Experiments with Three Approaches to Recognizing Lexical Entailment

Peter Turney and Saif Mohammad

2013
Outline of talk

- introduction
- semantic relations and lexical entailment
- related work
- performance measures
- three approaches to lexical entailment
- three datasets for lexical entailment
- experiments
- discussion of results
- limitations and future work
- conclusion
Introduction
Introduction – RTE

• RTE – Recognizing Textual Entailment
• sample problem from first RTE Challenge in 2005:
 • Text:
 – iTunes software has seen strong sales in Europe.
 • Hypothesis:
 – Strong sales for iTunes in Europe.
• does Text entail Hypothesis? Yes or no?
• generic NLP task with applications in text summarization, information retrieval, information extraction, question answering, machine translation, paraphrasing, …
Introduction – RTE and RLE

- to recognize entailment between sentences, must first recognize entailment between words:
 - Text:
 - George was bitten by a dog.
 - Hypothesis:
 - George was attacked by an animal.
 - bitten entails attacked
 - dog entails animal
 - RTE – Recognizing Textual Entailment requires
 RLE – Recognizing Lexical Entailment
Introduction – VSM

- will look at three approaches to RLE
- all three use Vector Space Model of Semantics
- core idea of VSM is distributional hypothesis
 - Distributional hypothesis: Words that occur in similar contexts tend to have similar meanings.
- represent a word by a vector of the contexts in which the word appears
- calculate entailment from vectors
Introduction – balAPinc

- first approach: balAPinc
 - (Kotlerman, Dagan, Szpektor, and Zhitomirsky-Geffet 2010)
- based on context inclusion hypothesis
 - Context inclusion hypothesis: If a word a tends to occur in a subset of the contexts in which a word b occurs (b contextually includes a), then a (the narrower term) tends to entail b (the broader term).
 - inspired by formal logic, where ‘a entails b’ means ‘the models in which b is true include the models in which a is true’
 - the models of a are a subset of the models of b
Introduction – ConVecs

- second approach: ConVecs
 - (Baroni, Bernardi, Do, and Shan 2012)
- based on the context combination hypothesis
 - Context combination hypothesis: The tendency of \(a \) to entail \(b \) is correlated with some learnable function of the contexts in which \(a \) occurs and the contexts in which \(b \) occurs; some combinations of contexts tend to block entailment and others tend to allow entailment.
- hypothesis implies that the concatenation of the context vectors for \(a \) and \(b \) is suitable for supervised machine learning of lexical entailment
 - \(<a_1, a_2, ..., a_n, b_1, b_2, ..., b_n>\)
Introduction – SimDiffs

• third approach: SimDiffs
 • (Turney and Mohammad, under review)
• based on similarity differences hypothesis
 • Similarity differences hypothesis: The tendency of a to entail b is correlated with some learnable function of the differences in their similarities, $\text{sim}(a, r) - \text{sim}(b, r)$, to a set of reference words, $r \in R$; some differences tend to block entailment and others tend to allow entailment.

• consider ‘dog entails animal’ versus ‘table entails animal’, using $r = \text{life}$
 • $\text{sim}(\text{dog, life}) \approx \text{sim}(\text{animal, life})$
 • $\text{sim}(\text{table, life}) \neq \text{sim}(\text{animal, life})$
Semantic Relations and Lexical Entailment
Semantic Relations and Lexical Entailment

- balAPinc inspired by asymmetric similarity measures
- ConVecs and SimDiffs inspired by research on supervised learning of semantic relations
- Zhitomirsky-Geffet and Dagan (2009) argue lexical entailment does not correspond to classical relations
 - for example, some part-whole relations involve entailment and others don’t
- but a fine-grained semantic relation taxonomy can resolve this issue by distinguishing subcategories
 - Bejar, Chaffin, and Embretson (1991) have 79 subcategories of semantic relations
- entailment crosses coarse boundaries, but not fine
Related Work
Related Work

• asymmetric similarity measures for context vectors

• supervised learning of semantic relation classes
 • SemEval-2007 Task 4: Classification of Semantic Relations between Nominals (Girju et al. 2007)
 • SemEval-2010 Task 8: Multi-Way Classification of Semantic Relations Between Pairs of Nominals (Hendrickx, Kim, Kozareva, Nakov, Seaghdha, Pado, Pennacchiotti, Romano, and Szpakowicz 2010)
 • SemEval-2012 Task 2: Measuring Degrees of Relational Similarity (Jurgens et al. 2012)
Related Work

