
fullName:________________________ andrewID:_________________ section:___

15-112 N25
Quiz4

This is the paper version of Quiz4. You must write your name on this paper and hand
this back in immediately after the assessment, even if you do not use it to write your
answers. If we do not receive it immediately, you will receive a zero on the
assessment.

Quiz4 is located in section 6.9 of CS Academy (the end of Unit 6), and contains two
parts. You must do Part 1 first, and you must submit it before viewing Part 2. If you
cannot see the submit button, call over a TA or Mike and let us know your andrewID.

We will not grade anything you write on these pages unless you initial the box below:

________ Write your initials here if and only if you wish for us to grade what you have
written on this paper instead of any answers submitted in CS Academy. Leave the
space blank if you wish for us to grade what is written in CS Academy (the default,
recommended option). Note: Even if you write your answers on paper, you may not
run any code related to the Part 1 problems (MCs and CTs).

You may not view any other notes, prior work, websites or resources, including any
form of AI. You may not communicate with anyone else except for TAs or faculty
during the assessment. All syllabus policies apply.

Some students will take this at a different time with testing accommodations. As such,
you may not discuss this test with anyone else, even
briefly, in any form, until we have released grades. Failure to abide by these rules may
result in an academic integrity violation.

Do not recursion or anything else disallowed in the original problem.

Do not open this or look inside (even briefly) before we instruct you
to begin. Close it once you are done.

Part 1[40pts total]: Multiple Choice and Code Tracing

MC1[4 pts]:Which of the following statements is FALSE?

◯​ a. Sets are mutable
◯​ b. Sets must only contain mutable values
◯​ c. Sets can check for membership in O(1) time
◯​ d. Sets do not store duplicates (all elements in a set are unique)
◯​ e. Elements in a set should be considered unordered

MC2[4 pts]:Which of the following statements is FALSE?

◯​ a. Searching all values in a dictionary has an efficiency of O(1)
◯​ b. Dictionaries contain key-value pairs
◯​ c. Dictionary keys must be unique
◯​ d. Dictionary values can be mutable or immutable
◯​ e. A dictionary can be a value in another dictionary
◯​ f. Finding the value for a specific key in a dictionary is O(1)

MC3[4 pts]:What is the big-O efficiency of merge sort?

◯​ a. O(1)
◯​ b. O(N)
◯​ c. O(logN)
◯​ d. O(NlogN)
◯​ e. O(N**2)
◯​ f. O(2**N)
◯​ g. O(N**N)

MC4[4 pts]:What is the big-O efficiency of selection sort?

◯​ a. O(1)
◯​ b. O(N)
◯​ c. O(logN)
◯​ d. O(NlogN)
◯​ e. O(N**2)
◯​ f. O(2**N)
◯​ g. O(N**N)

CT1[12 pts]:
Indicate what the following code prints. Place your answer (and nothing else) in the box below.
We strongly recommend making a box-and-arrow diagram for these CTs.

Hint: This one is tough. Draw a box and arrow diagram!
Note: this prints 3 lines
import copy
def ct(L, A, n):
 A[-1][0] += n
 A[n%2] += [10*n]
 L.append(n)
 print(A)

L = [[3], [4]]
C = copy.copy(L)
D = copy.deepcopy(L)
ct(L, C, 1)
ct(L, D, 2)
print(L)

CT2[12 pts]:
Indicate what the following code prints. Place your answer (and nothing else) in the box below.
We strongly recommend making a box-and-arrow diagram for these CTs.

def ct(L):
 a = set()
 b = set()
 c = dict()
 d = c
 for item in L:
 if item in a:
 b.add(item)
 a.add(item)
 c[L[0]] = a
 c[L[1]] = b
 c[L[2]] = len(a)
 c[L[3]] = len(b)
 x = (d == c)
 c[L[4]] = x
 return c

print(ct([3, 'm', True, True, (5,3), 'm']))

Part 2[60pts total]: Free Response
Your functions should work generally for the kinds of inputs specified in the problem statement, and
we may test your code using additional test cases. We will manually grade both of these problems for
partial credit if you do not pass all the test cases.

FR1[25pts]: findChanges(original, new)

Note: Your solution to this problem must have an efficiency of O(n) or better!

