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Talk Roadmap

 Basic Building Blocks:

> Sparse Coding

> Autoencoders

 Deep Generative Models

> Restricted Boltzmann Machines
> Deep Boltzmann Machines

> Helmholtz Machines / Variational Autoencoders

e Generative Adversarial Networks

e Open Research Questions



Sparse Coding

* Sparse coding (Olshausen & Field, 1996). Originally developed
to explain early visual processing in the brain (edge detection).

* Objective: Given a set of input data vectors {x1,x2, ..., XN },
learn a dictionary of bases {®;, @5, ..., &%}, such that:

K
Xn = E ankqbka
k=1 \

Sparse: mostly zeros

* Each data vector is represented as a sparse linear combination
of bases.



Sparse Coding

Natural Images Learned bases: “Edges”

New example
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0,0, ..0.8,..,0.3, .., 0.5, ...] = coefficients (feature representation)
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Slide Credit: Honglak Lee



Sparse Coding: Training
* Input image patches: x;,Xo, ..., XNy € RP

« Learn dictionary of bases: ¢, ¢, ..., ¢ € R”

2

K
min X, — Z ankqbk + A S‘ S‘ ank|

8¢ k1 n=1Fk—1

Reconstruction error Sparsity penalty

* Alternating Optimization:

1. Fix dictionary of bases ¢, ¢, ..., ¢, and solve for
activations a (a standard Lasso problem).
2. Fix activations a, optimize the dictionary of bases (convex

QP problem).



Sparse Coding: Testing Time

* Input: a new image patch x* , and K learned bases ¢, ¢, ..., o5
* Output: sparse representation a of an image patch x*.

K 2 K
min ||x* — Z ardL|| + )\Z a|
* k=1 2 k=1
X* =08% (hy, + 03% h FO5F Dy

[0,0,..0.8, ..,0.3, .., 0.5, ..] = coefficients (feature representation)



Image Classification
Evaluated on Caltech101 object category dataset.

Classification
Algorithm
(SVM)

Learned
Input Image bases
Algorithm Accuracy
Baseline (Fei-Fei et al., 2004) 16%
PCA 37%
Sparse Coding 47%

Slide Credit: Honglak Lee

Lee, Battle, Raina, Ng, 2006



Interpreting Sparse Coding

2

N K
min Xn — Zank¢k ‘|‘)\S‘S"Cl/nk|
2 k=1 n=1k=1
a  Sparse features a
[OO0O00000 [©QO000000)
§ o o o o,
[OOOOO] Decoding [OOOOO] encoding

* Sparse, over-complete representation a.
* Encoding a = f(x) is implicit and nonlinear function of x.

* Reconstruction (or decoding) x’ = g(a) is linear and explicit.



Autoencoder

Feature Representation

U

]

Feed-back, ™ . ~
generative, Feed-forward,
top-down Decoder Encoder | bottom-up
- J N Y,
[ Input Image }

e Details of what goes insider the encoder and decoder matter!

* Need constraints to avoid learning an identity.



Autoencoder

[ Binary Features z }
Decoder @ ﬁ Encoder
filtersD [ A 4 N filters W,
Linee}r Dz Z=G(WX) Sigmoid
function Y, \_ _/ function

1
T § o

[ Input Image x }




Autoencoder

[ Binary Features z ] * An autoencoder with D inputs,
@ ﬁ D outputs, and K hidden units,
with K<D.
{ Dz } E z=0(Wx) }
@ ﬁ * Given an input x, its
reconstruction is given by:

Input Image x

i(x, W, D) XPM«ZWWJ,FﬂMD

Decqger Encoder

D
=) Djrze  zp =0 <Z szxz)
k=1 i=1



Autoencoder

[ Binary Features z J e An autoencoder with D inputs,
@ ﬁ D outputs, and K hidden units,

with K<D.
{ Dz } E z=0(Wx) }

U ]

Input Image x ]

e We can determine the network parameters W and D by
minimizing the reconstruction error:

E(W,D) = ZHy Xn, W, D) — x,||2.

n=1



Autoencoder

[ Linear Features z ] e If the hidden and output layers

@ ﬁ are linear, it will learn hidden units

that are a linear function of the data
and minimize the squared error.

Wz z=WXx
* The K hidden units will span the

@ ﬁ same space as the first k principal

] components. The weight vectors

Input Image x may not be orthogonal.

e \With nonlinear hidden units, we have a nonlinear
generalization of PCA.