- only two papers approaching lexical entailment using ideas from semantic relation classification
 - Akhmatova and Dras (2009)
 - Baroni, Bernardi, Do, and Shan (2012)
Performance Measures
Performance Measures

- asymmetric similarity measures generate real-valued outputs
 - \(\text{sim}(a,b) \) is in \(R \)
 - balAPinc
- supervised learning of semantic relations yields binary-valued classes
 - word pair \(<a,b>\) is in class 0 (does not entail) or 1 (entails)
 - ConVecs, SimDiffs
- how to compare balAPinc with ConVecs and SimDiffs?
 - use learning algorithm that generates probabilities
 - apply threshold on balAPinc output
Performance Measures

- performance of real-valued scores:
 - AP0 – average precision with respect to class 0
 - AP1 – average precision with respect to class 1

- performance of binary-valued classifications:
 - precision
 - recall
 - F-measure
 - accuracy
Three Approaches
Three Approaches – balAPinc

• first approach: balAPinc
 • (Kotlerman, Dagan, Szpektor, and Zhitomirsky-Geffet 2010)

• based on context inclusion hypothesis
 • Context inclusion hypothesis: If a word a tends to occur in a subset of the contexts in which a word b occurs (b contextually includes a), then a (the narrower term) tends to entail b (the broader term).

• asymmetric real-valued similarity measure
Three Approaches – balAPinc

\[
\text{rel}(f, F_w) = \begin{cases}
1 - \frac{\text{rank}(f, F_w)}{|F_w|+1} & \text{if } f \in F_w \\
0 & \text{if } f \notin F_w
\end{cases}
\]

\[
\text{inc}(r, F_u, F_v) = \{ f \mid \text{rank}(f, F_u) \leq r \text{ and } f \in (F_u \cap F_v) \}
\]

\[
P(r, F_u, F_v) = \frac{|\text{inc}(r, F_u, F_v)|}{r}
\]

\[
\text{APinc}(u, v) = \frac{\sum_{r=1}^{|F_u|} [P(r, F_u, F_v) \cdot \text{rel}(f_{ur}, F_v)]}{|F_u|}
\]

\[
\text{LIN}(u, v) = \frac{\sum_{f \in F_u \cap F_v} [w_u(f) + w_v(f)]}{\sum_{f \in F_u} w_u(f) + \sum_{f \in F_v} w_v(f)}
\]

\[
\text{balAPinc}(u, v) = \sqrt{\text{APinc}(u, v) \cdot \text{LIN}(u, v)}
\]
Three Approaches – ConVecs

- second approach: ConVecs
 - (Baroni, Bernardi, Do, and Shan 2012)
- based on the context combination hypothesis
 - Context combination hypothesis: The tendency of \(a \) to entail \(b \) is correlated with some learnable function of the contexts in which \(a \) occurs and the contexts in which \(b \) occurs; some combinations of contexts tend to block entailment and others tend to allow entailment.
- supervised machine learning from labeled word pairs
- binary-valued class output
Three Approaches – ConVecs

- word pair \(<a,b>\) with label \{0,1\}
- represent \(<a,b>\) with feature vector
- context vectors for words \(a\) and \(b\):
 - \(<a_1, a_2, \ldots, a_n>\)
 - \(<b_1, b_2, \ldots, b_n>\)
- feature vector for machine learning:
 - \(<a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n>\)
- apply support vector machine (SVM) learning algorithm to labeled training data
Three Approaches – SimDiffs

- third approach: SimDiffs
 - (Turney and Mohammad, under review)
- based on similarity differences hypothesis
 - Similarity differences hypothesis: The tendency of a to entail b is correlated with some learnable function of the differences in their similarities, $\text{sim}(a, r) - \text{sim}(b, r)$, to a set of reference words, $r \in R$; some differences tend to block entailment and others tend to allow entailment.
- supervised machine learning from labeled word pairs
- binary-valued class output
Three Approaches – SimDiffs