Background: The TAs download the newest list of students enrolled in 112, and they need to know
who (if anyone) has been added to the class and who (if anyone) has dropped it. They also have
access to the original list of students enrolled at the beginning of the semester. Each list contains
student names as strings, like so:

original = ["Jimothy Stego", "Kimchee Wiggles", "Keanu Reeves", "Daisy Ridley"]
new = ["Luz Noceda", "Jimothy Stego", "Kimchee Wiggles",
 "Raine Whispers", "Daisy Ridley"]

Write the nonmutating function findChanges(original, new) that takes two unsorted lists of
names and returns a tuple containing two sets: The first contains the names of anyone who added
the course, and the last contains the names of those who dropped the course. For the example
above:

assert(findChanges(original, new) == ({"Luz Noceda", "Raine Whispers"} , {"Keanu
Reeves"})

...because Luz and Raine joined the class, and Keanu dropped the class.
See the test cases for examples!

Remember: Your solution must have an efficiency of O(n) or better, where n is the length of the new
list. Assume that the original list and the new list are approximately the same size.

Here are some test cases:
original = ["Jimothy Stego", "Kimchee Wiggles", "Keanu Reeves", "Daisy Ridley"]
new = ["Luz Noceda", "Jimothy Stego", "Kimchee Wiggles",
 "Raine Whispers", "Daisy Ridley"]
(added, dropped) = findChanges(original, new)
assert(added == {"Luz Noceda", "Raine Whispers"})
assert(dropped == {"Keanu Reeves"})

original = ["A", "B", "C", "D"]
new = ["A", "B", "D", "E"]
assert(findChanges(original, new) == ({"E"}, {"C"}))

More on the next page

original = ["A", "B", "C", "D"]
new = ["D", "C", "B", "A"]
assert(findChanges(original, new) == (set(), set()))

original = ["A", "B", "C", "D"]
new = ["X", "A", "D", "Y", "C", "B", "Z"]
assert(findChanges(original, new) == ({"X", "Y", "Z"}, set()))
Make sure the function is non-mutating:
assert(original == ["A", "B", "C", "D"])
assert(new == ["X", "A", "D", "Y", "C", "B", "Z"])

 #Begin your answer here or on the next page

Begin or continue your answer here

FR2[35 pts]: makeSpeciesDictionary(animalData)

Say we are given the following 2D list of animalData, where each row contains exactly three
elements (a species, a breed, and a name) in order:

animalData = [['dog','labrador','fred'],
 ['cat','persian', 'betty'],
 ['dog','shepherd','barney'],
 ['dog','labrador','fred'],
 ['dog','labrador','wilma']]

Write the nonmutating function makeSpeciesDictionary(animalData) that takes data formatted
like this, and returns a dictionary mapping each species to another dictionary that maps each breed of
that species to a set of the names in that table for that species.

For example, for the animalData given above, makeSpeciesDictionary(animalData) returns this:

{
 'dog':
 { 'labrador' : { 'fred', 'wilma' },
 'shepherd' : { 'barney' }
 },
 'cat':
 { 'persian' : { 'betty' }
 }
}

Here are some additional test cases:

 animalData = [['dog','labrador','fred'],
 ['cat','persian', 'betty'],
 ['dog','shepherd','barney'],
 ['dog','labrador','fred'],
 ['dog','labrador','wilma']]
 assert(makeSpeciesDictionary(animalData) == {
 'dog':
 { 'labrador' : { 'fred', 'wilma' },
 'shepherd' : { 'barney' }
 },
 'cat':
 { 'persian' : { 'betty' }
 }
 })

 animalData = [['dog','golden','Boo'],
 ['cat','orange', 'Kitty'],
 ['axolotl','wildType','Chee'],
 ['axolotl','leucistic','Meep'],
 ['dog','unknown','Chee']]
 assert(makeSpeciesDictionary(animalData) == {
 'dog':
 {'golden': {'Boo'},
 'unknown': {'Chee'}
 },
 'cat':
 {'orange': {'Kitty'}
 },
 'axolotl':
 {'wildType': {'Chee'},
 'leucistic': {'Meep'}
 }
 })

 #Make sure the function is nonmutating!
 assert(animalData == [['dog','golden','Boo'],
 ['cat','orange', 'Kitty'],
 ['axolotl','wildType','Chee'],
 ['axolotl','leucistic','Meep'],
 ['dog','unknown','Chee']])

We may use other test cases, including species and breeds not given here, so do not hardcode!

Write your answer on the following page

​

Write your answer here

