
Deep	Unsupervised	Learning	

Russ	Salakhutdinov	

Machine Learning Department
Carnegie Mellon University

Canadian Institute of Advanced Research

Unsupervised	Learning	

Non-probabilistic	Models	
Ø  Sparse	Coding	
Ø  Autoencoders	
Ø  Others	(e.g.	k-means)	

Explicit	Density	p(x)	

Probabilistic	(Generative)	
Models	

Tractable	Models	
Ø  Fully	observed	

Belief	Nets	
Ø  NADE	
Ø  PixelRNN	

Non-Tractable	Models	
Ø  Boltzmann	Machines	
Ø  Variational	

Autoencoders	
Ø  Helmholtz	Machines	
Ø  Many	others…	

Ø  Generative	Adversarial	
Networks	

Ø  Moment	Matching	
Networks	

Implicit	Density	

Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Generative	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Variational	Autoencoders		

• 	Generative	Adversarial	Networks		

• 	Open	Research	Questions	

Sparse	Coding	
• 	Sparse	coding	(Olshausen	&	Field,	1996).	Originally	developed	
to	explain	early	visual	processing	in	the	brain	(edge	detection).		

• 	Objective:	Given	a	set	of	input	data	vectors																														
learn	a	dictionary	of	bases																																such	that:					

• 	Each	data	vector	is	represented	as	a	sparse	linear	combination	
of	bases.	

Sparse:	mostly	zeros	

				Natural	Images	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representation)		

New	example

Sparse	Coding	
Learned	bases:		“Edges”	

 x = 0.8 * 						 + 0.3 * 					

+ 0.5 * 	

Slide	Credit:	Honglak	Lee	

= 0.8 * + 0.3 * + 0.5 *

Sparse	Coding:	Training	
• 	Input	image	patches:		
• 	Learn	dictionary	of	bases:	

Reconstruction	error	 Sparsity	penalty	

• 	Alternating	Optimization:	

1.  Fix	dictionary	of	bases																											and	solve	for	
activations	a	(a	standard	Lasso	problem).			

2.  Fix	activations	a,	optimize	the	dictionary	of	bases	(convex	
QP	problem).		

Sparse	Coding:	Testing	Time	
• 	Input:	a	new		image	patch	x*	,	and	K	learned	bases			
• 	Output:	sparse	representation	a	of	an	image	patch	x*.		

= 0.8 * + 0.3 * + 0.5 *

 x* = 0.8 * 						 + 0.3 * 					

+ 0.5 * 	

	[0,	0,	…	0.8,	…,	0.3,	…,	0.5,	…]	=	coefficients	(feature	representation)		

Evaluated	on	Caltech101	object	category	dataset.	

Classification
Algorithm

(SVM)

Algorithm	 Accuracy	
Baseline	(Fei-Fei	et	al.,	2004)	 16%	

PCA	 37%	
Sparse	Coding	 47%	

Input	Image Features	(coefficients)
Learned		
bases

Image	Classification	

	9K	images,	101	classes	

Lee,	Battle,	Raina,	Ng,	2006 Slide	Credit:	Honglak	Lee	

g(a)	

Interpreting	Sparse	Coding	

x’	

Explicit	
Linear	
Decoding	

a	

f(x)	
Implicit	
nonlinear	
encoding	

x	

a	

• 	Sparse,	over-complete	representation	a.	
• 	Encoding	a	=	f(x)	is	implicit	and	nonlinear	function	of	x.		
• 	Reconstruction	(or	decoding)	x’	=	g(a)	is	linear	and	explicit.		

Sparse	features	

Autoencoder	

Encoder Decoder

Input Image

Feature Representation

Feed-back,
generative,
top-down
path	

Feed-forward,
bottom-up	

• 	Details	of	what	goes	insider	the	encoder	and	decoder	matter!	
• 	Need	constraints	to	avoid	learning	an	identity.		

Autoencoder	

z=σ(Wx) Dz

Input Image x

 Binary Features z

Decoder
filters D

Linear
function
path	

Encoder
filters W.

Sigmoid
function	

Autoencoder	
• 	An	autoencoder	with	D	inputs,	
D	outputs,	and	K	hidden	units,	
with	K<D.		

