<table>
<thead>
<tr>
<th>Disks</th>
<th>MB / s</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seagate Barracuda</td>
<td>115</td>
<td>2.3 hours</td>
</tr>
<tr>
<td>Seagate Cheetah</td>
<td>125</td>
<td>2.2 hours</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Networks</th>
<th>MB / s</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Internet</td>
<td>< 16</td>
<td>> 1 day</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>< 125</td>
<td>> 2.2 hours</td>
</tr>
<tr>
<td>PSC Teragrid Connection</td>
<td>< 3,750</td>
<td>> 4.4 minutes</td>
</tr>
</tbody>
</table>
Data-Intensive System Challenge

• For Computation That Accesses 1 TB in 5 minutes
 • Data distributed over 100+ disks
 • Assuming uniform data partitioning
 • Compute using 100+ processors
 • Connected by gigabit Ethernet (or equivalent)

• System Requirements
 • Lots of disks
 • Lots of processors
 • Located in close proximity
 • Within reach of fast, local-area network
Cluster Programming Model

• Application programs written in terms of high-level operations on data
• Runtime system controls scheduling, load balancing, ...

• This is idealized. In practice, no general cluster programming model.
Map/Reduce Cluster Model

- Map computation across many objects
- Flexible aggregation of results
- System solves resource allocation & reliability

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004
MapReduce Example

- Calculate word frequency of set of documents
MapReduce Example

- **Map:** generate \(\langle \text{word, count} \rangle \) pairs for all words in document
- **Reduce:** sum word counts across documents

\[
\begin{align*}
\text{dick} & \quad \sum 1 \\
\text{and} & \quad \sum 3 \\
\text{come} & \quad \sum 6 \\
\text{see} & \quad \sum 3 \\
\text{spot} & \quad \sum 1 \\
\end{align*}
\]

\[
\begin{align*}
\langle \text{dick, 1} \rangle & \quad \langle \text{come, 1} \rangle & \quad \langle \text{see, 1} \rangle & \quad \langle \text{spot, 1} \rangle \\
\langle \text{come, 1} \rangle & \quad \langle \text{and, 1} \rangle \\
\langle \text{come, 1} \rangle & \quad \langle \text{see, 1} \rangle \\
\langle \text{come, 2} \rangle & \quad \langle \text{and, 1} \rangle \\
\langle \text{come, 1} \rangle & \quad \langle \text{and, 1} \rangle \\
\langle \text{and, 1} \rangle & \quad \langle \text{see, 1} \rangle \\
\langle \text{and, 1} \rangle & \quad \langle \text{spot, 1} \rangle \\
\end{align*}
\]

- Extract Word-Count Pairs
- Sum
Hadoop Project

- File system with files distributed across nodes

- Store multiple (typically 3 copies of each file)
 - If one node fails, data still available

- Logically, any node has access to any file
 - May need to fetch across network (ideally, leverage locality for perf.)

- Map / Reduce programming environment
 - Software manages execution of tasks on nodes
Hadoop MapReduce API

• Requirements
 • Programmer must supply Mapper & Reducer classes

• Mapper
 • Steps through file one line at a time
 • Code generates sequence of <key, value> pairs
 • Call output.collect(key, value)
 • Default types for keys & values are strings
 • Lots of low-level machinery to convert to & from other data types
 • But can use anything “writable”

• Reducer
 • Given key + iterator that generates sequence of values
 • Generate one or more <key, value> pairs
 • Call output.collect(key, value)
public class WordCountMapper extends MapReduceBase
 implements Mapper {

 private final static Text word = new Text();

 private final static IntWritable count = new IntWritable(1);

 public void map(WritableComparable key, Writable values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 /* Get line from file */
 String line = values.toString();
 /* Split into tokens */
 StringTokenizer itr = new StringTokenizer(line.toLowerCase(),
 " \	!.?:()[]',&-;|0123456789");
 while(itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 /* Emit <token,1> as key + value */
 output.collect(word, count);
 }
 }
}
public class WordCountReducer extends MapReduceBase
 implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {
 int cnt = 0;
 while(values.hasNext()) {
 IntWritable ival = (IntWritable) values.next();
 cnt += ival.get();
 }
 output.collect(key, new IntWritable(cnt));
 }
}
Cluster Scalability Advantages

- Application of distributed system design principles
- Dynamically scheduled tasks with state in replicated files

Provisioning Advantages
- Can use consumer-grade components
 - maximizes cost-performance
- Can have heterogeneous nodes
 - More efficient technology refresh

Operational Advantages
- Minimal staffing
- No downtime
Example: Sparse-matrix Product

• Task: Compute product $C = A \cdot B$
• Assume most matrix entries are 0

• Motivation
 • Core problem in scientific computing
 • Challenging for parallel execution
 • Demonstrate expressiveness of Map/Reduce

\[
\begin{pmatrix}
10 & 20 \\
30 & 40 \\
50 & 60 & 70
\end{pmatrix}
\times
\begin{pmatrix}
-2 & -3 \\
-4
\end{pmatrix}
=
\begin{pmatrix}
-60 & -250 \\
-170 & -460
\end{pmatrix}
\]
Representing Sparse Matrices