Another Autoencoder Model

[ Binary Features z }

@ ﬁ Encoder

filters W.
T —
Decoder L G(W Z) } LZ G(WX)} Sigmoid

filters D @ ﬁ function

[ Binary Input x }

* Need additional constraints to avoid learning an identity.

e Relates to Restricted Boltzmann Machines (later).



Predictive Sparse Decomposition

& Binary Features z }

[L1 Sparsity} @ ﬁ Encoder

filters W.
Decoder L Dz } L £= G(WX) } Sigmoid

filters D @ ﬁ function

[ Real-valued Input x }

At training : Dz — x|12 £ ) Wx) — z||2
Atlaining  min || Dz — x|[3 + Alali + |lo(Wx) — 2

Decoder Encoder
Kavukcuoglu, Ranzato, Fergus, LeCun, 2009



Stacked Autoencoders

[ Class Labels ]
= Z

[ Decoder } [ Encoder J
v O]

[ Features

m >
[ Sparsity } [ Decoder } [ Encoder }
1 O

[ Features

m ZS

[ Sparsity } [ Decoder} [ Encoder J
v ]

[ Input x




Stacked Autoencoders

[ Class Labels }
m Z

[ Decoder } [ Encoder J
v O

[ Features

m >
[ Sparsity } [ Decoder } [ Encoder }
1 O]

Y o

( Features
(@ Greedy Layer-wise Learning.
S
P 7 T G T ] 7

[ Input x




Stacked Autoencoders

[ Class Labels ]

e Remove decoders and <>

use feed-forward part. [ Encoder J
L]

e Standard, or [ Features

convolutional neural A\

network architecture. [ Encoder }
L]

e Parameters can be [ Features

fine-tuned using N

backpropagation. [ Encoder J
L]

[ Input x




Deep Autoencoders

Pretraining

Decoder i
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Deep Autoencoders

e 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract 30-D real-
valued codes for Olivetti face patches.

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.



Information Retrieval

European Community ) _
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* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the

training set.
& (Hinton and Salakhutdinov, Science 2006)
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Fully Observed Models

* Explicitly model conditional probabilities:

n

pmodel(w) — pmodel(zl) Hpmodel(fcz' ‘ L1y... 73372—1)

1=2 \

Each conditional can be a

complicated neural network
>  NADE, RNADE (Larochelle, et.al.

* A number of successful models, including
ons % s |
2 ’ b - !n
>  Pixel CNN (van den Ord et. al. 2016) ﬁ"n |
>  Pixel RNN (van den Ord et. al. 2016) i J’ 1 ’

Pixel CNN




Restricted Boltzmann Machines

Pair-wise Unary

N e
Py(v,h) &@!&ﬁé Uil + Zvibi + Zhjaj)

BN

0 ={W,a,b}
@
1
Py(v isible variabl F
Imagt::1w5| e varia esZ:1 1+ eXp(— i1 Wz’jvihj _ bz’)

RBM is a Markov Random Field with:

» Stochastic binary visible variables v € {0,1}".
* Stochastic binary hidden variables h € {0, 1}*.

* Bipartite connections.

Markov random fields, Boltzmann machines, log-linear models.



Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

Sparse
representations

E 099><i+097><. 082><n

_ Logistic Function: Suitable for
1+eXP( ) modeling binary images

New Image: p(h7 = 1v)



Model Learning

hidden variables P* (v)
P —
9(V> Z((g)

1 T T T
h :%zh:exp [v Wh+a'h+b'v

()
\ /,’“\’J“{/. Given a set of i.i.d. training examples
.‘{;}ﬁ‘\{fi D= {vh v® . v(™1, wewantto learn
%’) )/‘\‘\ model parameters 0 = {W, a,b}.
/4
2, O Maximize log-likelihood objective:

Image visible variables

N
1
_ = (n)
L(0) = _,\,n§:110gP9(V )
Derivative of the log-likelihood:

OL(B) 1~ 0 ()T T kT () 0
oW, N; I log (Eh:exp v " Wh+a h+b' vi™] |- -log Z(0)

— EPdata [UZh]] T EPQ [Uzhj]
1\ J
Y
Piata(v,h;0) = P(h|v;0)Piara(V) Difficult to compute: exponentially many

1 configurations
Pdata(v) — N Z 5(V _ V(n))