• 	Given	an	input	x,	its	
reconstruction	is	given	by:		

Encoder	

z=σ(Wx) Dz

Input Image x

 Binary Features z

Decoder	

Autoencoder	
• 	An	autoencoder	with	D	inputs,	
D	outputs,	and	K	hidden	units,	
with	K<D.		

z=σ(Wx) Dz

Input Image x

 Binary Features z

• 	We	can	determine	the	network	parameters	W	and	D	by	
minimizing	the	reconstruction	error:		

Autoencoder	
• 		If	the	hidden	and	output	layers	
are	linear,	it	will	learn	hidden	units	
that	are	a	linear	function	of	the	data	
and	minimize	the	squared	error.	

• 	The	K	hidden	units	will	span	the	
same	space	as	the	first	k	principal	
components.	The	weight	vectors	
may	not	be	orthogonal.		

z=Wx Wz

Input Image x

 Linear Features z

• 	With	nonlinear	hidden	units,	we	have	a	nonlinear	
generalization	of	PCA.	

Another	Autoencoder	Model	

z=σ(Wx) σ(WTz)

Binary Input x

 Binary Features z

Decoder
filters D
path	

Encoder
filters W.

Sigmoid
function	

• 	Relates	to	Restricted	Boltzmann	Machines	(later).		
• 	Need	additional	constraints	to	avoid	learning	an	identity.		

Predictive	Sparse	Decomposition	

z=σ(Wx) Dz

Real-valued Input x

 Binary Features z

Decoder
filters D
path	

Encoder
filters W.

Sigmoid
function	

L1 Sparsity

Encoder	Decoder	

At training
time
path	

Kavukcuoglu, Ranzato, Fergus, LeCun, 2009

Stacked	Autoencoders	

Input x

Features

Encoder Decoder

Class Labels

Encoder Decoder

Sparsity

Features

Encoder Decoder Sparsity

Stacked	Autoencoders	

Input x

Features

Encoder Decoder

Features

Class Labels

Encoder Decoder

Encoder Decoder

Sparsity

Sparsity

Greedy	Layer-wise	Learning.		

Stacked	Autoencoders	

Input x

Features

Encoder

Features

Class Labels

Encoder

Encoder
• 	Remove	decoders	and	
use	feed-forward	part.		

• 	Standard,	or	
convolutional	neural	
network	architecture.		

• 	Parameters	can	be	
fine-tuned	using	
backpropagation.		

Deep	Autoencoders	

W

W

W +�

W

W

W

W

W +�

W +�

W +�

W

W +�

W +�

W +�

+�

W

W

W

W

W

W

1

2000

RBM

2

2000

1000

500

500

1000

1000

500

1 1

2000

2000

500500

1000

1000

2000

500

2000

T

4
T

RBM

Pretraining Unrolling

1000 RBM

3

4

30

30

Fine�tuning

4 4

2 2

3 3

4
T

5

3
T

6

2
T

7

1
T

8

Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder

RBM
Top

Deep	Autoencoders	
• 	25x25	–	2000	–	1000	–	500	–	30	autoencoder	to	extract	30-D	real-
valued	codes	for	Olivetti	face	patches.			

• 	Top:	Random	samples	from	the	test	dataset.			
• 	Middle:	Reconstructions	by	the	30-dimensional	deep	autoencoder.	

• 	Bottom:	Reconstructions	by	the	30-dimentinoal	PCA.		

Information	Retrieval	
2-D	LSA	space	

Legal/JudicialLeading
Economic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
Borrowings

Disasters and
Accidents

Energy Markets

• 	The	Reuters	Corpus	Volume	II	contains	804,414	newswire	stories	
(randomly	split	into	402,207	training	and	402,207	test).	

• 	“Bag-of-words”	representation:	each	article	is	represented	as	a	vector	
containing	the	counts	of	the	most	frequently	used	2000	words	in	the	
training	set.	

(Hinton and Salakhutdinov, Science 2006)

Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Generative	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Variational	Autoencoders		

• 	Generative	Adversarial	Networks		

Fully	Observed	Models	

BRIEF ARTICLE

THE AUTHOR

Maximum likelihood

✓⇤ = argmax
✓

Ex⇠pdata log pmodel(x | ✓)

Fully-visible belief net

pmodel(x) = pmodel(x1)
nY

i=2

pmodel(xi | x1, . . . , xi�1)

1

• 	Explicitly	model	conditional	probabilities:	

Each	conditional	can	be	a	
complicated	neural	network	

• 	A	number	of	successful	models,	including		

Ø  NADE,	RNADE	(Larochelle,	et.al.	