- supervised machine learning, four sets of features
- \(\text{sim}_d = \) similarity in domain space
- \(\text{sim}_f = \) similarity in function space

\[
\begin{align*}
S_1 &= \{\text{sim}_d(a, r) - \text{sim}_d(b, r) \mid r \in R\} \\
S_2 &= \{\text{sim}_f(a, r) - \text{sim}_f(b, r) \mid r \in R\} \\
S_3 &= \{\text{sim}_d(a, r) - \text{sim}_f(b, r) \mid r \in R\} \\
S_4 &= \{\text{sim}_f(a, r) - \text{sim}_d(b, r) \mid r \in R\}
\end{align*}
\]

- \(R = 2,086 \) words from Basic English (Ogden 1930)
Three Datasets
Three Datasets – KDSZ dataset

- (Kotlerman, Dagan, Szpektor, and Zhitomirsky-Geffet 2010)
- dataset contains 3,772 word pairs
 - 1,068 labeled *entails*
 - 2,704 labeled *does not entail*
- three judges labeled the pairs
 - inter-annotator agreement between any two of the three judges varying from 90.0% to 93.5%
- pairs belong to a variety of semantic relation classes
 - dataset not designed with any attention to semantic relation classes
Three Datasets – BBDS dataset

• (Baroni, Bernardi, Do, and Shan 2012)
• dataset contains 2,770 word pairs
 • 1,385 labeled entails
 • 1,385 labeled does not entail
• all pairs labeled entails are hyponym–hypernym noun–noun pairs
 • such as 'pope entails leader'
• pairs were generated automatically from WordNet and then validated manually
Three Datasets – JMTH dataset

- (Jurgens, Mohammad, Turney, and Holyoak 2012)
- SemEval-2012 Task 2 dataset
 - contains 3,218 word pairs
 - labeled with 79 types of semantic relations
 - part-whole, cause-effect, sign-referent, ...
 - we convert the dataset into 2,308 word pairs
 - 1,154 labeled *entails*
 - 1,154 labeled *does not entail*
- manually created a mapping table to map 79 semantic relation types to binary *entails / does not entail*
 - 'hyponym entails hypernym'
 - 'cause entails effect'
Three Experiments
Experiments with the JMTH dataset

• split the dataset into three (roughly) equal parts
 • two development sets (Dev1 and Dev2)
 • one test set (Test)
• used Dev1 and Dev2 to tune parameters
 • balAPinc has threshold parameter T to convert real-valued similarity score to binary-valued class
 • ConVecs has two parameters to tune for SVD, k and p
 • SimDiffs has four parameters to tune for SVD, k and p for domain space and k and p for function space
Experiments with the JMTH dataset

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>AP₀</th>
<th>AP₁</th>
<th>Pre</th>
<th>Rec</th>
<th>F</th>
<th>Acc</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>balAPinc</td>
<td>0.57</td>
<td>0.56</td>
<td>0.573</td>
<td>0.573</td>
<td>0.573</td>
<td>57.3</td>
<td>53.8–60.7</td>
</tr>
<tr>
<td>ConVecs</td>
<td>0.76</td>
<td>0.77</td>
<td>0.703</td>
<td>0.702</td>
<td>0.702</td>
<td>70.2</td>
<td>66.9–73.3</td>
</tr>
<tr>
<td>SimDiffs</td>
<td>0.80</td>
<td>0.79</td>
<td>0.724</td>
<td>0.724</td>
<td>0.724</td>
<td>72.4</td>
<td>69.1–75.4</td>
</tr>
</tbody>
</table>

- balAPinc significantly below ConVecs and SimDiffs
- difference between ConVecs and SimDiffs not significant
Experiments with the JMTH dataset