RBMs for Word Counts

Learned features (out of 10,000)

4 million unlabelled images

4% REUTERS D

éaxsx

sl AP Associated Press Learned features: "topics”
WIKIPEDIA
o Reut dataset: russian clinton computer trade stock
CULers dataset. russia house system country wall
804,414 unlabeled => moscow | president | product import street
newswire stories yeltsin bill software world point
soviet congress develo econom dow
Bag-of-Words 8 P y




RBMs for Word Counts

One-step reconstruction from the RBM model

Input

Reconstruction

chocolate, cake

nyc

dog

flower, high, /£

girl, rain, station, norway
fun, life, children

forest, blur

espafia, agua, granada

cake, chocolate, sweets, dessert, cupcake, food, sugar, cream, birthday
nyc, newyork, brooklyn, queens, gothamist, manhattan, subway, streetart
dog, puppy, perro, dogs, pet, filmshots, tongue, pets, nose, animal
flower, 1t high, japan, sakura, H 7K, blossom, tokyo, lily, cherry
norway, station, rain, girl, oslo, train, umbrella, wet, railway, weather
children, fun, life, kids, child, playing, boys, kid, play, love

forest, blur, woods, motion, trees, movement, path, trail, green, focus
espafia, agua, spain, granada, water, andalucia, naturaleza, galicia, nieve




Different Data Modalities

* Binary/Gaussian/Softmax RBMs: All have binary hidden
variables but use them to model different kinds of data.

hidden variables h ‘O O O O ’

4
Binary ¥ X

K

00000"

@O
™~ /V‘@IO

Real-valued 1-of-K «—])—>

* It is easy to infer the states of the hidden variables:

F




Pg (V, h) =

1

Marginalizing over hidden variables:

Py(v) = Z Py(v,h) = % Hexp(bivi) H G—F exp(a; + Z Wijvi)>
h i J z

government
authority
power
empire
federation

clinton
house
president
bill
congress

bribery
corruption
dishonesty
corrupt
fraud

Silvio Berlusconi

mafia
business
gang
mob
insider

Product of Experts

The joint distribution is given by:

Z(Q) exXp (Z Wijvihj + Z bi’Ui + Z ajhj)
1] 7 J

A Product o\f Experts

stock
wall
street
point
dow

”n n

Topics “government”, “corruption”
and “mafia” can combine to give very
high probability to a word “Silvio
Berlusconi”.



Product of Experts

The joint distribution is given by:

1
Py(v,h) = Z(0) exp ( g Wijvih; + g bivi + § ajh;)
ij i J

Marginalizing ¢

iduct of Experts

50—mm™m \
P, = A .2y
o(v) Z Replicated Vij Uz))
h 40 Softmax 50-D
government | clint &\i
authority hou ¢ 30
d o)
power pres "7, LDA 50-D
empire bill 'O 20!
federation cony &,

10;
\ , ”corruption”

0.0010.006 0.051 0.4 1.6 64 256 100 Pne toBivevery
Recall (%) word “Silvio

D e—
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Deep Boltzmann Machines

Low-level features:
Edges

Built from unlabeled inputs.

Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Deep Boltzmann Machines

Learn simpler representations,
then compose more complex ones

Higher-level features:
Combination of edges

‘ ) Low-level features:
Edges

»A'/

(//\(\ X ' S
/{‘/"‘S/@‘\ Built from unlabeled inputs.
p”m X
/‘ /‘\' ‘ Input: Pixels
O O O '

Image

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Model Formulation

Py(v,hD h® h®) = Z%@) exp [vTW(l)h(l)JJr hD ' WOR® L h@  eR®
|\
Y
h3 Same as RBMs
w3 0 = {W', W= W3} model parameters
hQC * Dependencies between hidden variables.
W2 e All connections are undirected.

* Bottom-up and Top-down:

Wl
P(h? = 1]h*,h®) = U(Z Wihig +) W;jh;)
k m

7 ™

Top-down Bottom-up

Input

* Hidden variables are dependent even when conditioned on
the input.



Good Generative Model?

Handwritten Characters
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Learning Part-based Representation

. Faces
Convolutional DBN

Groups of parts.

Object Parts

Trained on face images.