20011)	

Ø  Pixel	CNN	(van	den	Ord	et.	al.	2016)	

Ø  Pixel	RNN	(van	den	Ord	et.	al.	2016)	

Pixel	CNN	

Restricted	Boltzmann	Machines	

RBM	is	a	Markov	Random	Field	with:	

• 	Stochastic	binary	hidden	variables																							
• 	Bipartite	connections.	

Pair-wise	 Unary	

• 	Stochastic	binary	visible	variables																										

Markov	random	fields,	Boltzmann	machines,	log-linear	models.		

Image						visible	variables	

		hidden	variables	

Learned	W:		“edges”	
Subset	of	1000	features	

Learning	Features	

=	 ….	

New	Image:	

Logistic	Function:	Suitable	for	
modeling	binary	images	

Sparse	
representations	

Observed		Data		
Subset	of	25,000	characters	

Model	Learning	

Difficult	to	compute:	exponentially	many		
configurations	

Given	a	set	of	i.i.d.	training	examples		
	 	 	 														,	we	want	to	learn		

model	parameters 	 	 						.				

Maximize	log-likelihood	objective:	

Derivative	of	the	log-likelihood:	

Image						visible	variables	

		hidden	variables	

RBMs	for	Word	Counts	

Learned	features:	``topics’’	

russian	
russia	
moscow	
yeltsin	
soviet	

clinton	
house	
president	
bill	
congress	

computer	
system	
product	
software	
develop	

trade	
country	
import	
world	
economy	

stock	
wall	
street	
point	
dow	

Reuters	dataset:	
804,414	unlabeled	
newswire	stories	
Bag-of-Words		

Learned	features	(out	of	10,000)	
4	million	unlabelled	images	

RBMs	for	Word	Counts	

One-step	reconstruction	from	the	RBM	model	

Different	Data	Modalities	

• 	It	is	easy	to	infer	the	states	of	the	hidden	variables:		

• 	Binary/Gaussian/Softmax	RBMs:	All	have	binary	hidden	
variables	but	use	them	to	model	different	kinds	of	data.	

Binary	

Real-valued	 1-of-K	

0	
0	
1	
0	

0	

Product	of	Experts	

Marginalizing	over	hidden	variables:	 Product	of	Experts	

The	joint	distribution	is	given	by:	

Silvio	Berlusconi	

government	
authority	
power	
empire	
federation	

clinton	
house	
president	
bill	
congress	

bribery	
corruption	
dishonesty	
corrupt	
fraud	

mafia	
business	
gang	
mob	
insider	

stock	
wall	
street	
point	
dow	

…	

Topics	“government”,	”corruption”	
and	”mafia”	can	combine	to	give	very	
high	probability	to	a	word	“Silvio	
Berlusconi”.	

Product	of	Experts	

Marginalizing	over	hidden	variables:	 Product	of	Experts	

The	joint	distribution	is	given	by:	

Silvio	Berlusconi	

government	
authority	
power	
empire	
federation	

clinton	
house	
president	
bill	
congress	

bribery	
corruption	
dishonesty	
corrupt	
fraud	

mafia	
business	
gang	
mob	
insider	

stock	
wall	
street	
point	
dow	

…	

Topics	“government”,	”corruption”	
and	”mafia”	can	combine	to	give	very	
high	probability	to	a	word	“Silvio	
Berlusconi”.	

0.001 0.006 0.051 0.4 1.6 6.4 25.6 100

10

20

30

40

50

Recall (%)

Pr
ec

is
io

n
(%

)
Replicated
Softmax 50−D

LDA 50−D

Talk	Roadmap	
• 	Basic	Building	Blocks	(non-probabilistic	models):	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Generative	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Variational	Autoencoders		

• 	Generative	Adversarial	Networks		

Image	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Boltzmann	Machines	

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)

Image	

Higher-level	features:	
Combination	of	edges	

Low-level	features:	
Edges	

Input:	Pixels	

Built	from	unlabeled	inputs.		

Deep	Boltzmann	Machines	

Learn	simpler	representations,	
then	compose	more	complex	ones	

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)

Model	Formulation	

model	parameters	

•  Dependencies	between	hidden	variables.	
•  All	connections	are	undirected.	

h3

h2

h1

v

W3

W2

W1

•  Bottom-up	and	Top-down:	

Top-down	 Bottom-up	Input	

•  Hidden	variables	are	dependent	even	when	conditioned	on	
the	input.	

Same	as	RBMs	

Good	Generative	Model?	
Handwritten	Characters	

Learning	Part-based	Representation	
Convolutional	DBN	

Faces	

v

h2

h1

h3

W1

W3

W2

Trained	on	face	images.	