<table>
<thead>
<tr>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
<th>AP$_0$</th>
<th>AP$_1$</th>
<th>Pre</th>
<th>Rec</th>
<th>F</th>
<th>Acc</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.80</td>
<td>0.79</td>
<td>0.724</td>
<td>0.724</td>
<td>0.724</td>
<td>72.4</td>
<td>69.1–75.4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.76</td>
<td>0.75</td>
<td>0.680</td>
<td>0.680</td>
<td>0.680</td>
<td>68.0</td>
<td>64.6–71.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.79</td>
<td>0.79</td>
<td>0.717</td>
<td>0.716</td>
<td>0.716</td>
<td>71.6</td>
<td>68.3–74.7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.71</td>
<td>0.69</td>
<td>0.663</td>
<td>0.663</td>
<td>0.663</td>
<td>66.3</td>
<td>62.9–69.6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.75</td>
<td>0.72</td>
<td>0.684</td>
<td>0.684</td>
<td>0.684</td>
<td>68.4</td>
<td>65.0–71.6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.76</td>
<td>0.74</td>
<td>0.690</td>
<td>0.690</td>
<td>0.690</td>
<td>69.0</td>
<td>65.7–72.2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.75</td>
<td>0.73</td>
<td>0.701</td>
<td>0.701</td>
<td>0.701</td>
<td>70.1</td>
<td>66.8–73.2</td>
</tr>
</tbody>
</table>

- experiments with subsets of SimDiffs features
- all subsets contribute to performance
Experiments with the KDSZ dataset

- experimented with four ways of splitting the dataset
- (1) standard
 - standard 10-fold cross-validation
- (2) clustered
 - 10-fold CV but cluster pairs shared words in same fold
- (3) balanced
 - 10-fold CV but clustered and balanced classes
- (4) different
 - train on JMTH and test on KDSZ

- from easy to hard:
 - standard, clustered, balanced, different
Experiments with the KDSZ dataset

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Evaluation</th>
<th>AP₀</th>
<th>AP₁</th>
<th>Pre</th>
<th>Rec</th>
<th>F</th>
<th>Acc</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>balAPinc</td>
<td>standard</td>
<td>0.79</td>
<td>0.37</td>
<td>0.645</td>
<td>0.645</td>
<td>0.645</td>
<td>64.5</td>
<td>63.0–66.0</td>
</tr>
<tr>
<td></td>
<td>clustered</td>
<td>0.79</td>
<td>0.37</td>
<td>0.644</td>
<td>0.643</td>
<td>0.644</td>
<td>64.3</td>
<td>62.8–65.8</td>
</tr>
<tr>
<td></td>
<td>balanced</td>
<td>0.60</td>
<td>0.59</td>
<td>0.583</td>
<td>0.583</td>
<td>0.583</td>
<td>58.3</td>
<td>56.2–60.4</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>0.61</td>
<td>0.60</td>
<td>0.582</td>
<td>0.582</td>
<td>0.582</td>
<td>58.2</td>
<td>56.1–60.3</td>
</tr>
<tr>
<td>ConVecs</td>
<td>standard</td>
<td>0.87</td>
<td>0.56</td>
<td>0.731</td>
<td>0.747</td>
<td>0.735</td>
<td>74.7</td>
<td>73.3–76.1</td>
</tr>
<tr>
<td></td>
<td>clustered</td>
<td>0.78</td>
<td>0.36</td>
<td>0.636</td>
<td>0.690</td>
<td>0.645</td>
<td>69.0</td>
<td>67.5–70.5</td>
</tr>
<tr>
<td></td>
<td>balanced</td>
<td>0.60</td>
<td>0.59</td>
<td>0.567</td>
<td>0.554</td>
<td>0.531</td>
<td>55.4</td>
<td>53.3–57.5</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>0.57</td>
<td>0.62</td>
<td>0.569</td>
<td>0.561</td>
<td>0.547</td>
<td>56.1</td>
<td>54.0–58.2</td>
</tr>
<tr>
<td>SimDiffs</td>
<td>standard</td>
<td>0.88</td>
<td>0.60</td>
<td>0.749</td>
<td>0.757</td>
<td>0.752</td>
<td>75.7</td>
<td>74.3–77.0</td>
</tr>
<tr>
<td></td>
<td>clustered</td>
<td>0.80</td>
<td>0.40</td>
<td>0.664</td>
<td>0.684</td>
<td>0.671</td>
<td>68.4</td>
<td>66.9–69.9</td>
</tr>
<tr>
<td></td>
<td>balanced</td>
<td>0.63</td>
<td>0.64</td>
<td>0.596</td>
<td>0.592</td>
<td>0.588</td>
<td>59.2</td>
<td>57.1–61.3</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>0.58</td>
<td>0.61</td>
<td>0.581</td>
<td>0.574</td>
<td>0.564</td>
<td>57.4</td>
<td>55.3–59.5</td>
</tr>
</tbody>
</table>