(Lee, Grosse, Ranganath, Ng, ICML 2009)



Learning Part-based Representation

Cars Chairs

(Lee, Grosse, Ranganath, Ng, ICML 2009)



Talk Roadmap

 Basic Building Blocks:

> Sparse Coding

> Autoencoders

e Deep Generative Models

> Restricted Boltzmann Machines
> Deep Boltzmann Machines

> Helmholtz Machines / Variational Autoencoders

e Generative Adversarial Networks



Helmholtz Machines
* Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995

* Kingma & Welling, 2014
Generative

: 3
Approximate P(h”) Process * Rezende, Mohamed, Daan, 2014

Inference | 5

h
@<h3h2)T

* Mnih & Gregor, 2014

2
h * Bornschein & Bengio, 2015

* Tang & Salakhutdinov, 2013

Input data



Helmholtz Machines vs. DBMs

Helmholtz Machine Deep Boltzmann Machine
_ Generative
Approximate P(h?) Process
Inference b3
@(h3h2)T
h2(_)

@(thl)T
h!( )

Input data



Variational Autoencoders (VAEs)

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

L L—11,L 1
p(x|0) = p(h”[0)p(h™~"|h™,0)- - p(x/h",0)
hl ... hTl ™~
; Generative Each t?rm may d(?note a | |
P(h”) Process complicated nonlinear relationship
P(h?h?) e 0 denotes parameters
of VAE.
P(h'|h?) e L is the number of

stochastic layers.

* Sampling and probability
evalu_ation is tractable for
each p(h*|htt1) .

P(x|h")

Input data



VAE: Example

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

p(x|6) = >  p(h*6)p(h'[h? 8)p(x|h,6)

h' h? N~
This term denotes a one-layer
neural net.
h? Stochastic Layer
* 9 denotes parameters

1 Deterministic of VAE.
Layer

e [, isthe number of

hl Stochastic Layer stochastic layers.
1 * Sampling and probability
X evaluation is tractable for

each p(hf|h®t?).



Variational Bound

e The VAE is trained to maximize the variational lower bound:

X, h X, h
SN - R e

L(x) = logp(x) — Dkw (¢(h|x))[|p(h|x))

- Trading off the data log-likelihood and the KL divergence
from the true posterior.

* Hard to optimize the variational bound
with respect to the recognition network
(high-variance).

» Key idea of Kingma and Welling is to use
reparameterization trick.

Input data



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h"", 0) = N(u(h™™",0),2(h"",0))

with mean and covariance computed from the state of the hidden
units at the previous layer.

* Alternatively, we can express this in term of auxiliary variable:
€' ~ N(0,1)
hﬁ (EE, h€—1’ 0) _ E(hﬁ—l’ 9)1/2€€ 4 “<h€_17 0)



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h"", 0) = N(u(h™™",0),2(h"",0))

* Or
€' ~ N(0,1)
h' (¢, h"",0) = =(h"",0)" /%" + p(h,6)

* The recognition distribution g(h|h*~1,0) can be expressed in
terms of a deterministic mapping:

h(e,x,0), with €= (e!,...,€e")

(N J (N J
Y Y

Deterministic Distribution of €
Encoder does not depend on @




Computing the Gradients

 The gradient w.r.t the parameters: both recognition and

generative:
p(X’ h]9) - Autoencoder
VoEn~q(n|x,0) llog q(h|x,0) e
p(x,h(e, x,0)|0)
— E 1 L 1
Voliel, eranon 1108 4 9. 0)
p(x, h(e, x,0)|0)
=K. L 1
€l,...,.elL~N(0,I) [Ve 08 q( (6 X,O)’X7 9)

~ N

Gradients can be The mapping h is a deterministic
computed by backprop neural net for fixed €.



Importance Weighted Autoencoders

e Can improve VAE by using following k-sample importance
weighting of the log-likelihood:

1 p(x, h;)
El{;(X) — Ehl,...,hkNQ(mx) log E Z q(h’X)
i i=1 S
— 1 k =
= Ehl,...,hkwq(hIX) log A Z Wi
i i=1

\ unnormalized
importance weights

where hy,..., h; are sampled
from the recognition network.