Object	Parts	

Groups	of	parts.	

(Lee, Grosse, Ranganath, Ng, ICML 2009)

Learning	Part-based	Representation	
Faces	 Cars	 Elephants	 Chairs	

(Lee, Grosse, Ranganath, Ng, ICML 2009)

Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Generative	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Variational	Autoencoders		

• 	Generative	Adversarial	Networks		

Helmholtz	Machines	
• 	Hinton,	G.	E.,	Dayan,	P.,	Frey,	B.	J.	and	Neal,	R.,	Science	1995	

Input	data	

h3

h2

h1

v

W3

W2

W1

Generative	
Process	Approximate	

Inference	

• 	Kingma	&	Welling,	2014	

• 	Rezende,	Mohamed,	Daan,	2014	

• 	Mnih	&	Gregor,	2014		

• 	Bornschein	&	Bengio,	2015	

• 	Tang	&	Salakhutdinov,	2013			

Helmholtz	Machines	vs.	DBMs	

Input	data	

h3

h2

h1

v

W3

W2

W1

Generative	
Process	Approximate	

Inference	 h3

h2

h1

v

W3

W2

W1

Deep Boltzmann MachineHelmholtz Machine

Variational	Autoencoders	(VAEs)		
• 	The	VAE	defines	a	generative	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochastic	layers:		

h3

h2

h1

v

W3

W2

W1

Each	term	may	denote	a	
complicated	nonlinear	relationship		

•  Sampling	and	probability	
evaluation	is	tractable	for	
each																						.		

Generative	
Process	

•  					denotes	parameters	
of	VAE.		

•  				is	the	number	of	
stochastic	layers.	

Input	data	

VAE:	Example	
• 	The	VAE	defines	a	generative	process	in	terms	of	ancestral	
sampling	through	a	cascade	of	hidden	stochastic	layers:		

This	term	denotes	a	one-layer	
neural	net.	

Deterministic	
Layer	

Stochastic	Layer	

Stochastic	Layer	

•  					denotes	parameters	
of	VAE.		

•  Sampling	and	probability	
evaluation	is	tractable	for	
each																						.		

•  				is	the	number	of	
stochastic	layers.	

Variational	Bound	
• 	The	VAE	is	trained	to	maximize	the	variational	lower	bound:	

Input	data	

h3

h2

h1

v

W3

W2

W1

•  Hard	to	optimize	the	variational	bound	
with	respect	to	the	recognition	network	
(high-variance).		

•  Key	idea	of	Kingma	and	Welling	is	to	use	
reparameterization	trick.		

•  Trading	off	the	data	log-likelihood	and	the	KL	divergence	
from	the	true	posterior.		

Reparameterization	Trick	
• 	Assume	that	the	recognition	distribution	is	Gaussian:	

				with	mean	and	covariance	computed	from	the	state	of	the	hidden	
units	at	the	previous	layer.		

•  Alternatively,	we	can	express	this	in	term	of	auxiliary	variable:			

• 	Assume	that	the	recognition	distribution	is	Gaussian:	

•  Or	

Deterministic	
Encoder	

•  The	recognition	distribution																										can	be	expressed	in	
terms	of	a	deterministic	mapping:				

Distribution	of			
does	not	depend	on	

Reparameterization	Trick	

Computing	the	Gradients	
•  The	gradient	w.r.t	the	parameters:	both	recognition	and	
generative:	

Gradients	can	be	
computed	by	backprop	

The	mapping	h	is	a	deterministic	
neural	net	for	fixed				.		

Autoencoder	

Importance	Weighted	Autoencoders	
•  Can	improve	VAE	by	using	following	k-sample	importance	
weighting	of	the	log-likelihood:		

				where																								are	sampled	
from	the	recognition	network.	

Input	data	

h3

h2

h1

v

W3

W2

W1

unnormalized	
importance	weights		

	Burda,	Grosse,	Salakhutdinov,	2015	

Generating	Images	from	Captions	

• 	Generative	Model:	Stochastic	Recurrent	Network,	chained	
sequence	of	Variational	Autoencoders,	with	a	single	stochastic	layer.	

• 	Recognition	Model:	Deterministic	Recurrent	Network.	

Stochastic	
Layer	

Gregor	et.	al.	2015		 (Mansimov,	Parisotto,	Ba,	Salakhutdinov,	2015)		

Motivating	Example	
• 	Can	we	generate	images	from	natural	language	descriptions?	

