
fullName:________________________ andrewID:_________________ section:___

15-112 N25
Quiz4 Part 2 of 2

This is the paper version of Part 2 of Quiz4. You will receive this paper version only if
requested (or if taking the quiz with the testing center). You must write your name on
this paper and hand this back in immediately after the assessment, even if you do not
use it to write your answers. If we do not receive it immediately, you will receive a zero
on the assessment.

Quiz4 Part 2 is located in section 7.9 of CS Academy (the end of Unit 7), and contains
only the FRs. If you cannot see the submit button, call over a TA or Mike and let us
know your andrewID.

We will not grade anything you write on these pages unless you initial the box below:

________ Write your initials here if and only if you wish for us to grade your FRs on
this paper instead of any answers submitted in CS Academy. Leave the space blank if
you wish for us to grade what is written in CS Academy (the default, recommended
option).

During the quiz, as always, you may not view any other notes, prior work, websites or
resources, including any form of AI. You may not communicate with anyone else
except for TAs or faculty during the assessment. All syllabus policies apply.

Some students will take this at a different time with testing accommodations. As such,
you may not discuss this test with anyone else, even
briefly, in any form, until we have released grades. Failure to abide by these rules may
result in an academic integrity violation.

Do not recursion on these FRs, or anything else disallowed prior to
Unit 7 the recursion unit. (Note that you will need to use recursion
later, when we do WS5)

Do not open this or look inside (even briefly) before we instruct you
to begin. Close it once you are done.

Part 2[70pts total]: Free Response
Your functions should work generally for the kinds of inputs specified in the problem statement, and
we may test your code using additional test cases. We will manually grade both of these problems for
partial credit if you do not pass all the test cases.

FR1[35pts]: nonmutating insertRowCol(L, row, col, val)

Write the nonmutating function insertRowAndCol(L, row, col, val) which takes a rectangular 2d
list L, and returns a new list with the same values of L, along with one new row and one new column
at the locations specified by row and col. The cells in the new row and column are all set to val.

For example, if L is the following list:
[[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]]

Then insertRowAndCol(L, 1, 2, 42) should return:
[[1, 2, 42, 3, 4],
 [42, 42, 42, 42, 42],
 [5, 6, 42, 7, 8],
 [9, 10, 42, 11, 12]]

In the example above, a row is inserted at index 1, and a column is inserted at index 2. All the values
in the inserted row and column are set to 42.
You are guaranteed that row and col will be valid indexes for L.

Remember, you must not mutate L!

Here are some test cases:

 L = [[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]]
 assert(insertRowAndCol(L, 1, 2, 42) == [[1, 2, 42, 3, 4],
 [42, 42, 42, 42, 42],
 [5, 6, 42, 7, 8],
 [9, 10, 42, 11, 12]])

 L = [[1, 2, 3],
 [4, 5, 6]]
 assert(insertRowAndCol(L, 0, 0, 5) == [[5, 5, 5, 5],
 [5, 1, 2, 3],
 [5, 4, 5, 6]])

More on the next page

Continued from previous page
 L = [[1, 2, 3],
 [4, 5, 6]]
 assert(insertRowAndCol(L, 1, 3, 5) == [[1, 2, 3, 5],
 [5, 5, 5, 5],
 [4, 5, 6, 5]])

 # Verify that the function is non-mutating
 L = [[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]]
 insertRowAndCol(L, 1, 2, 42)
 assert(L == [[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]])

 #Begin your answer here or on the next page

Begin or continue your answer here

FR2[35 pts]: getFlightTable(flightInfo)

Background: this problem starts with a multiline string of flight times between cities, like so:

flightInfo = '''
From Pittsburgh to LA takes 5.5 hours
From LA to Seattle takes 3 hours
From Seattle to Pittsburgh takes 4.5 hours
'''

Every non-empty line in the flightInfo will always be of the form:
"From {city1} to {city2} takes {time} hours"

We can convert this string into a 2d dictionary of flight times like so:
{'Pittsburgh': {'LA':5.5, 'Seattle':4.5},
 'LA': {'Pittsburgh':5.5, 'Seattle':3.0},
 'Seattle': {'LA':3.0, 'Pittsburgh':4.5} }

The outer dictionary contains departure cities as keys, and contains a dictionary as a value that
contains key-value pairs of arrival cities, and flight times. Important notes:

●​ Flight times are also the same in reverse. If a string lists a time for a flight from city A to city B,
the time is the same for a flight from city B to city A. Both the flight listed, and its reverse,
should be added to the flight dictionary.

●​ The times in the inner dictionaries are always floats, even if they were ints in the string.
●​ You can assume that any from/to city pair occurs no more than once in the string.
●​ You can assume that the string contains at least one non-blank line.
●​ You can assume that city names do not contain any spaces.
●​ You should ignore blank lines in the string.

With this in mind, write the function getFlightTable(flightInfo) that takes a multiline string of
flight times and returns a 2d dictionary of flight times, as just described.

Hint: you may want to use both s.splitlines() and s.split() here (both of which produce lists
that can be looped through or indexed into).

See the additional test cases on the following page:

 flightInfo = '''
 From Pittsburgh to LA takes 5.5 hours
 From LA to Seattle takes 3 hours
 From Seattle to Pittsburgh takes 4.5 hours'''

 assert(getFlightTable(flightInfo) ==
 {'Pittsburgh': {'LA':5.5, 'Seattle':4.5},
 'LA': {'Pittsburgh':5.5, 'Seattle':3.0},
 'Seattle': {'LA':3.0, 'Pittsburgh':4.5}
 })

 flightInfo2 = '''
 From NY to Boston takes 1.25 hours
 From Scranton to NY takes 0.5 hours'''

 assert(getFlightTable(flightInfo2) ==
 {'NY': {'Boston':1.25, 'Scranton':0.5},
 'Boston': {'NY':1.25},
 'Scranton': {'NY':0.5}
 })
 assert(getFlightTable(flightInfo2)['NY']['Scranton'] == 0.5)

 flightInfo3 = '''
 From Shanghai to Shenzhen takes 2.5 hours
 From Chongqing to Shanghai takes 2.25 hours
 From Shenzhen to Chongqing takes 2 hours
 From Chongqing to Qingdao takes 4.25 hours'''

 assert(getFlightTable(flightInfo3) ==
 {'Shanghai': {'Shenzhen':2.5, 'Chongqing':2.25},
 'Shenzhen': {'Shanghai':2.5, 'Chongqing':2},
 'Chongqing': {'Shanghai':2.25, 'Shenzhen':2, 'Qingdao':4.25},
 'Qingdao': {'Chongqing':4.25}
 })
 assert(getFlightTable(flightInfo3)['Shenzhen']['Shanghai'] == 2.5)
 assert(getFlightTable(flightInfo3)['Shanghai']['Shenzhen'] == 2.5)

Write your answer on the following page ​

Write your answer here

You may continue your answer here if you wish