- Represent matrix as a list of nonzero entries
 \[\langle \text{row}, \text{col}, \text{value}, \text{matrixID} \rangle \]

- Strategy
 - Phase 1: Compute all products \(a_{i,k} \cdot b_{k,j} \)
 - Phase 2: Sum products for each entry \(i,j \)
 - Each phase involves a Map/Reduce
Phase 1 Map

- Group values $a_{i,k}$ and $b_{k,j}$ according to key k
Phase 1 Reduce

- Generate all products $a_{i,k} \cdot b_{k,j}$
Phase 2 Map

- Group products $a_{i,k} \cdot b_{k,j}$ with matching values of i and j

Key = row,col
Phase 2 Reduce

- Sum products to get final entries
public class P1Mapper extends MapReduceBase implements Mapper {
 public void map(WritableComparable key, Writable values, OutputCollector output, Reporter reporter) throws IOException {
 try {
 GraphEdge e = new GraphEdge(values.toString());
 IntWritable k;
 if (e.tag.equals("A"))
 k = new IntWritable(e.toNode);
 else
 k = new IntWritable(e.fromNode);
 output.collect(k, new Text(e.toString()));
 } catch (BadGraphException e) {}
public class P1Reducer extends MapReduceBase implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException
 {
 Text outv = new Text("""); // Don't really need output values

 /* First split edges into A and B categories */
 LinkedList<GraphEdge> alist = new LinkedList<GraphEdge>();
 LinkedList<GraphEdge> blist = new LinkedList<GraphEdge>();
 while(values.hasNext) {
 try {
 GraphEdge e =
 new GraphEdge(values.next().toString());
 if (e.tag.equals("A")) {
 alist.add(e);
 } else {
 blist.add(e);
 }
 } catch (BadGraphException e) {}
 }

 // Continued
// Continued
}
Phase 1 Reduce (Code) cntd.

// Continuation

Iterator<GraphEdge> aset = alist.iterator();
// For each incoming edge
while (aset.hasNext()) {
 GraphEdge aedge = aset.next();
 // For each outgoing edge
 Iterator<GraphEdge> bset = blist.iterator();
 while (bset.hasNext()) {
 GraphEdge bedge = bset.next();
 GraphEdge newe = aedge.contractProd(bedge);
 // Null would indicate invalid contraction
 if (newe != null) {
 Text outk = new Text(newe.toString());
 output.collect(outk, outv);
 }
 }
}
}
public class P2Mapper extends MapReduceBase implements Mapper {

 public void map(WritableComparable key, Writable values, OutputCollector output, Reporter reporter)
 throws IOException {
 String es = values.toString();
 try {
 GraphEdge e = new GraphEdge(es);
 // Key based on head & tail nodes
 String ks = e.fromNode + " " + e.toNode;
 output.collect(new Text(ks), new Text(e.toString()));
 } catch (BadGraphException e) {}}
}

public class P2Reducer extends MapReduceBase implements Reducer {

 public void reduce(WritableComparable key, Iterator values,
 OutputCollector output, Reporter reporter)
 throws IOException {

 GraphEdge efinal = null;
 while (efinal == null && values.hasNext()) {
 try {
 efinal = new GraphEdge(values.next().toString());
 } catch (BadGraphException e) {
 }
 }
 if (efinal != null) {
 while(values.hasNext()) {
 try {
 GraphEdge eother =
 new GraphEdge(values.next().toString());
 efinal.weight += eother.weight;
 } catch (BadGraphException e) {
 }
 }
 if (efinal.weight != 0)
 output.collect(new Text(efinal.toString()),
 new Text('"'"));
 }
 }
}
Lessons from Sparse Matrix

• Associative Matching is Powerful Communication Primitive
 • Intermediate step in Map/Reduce

• Similar Strategy Applies to Other Problems
 • Shortest path in graph
 • Database join

• Many Performance Considerations
 • Kiefer, Volk, Lehner, TU Dresden
 • Should do systematic comparison to other sparse matrix implementations
MapReduce Implementation

• Built on Top of Parallel File System
 • Google: GFS, Hadoop: HDFS
 • Provides global naming
 • Reliability via replication (typically 3 copies)

• Breaks work into tasks
 • Master schedules tasks on workers dynamically
 • Typically #tasks >> #processors

• Net Effect
 • Input: Set of files in reliable file system
 • Output: Set of files in reliable file system
MapReduce Execution

Dean & Ghemawat: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI 2004
Mapping

- **Hash Function** h
 - Maps each key K to integer i such that $0 \leq i < R$

- **Mapper Operation**
 - Reads input file blocks
 - Generates pairs $\langle K, V \rangle$
 - Writes to local file $h(K)$

\[h(K) \in \{0, \ldots, R-1\} \]
• Dynamically map input file blocks onto mappers
• Each generates key/value pairs from its blocks
• Each writes R files on local file system
Shuffling

• Each Reducer:
 • Handles 1/R of the possible key values
 • Fetches its file from each of M mappers
 • Sorts all of its entries to group values by keys
Reducing

• Each Reducer:
 • Executes reducer function for each key
 • Writes output values to parallel file system
MapReduce Effect