A	stop	sign	is	flying	in	
blue	skies		

A	pale	yellow	school	bus	
is	flying	in	blue	skies		

A	herd	of	elephants	is	
flying	in	blue	skies		

A	large	commercial	airplane	
is	flying	in	blue	skies		

(Mansimov,	Parisotto,	Ba,	Salakhutdinov,	2015)		

Flipping	Colors	
A	yellow	school	bus	parked	
in	the	parking	lot	

A	red	school	bus	parked	in	
the	parking	lot	

A	green	school	bus	parked	in	
the	parking	lot	

A	blue	school	bus	parked	in	
the	parking	lot	

(Mansimov,	Parisotto,	Ba,	Salakhutdinov,	2015)		

Qualitative	Comparison	
A	group	of	people	walk	on	a	beach	with	surf	boards	

Our	Model	 LAPGAN	(Denton	et.	al.	2015)	

Fully	Connected	VAE	Conv-Deconv	VAE	

Novel	Scene	Compositions	
A	toilet	seat	sits	open	in	the	
bathroom	

Ask	Google?	

A	toilet	seat	sits	open	in	the	
grass	field	

Talk	Roadmap	
• 	Basic	Building	Blocks:	

Ø  Sparse	Coding	
Ø  Autoencoders	

• 	Deep	Generative	Models	
Ø  Restricted	Boltzmann	Machines	
Ø  Deep	Boltzmann	Machines	
Ø  Helmholtz	Machines	/	Variational	Autoencoders		

• 	Generative	Adversarial	Networks		

Generative	Adversarial	Networks	
• 	There	is	no	explicit	definition	of	the	density	for	p(x)	–	Only	need	to	
be	able	to	sample	from	it.	

• 	No	variational	learning,	no	maximum-likelihood	estimation,	no	
MCMC.	How?	

• 	By	playing	a	game!	

Generative	Adversarial	Networks	
• 	Set	up	a	game	between	two	players:	

Ø  Discriminator	D		

Ø  Generator	G	

• 	Discriminator	D	tries	to	discriminate	between:		

Ø  A	sample	from	the	data	distribution.		

Ø  And	a	sample	from	the	generator	G.	

• 	The	Generator	G	attempts	to	“fool”	D	by	generating	samples	that	
are	hard	for	D	to	distinguish	from	the	real	data.	

Generative	Adversarial	Networks”	Goodfellow	et	al.,	NIPS	2014	

Generative	Adversarial	Networks	

Slide	Credit:	Ian	Goodfellow	

Generative	Adversarial	Networks	

Slide	Credit:	Ian	Goodfellow	

Generative	Adversarial	Networks	

Slide	Credit:	Ian	Goodfellow	

Generative	Adversarial	Networks	
• 	Minimax	value	function	In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Discriminator:	Classify	
data	as	being	real			

Discriminator:	Classify	
generator	samples	as	
being	fake		

Generator:	generate	samples	
that	D	would	classify	as	real	

Discriminator:	
Pushes	up	

Generator:	
Pushes	down	

• 	Optimal	strategy	for	Discriminator	is:	

✓⇤ = max
✓

1

m

mX

i=1

log p
⇣
x(i); ✓

⌘

p(h, x) =
1

Z
p̃(h, x)

p̃(h, x) = exp (�E (h, x))

Z =
X

h,x

p̃(h, x)

d

d✓i
log p(x) =

d

d✓i

"
log

X

h

p̃(h, x)� logZ(✓)

#

d

d✓i
logZ(✓) =

d
d✓i

Z(✓)

Z(✓)

p(x, h) = p(x | h(1))p(h(1) | h(2)) . . . p(h(L�1) | h(L))p(h(L))

d

d✓i
log p(x) =

d
d✓i

p(x)

p(x)

p(x) =
X

h

p(x | h)p(h)

D(x) =
pdata(x)

pdata(x) + pmodel(x)

1

DCGAN	Architecture	

(Radford	et	al	2015)	

LSUN	Bedrooms:	Samples	

(Radford	et	al	2015)	

CIFAR		

(Salimans	et.	al.,	2016)	

Training	 Samples	

IMAGENET	

(Salimans	et.	al.,	2016)	

Training	 Samples	

ImageNet:	Cherry-Picked	Results	

Slide	Credit:	Ian	Goodfellow	

• 	Open	Question:	How	can	we	quantitatively	evaluate	these	models!		

ImageNet:	Cherry-Picked	Results	

Slide	Credit:	Ian	Goodfellow	

• 	Open	Question:	How	can	we	quantitatively	evaluate	these	models!		