Input data

Burda, Grosse, Salakhutdinov, 2015



Generating Images from Captions

FwrF

’@-‘- T write T write Twrite
. .7 ﬂh\"-‘:.“
-t N _| Generative Generative Generative
[ r"""":f"""',r """" P, oS- R — RNNJ._‘_S-: RNNN"" RNN.’L,._.,. Generative (P)
< || e <« < < ? — T ) ‘
Latent (2) Latent (z) | L_’ Latent (z) Stochastic
p(,) vz 2] | Py i)
Ry S S - Layer
—> —> —> —> —> — : . ' n
h1 h2 hs hs hs he ‘| Inference Inference Inference |:
: RNN,.... RNN, .., RNN,..|:

a person sking down a mountain
Y wun Y2 Y3 Ya Ys Ye

! read

I read
w

o

T read

Inference (Q)

* Generative Model: Stochastic Recurrent Network, chained
sequence of Variational Autoencoders, with a single stochastic layer.

* Recognition Model: Deterministic Recurrent Network.

Gregor et. al. 2015 (Mansimov, Parisotto, Ba, Salakhutdinov, 2015)



Motivating Example

* Can we generate images from natural language descriptions?

A stop sign is flying in

blue skies

A herd of elephants is
flying in blue skies

A pale yellow school bus
is flying in blue skies

~s+H=~
===

A large commercial airplane
is flying in blue skies

~E=~
=~

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)



Flipping Colors

A yellow school bus parked A red school bus parked in
in the parking lot the parking lot

=== e=L39
L= BT -m

A green school bus parked in A blue school bus parked in
the parking lot the parking lot

mad&E IENES
e Ta =ZSEp

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)




Qualitative Comparison

A group of people walk on a beach with surf boards

Our Model
F ' | 2
Conv-Deconv VAE

LAPGAN (Denton et. al. 2015)

= R e
Fully Connected VAE




Novel Scene Compositions

A toilet seat sits open in the A toilet seat sits open in the
bathroom grass field

SnER BEOD
EULIF OOnD

Ask Google?
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Generative Adversarial Networks

* There is no explicit definition of the density for p(x) — Only need to
be able to sample from it.

* No variational learning, no maximume-likelihood estimation, no
MCMC. How?

* By playing a game!



Generative Adversarial Networks

* Set up a game between two players:

> Discriminator D

> Generator G

e Discriminator D tries to discriminate between:

> A sample from the data distribution.

> And a sample from the generator G.

* The Generator G attempts to “fool” D by generating samples that
are hard for D to distinguish from the real data.

Generative Adversarial Networks” Goodfellow et al., NIPS 2014



Generative Adversarial Networks

QO
Q0O
OO

D tries to
output 1

m Differentiable
function D
I X sampled

k . ( from data )

Slide Credit: lan Goodfellow



Generative Adversarial Networks

D tries to
output 1

QO -+ OO

M Differentiable
OO e OO function D

b | X sampled X sampled
. from data from model

Differe.ntiable :%&85
function G 00 - OO0

s ;
000.; I ” HEPARL O O e e O O
Z 00---00)z

Slide Credit: lan Goodfellow



Generative Adversarial Networks

/[Q\\ D tries to D tries to /Q\\
output 1 output O , ‘

QO -+ OO

M Differentiable Differentiable
OO0 -+ 00 function D function D

b X sampled X sampled
from data from model
i

&

Differentiable QQ - OO

function G 00 - 00
' A 00 -+ 00O
N Input noise ==
> @0 00>

Slide Credit: lan Goodfellow



Generative Adversarial Networks

Generator: generate samples

* Minimax value function that D would classify as real

min max V (D, G) = Bz py,(@)[108 D(@)] + By, () [log(1 — D(G(2)))]

| ] | |

Discriminator: Discriminator: Classify Discriminator: Classify
Pushes up data as being real generator samples as
being fake
Generator:

Pushes down

e Optimal strategy for Discriminator is:

. pdata(x)
D(aj) B pdata(x) _l_pmodel(x)




DCGAN Architecture

512
1024 ; . .
4
100 z — .l
Code Project and 5 1 Stride 2
h econv
(OSIEPS Deconv 2
Deconv 3
Deconv 4

Image

(Radford et al 2015)



LSUN Bedrooms: Samples

(Radford et al 2015)



Training

(Salimans et. al., 2016)



IMAGENET

o IEﬁE

Training Samples

(Salimans et. al., 2016)



ImageNet: Cherry-Picked Results

* Open Question: How can we quantitatively evaluate these models!

Slide Credit: lan Goodfellow



ImageNet: Cherry-Picked Results

* Open Question: How can we quantitatively evaluate these models!

Slide Credit: lan Goodfellow