- no significant differences on different evaluation
Experiments with the BBDS dataset

- experimented with three ways of splitting the dataset
 - (1) standard
 - standard 10-fold cross-validation
 - (2) clustered
 - 10-fold CV but cluster pairs shared words in same fold
 - (3) different
 - train on JMTH and test on KDSZ
 - no balanced split, because dataset is already balanced
Experiments with the BBDS dataset

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Evaluation</th>
<th>AP₀</th>
<th>AP₁</th>
<th>Pre</th>
<th>Rec</th>
<th>F</th>
<th>Acc</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>balAPinc</td>
<td>standard</td>
<td>0.79</td>
<td>0.73</td>
<td>0.722</td>
<td>0.722</td>
<td>0.722</td>
<td>72.2</td>
<td>70.5–73.8</td>
</tr>
<tr>
<td></td>
<td>clustered</td>
<td>0.79</td>
<td>0.73</td>
<td>0.722</td>
<td>0.722</td>
<td>0.722</td>
<td>72.2</td>
<td>70.5–73.8</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>0.79</td>
<td>0.73</td>
<td>0.701</td>
<td>0.687</td>
<td>0.682</td>
<td>68.7</td>
<td>67.0–70.4</td>
</tr>
<tr>
<td>ConVecs</td>
<td>standard</td>
<td>0.95</td>
<td>0.95</td>
<td>0.876</td>
<td>0.876</td>
<td>0.876</td>
<td>87.6</td>
<td>86.3–88.8</td>
</tr>
<tr>
<td></td>
<td>clustered</td>
<td>0.92</td>
<td>0.91</td>
<td>0.829</td>
<td>0.821</td>
<td>0.819</td>
<td>82.1</td>
<td>80.6–83.5</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>0.72</td>
<td>0.71</td>
<td>0.652</td>
<td>0.651</td>
<td>0.650</td>
<td>65.1</td>
<td>63.3–66.9</td>
</tr>
<tr>
<td>SimDiffs</td>
<td>standard</td>
<td>0.97</td>
<td>0.97</td>
<td>0.913</td>
<td>0.913</td>
<td>0.913</td>
<td>91.3</td>
<td>90.2–92.3</td>
</tr>
<tr>
<td></td>
<td>clustered</td>
<td>0.96</td>
<td>0.96</td>
<td>0.883</td>
<td>0.881</td>
<td>0.881</td>
<td>88.1</td>
<td>86.8–89.3</td>
</tr>
<tr>
<td></td>
<td>different</td>
<td>0.84</td>
<td>0.82</td>
<td>0.751</td>
<td>0.745</td>
<td>0.743</td>
<td>74.5</td>
<td>72.8–76.1</td>
</tr>
</tbody>
</table>

- all significant differences on *different* evaluation
Experiments – Summary

- **bold** = significantly worse than SimDiffs
- no cases significantly better than SimDiffs

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>JMTTH Accuracy</th>
<th>KDSZ Accuracy</th>
<th>BBDS Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>balAPinc</td>
<td>57.3</td>
<td>58.2</td>
<td>68.7</td>
</tr>
<tr>
<td>ConVecs</td>
<td>70.2</td>
<td>56.1</td>
<td>65.1</td>
</tr>
<tr>
<td>SimDiffs</td>
<td>72.4</td>
<td>57.4</td>
<td>74.5</td>
</tr>
</tbody>
</table>
Discussion
Discussion of results

• results support the similarity differences hypothesis
 • second-order features useful for lexical entailment
• manually designing an asymmetric similarity measure is a difficult task
 • recall the complex equations for balAPinc
• manually designing feature vectors is easier and seems to work better
Limitations
Limitations and Future Work

• evaluation methodology
 • here: direct evaluation; future work: evaluate RLE module as component in larger RTE system

• variety of hypotheses
 • past work: mainly context inclusion hypothesis; here: context combination hypothesis, similarity differences hypothesis; future work: more hypotheses, combination of hypotheses

• semantic relations and lexical entailment
 • past work: no connection with work in semantic relations; here: strong connection with semantic relations; future: possible counter-examples for connection with semantic relations?
Conclusion
Conclusion

- SimDiffs better than balAPinc and ConVecs
- supervised learning better than manually building asymmetric similarity measures
- evidence for strong connection between lexical entailment and semantic relations