MapReduce Step
- Reads set of files from file system
- Generates new set of files
- Can iterate to do more complex processing

Input Files (Partitioned into Blocks)

R Output Files
Map/Reduce Operation

- Characteristics
 - Computation broken into many, short-lived tasks
 - Mapping, reducing
 - Use disk storage to hold intermediate results

- Strengths
 - Great flexibility in placement, scheduling, and load balancing
 - Can access large data sets

- Weaknesses
 - Higher overhead
 - Lower raw performance
Example Parameters

• Sort Benchmark
 • 10^{10} 100-byte records
 • Partition into $M = 15,000$ 64MB pieces
 • Key = value
 • Partition according to most significant bytes
 • Sort locally with $R = 4,000$ reducers

• Machine
 • 1800 2Ghz Xeons
 • Each with 2 160GB IDE disks
 • Gigabit ethernet
 • 891 seconds total
Interesting Features

• Fault Tolerance
 • Assume reliable file system
 • Detect failed worker
 • Heartbeat mechanism
 • Reschedule failed task

• Stragglers
 • Tasks that take long time to execute
 • Might be bug, flaky hardware, or poor partitioning
 • When done with most tasks, reschedule any remaining executing tasks
 • Keep track of redundant executions
 • Significantly reduces overall run time
Map/Reduce Fault Tolerance

• Data Integrity
 • Store multiple copies of each file
 • Including intermediate results of each Map / Reduce
 • Continuous checkpointing

• Recovering from Failure
 • Simply recompute lost result
 • Localized effect
 • Dynamic scheduler keeps all processors busy
Exploring Parallel Computation Models

- Map/Reduce Provides Coarse-Grained Parallelism
 - Computation done by independent processes
 - File-based communication

- Observations
 - Relatively “natural” programming model
 - Research issue to explore full potential and limits
Beyond Map/Reduce

• Typical Map/Reduce Applications
 • Sequence of steps, each requiring map & reduce
 • Series of data transformations
 • Iterating until reach convergence

• Strengths of Map/Reduce
 • User writes simple functions, system manages complexities of mapping, synchronization, fault tolerance
 • Very general
 • Good for large-scale data analysis

• Limitations
 • No locality of data or activity
 • Each map/reduce step must complete before next begins
Conclusions

• Distributed Systems Concepts Lead to Scalable Machines
 • Loosely coupled execution model
 • Lowers cost of procurement & operation

• Map/Reduce Gaining Widespread Use
 • Hadoop makes it widely available
 • Great for some applications, good enough for many others

• Lots of Work to be Done
 • Richer set of programming models and implementations
 • Expanding range of applicability
 • Problems that are data and compute intensive
 • The future of supercomputing?
Beyond Map/Reduce
Generalizing Map/Reduce

• Microsoft Dryad Project

• Computational Model
 • Acyclic graph of operators
 • But expressed as textual program
 • Each takes collection of objects and produces objects
 • Purely functional model

• Implementation Concepts
 • Objects stored in files or memory
 • Any object may be lost; any operator may fail
 • Replicate & recompute for fault tolerance
 • Dynamic scheduling
 • # Operators >> # Processors
CMU GraphLab

• Carlos Guestrin, et al.

• Graph algorithms used in machine learning

• View Computation as Localized Updates on Graph
 • New value depends on own value + those of neighbors
 • Update repeatedly until converge
Machine Learning Example

- PageRank Computation
 - Larry Page & Sergey Brinn, 1998
- Rank “Importance” of Web Pages
PageRank Computation

• Initially
 • Assign weight 1.0 to each page

• Iteratively
 • Select arbitrary node and update its value

• Convergence
 • Results unique, regardless of selection ordering

\[R_1 \leftarrow 0.1 + 0.9 \times (\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5) \]
PageRank with Map/Reduce

- Each Iteration: Update all nodes
 - Map: Generate values to pass along each edge
 - Key value 1: \((1, \frac{1}{2} R)\) \((1, \frac{1}{4} R)\) \((1, \frac{1}{3} R)\)
 - Similar for all other keys
 - Reduce: Combine edge values to get new rank
 - \(R_1 \leftarrow 0.1 + 0.9 \times \left(\frac{1}{2} R_2 + \frac{1}{4} R_3 + \frac{1}{3} R_5 \right)\)
 - Similar for all other nodes

- Performance
 - Very slow!
 - Altavista Webgraph 2002
 - 1.4B vertices, 6.7B edges

| Hadoop | 800 cores | 9000s |
PageRank with GraphLab

• Operation
 • Graph partitioned across multiple processors
 • Each doing updates to its portion of graph
 • Exploits locality
 • Greater asynchrony
 • Only iterate over portions of graph where values are changing

• Performance
 • Altavista Webgraph 2002
 • 1.4B vertices, 6.7B edges

<table>
<thead>
<tr>
<th></th>
<th>Hadoop</th>
<th>Prototype GraphLab2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>800 cores</td>
<td>512 cores</td>
</tr>
<tr>
<td></td>
<td>9000s</td>
<td>431s</td>
</tr>
</tbody>
</table>