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Sample Complexity: Infinite Hypothesis Spaces
Agnostic Case

1) How many examples suffice to get UC whp (so success for ERM). 

2) Statistical Learning Theory style:

errD h ≤ errS h + O
1

2m
VCdim H + ln

1

δ
.

With prob. at least 1 − 𝛿, for all h ∈ H:

Tight bounds in the worst case.



VC-Dimension of Neural Networks

• Piecewise constant (linear threshold units): VCdim H = ෩O(W).
[Baum-Haussler, 1989]

Theorem: H class  of neural networks with L layers, W weights.  

• Piecewise linear (ReLUs): VCdim H = ෩O(WL).
[Bartlett-Harvey-Liaw-Mehrabian, 2017]

• Piecewise polynomial: VCdim H = ෩O(WL2).
[Bartlett-Maiorov-Meir, 1998]

(Note: all final output values thresholded to {−1,1}) Nearly tight bounds.

Classic VCdim bounds have a strong explicit dependence on # of 
parameters in the network. 

Trivial if # of parameters exceeds the number of examples.



Generalization in Deep Nets

How can we explain successful training of very deep 
networks?

• Stronger Data-Dependent Bounds

• Algorithm Does Implicit Regularization (finds local optima 
with special properties)

• Transfer Learning
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• Distribution/data dependent. Tighter for nice distributions.

See  Bousquet-Boucheron-Lugosi, “Introduction to Statistical 
Learning Theory”, 2014.

Rademacher Complexity Generalization Bounds 

Data Dependent Generalization Bounds

Covering Numbers Generalization Bounds 

See Anthony-Bartlett, “Neural Network Learning: Theoretical 
Foundations”, 1999.



Data-Dependent Bounds for Deep Networks

• Via covering numbers: “Spectrally-normalized margin bounds 
for neural networks”. [Bartlett-Foster-Telgarsky, NIPS 2017]

• Via Rademacher complexity: “Size-independent sample 
complexity of neural networks”.  [Golowich-Rakhlin-Shamir, COLT 2018]

E.g., very recent papers:



Data-Dependent Bounds for Deep Networks

• Spectrally-normalized margin bounds for neural 
networks. [Bartlett-Foster-Telgarsky, NIPS 2017]

Theorem:

Pr M fW X , Y ≤ 0 ≤
1

n
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With high probability, every fW with RW ≤ R satisfies

• Network with L layers, parameters W1, … ,WL:

fW x ≔ σ(WLσL−1 WL−1…σ1 W1x … )
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[Golowich-Rakhlin-Shamir, COLT 2018]  provide a related bound via a Rademacher
complexity argument

spectral norm

[𝜎 is 1-Lipschitz]



Generalization in Deep Nets

• Stronger Data-Dependent Bounds

• Algorithm Does Implicit Regularization (finds local optima 
with special properties)

“Algorithmic Regularization in Over-parameterized Matrix Sensing and 
Neural Networks with Quadratic Activations”. [Li-Ma-Zhang. COLT 2018]

• Transfer Learning

“Risk Bounds for Transferring Representations With and Without Fine-Tuning”. 
[McNamara-Balcan. ICML 2017]

How can we explain successful training of very 
deep networks?



Generalization in Deep Nets

• Stronger Data-Dependent Bounds

• Algorithm Does Implicit Regularization (finds local optima 
with special properties)

“Algorithmic Regularization in Over-parameterized Matrix Sensing and 
Neural Networks with Quadratic Activations”. [Li, Ma, Zhang. COLT 2018]

• Transfer Learning

“Risk Bounds for Transferring Representations With and Without Fine-
Tuning”. [McNamara, Balcan. ICML 2017]

How can we explain successful training of very 
deep networks?

Lots of open questions.


