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Estimating Probabilities from Data: MLE and MAP

Generative Approach to Classification: Naïve Bayes



• HWK 1: due today.

Admin

• Recitation: Tue, 5:00 – 6:30 (see Piazza post)



Estimating Probabilities from Data: MLE and MAP

Useful Readings: 

Mitchell, http://www.cs.cmu.edu/%7Etom/mlbook/Joint_MLE_MAP.pdf

Murphy, chapters 3,4

http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf


The Joint Distribution

A B C Prob
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• The key to building probabilistic models is to
define a set of random variables, and to
consider the joint probability distribution over
them.

Example: Boolean variables A,B,C



The Joint Distribution

A B C Prob
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Recipe for making a joint distribution of 𝑀 variables: 

Example: Boolean variables A,B,C

1. Make a truth table listing all combinations of
values (𝑀 Boolean variables → 2𝑀 rows).

2. For each combination of values, say how
probable it is.

3. By the axioms of probability, these probabilities
must sum to 1.

𝐴

𝐵

𝐶0.05
0.05

0.05

0.30 0.10

0.10
0.10

0.25



Using the Joint Distribution

College 
Degree 

Hours 
worked

Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933

P E = ෍

rows matching E

P(row)

Once we have the Joint Distribution,
can ask for the probability of any
logical expression involving these
variables



College 
Degree 

Hours 
worked

Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933

Using the Joint Distribution

Once we have the Joint Distribution,
can ask for the probability of any
logical expression involving these
variables

P College & Medium = 0.4654

P E = ෍

rows matching E

P(row)



College 
Degree 

Hours 
worked

Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933

Using the Joint Distribution

P Medium = 0.7604

P E = ෍

rows matching E

P(row)

Once we have the Joint Distribution,
can ask for the probability of any
logical expression involving these
variables



College 
Degree 

Hours 
worked

Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933

Inference with the Joint Distribution

P E1 ∣ E2 =
P E1 ∧ E2
P E2

=
σrows matching E1and E2

P row

σrows matching E2
P(row)

P College |Medium =
0.4654

0.7604
= 0.612

Once we have the Joint Distribution,
can ask for the probability of any
logical expression involving these
variables



Learning and the Joint Distribution

Suppose we want to learn the 
function f: C, H → W

Equivalently, P(W ∣ C, H)

One solution: learn joint
distribution from data, calculate
P(W ∣ C, H)

e.g., P W = rich C = no, H = 40.5 − =
0.0245895

0.0245895+0.253122

College 
Degree 

Hours 
worked

Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933



Idea: learn classifiers by learning P(Y ∣ X)

Consider Y = Wealth

College Degree Hours worked P(rich|C,HW) P(medium|C,HW)

No < 40.5 .09 .91

No > 40.5 .21 .79

Yes < 40.5 .23 .77

Yes > 40.5 .38 .62

College Degree Hours worked Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933

X = ⟨CollegeDegree, HoursWorked⟩



Estimating Probabilities from Data

MLE and MAP



Estimating the Bias of a Coin

We flip it repeatedly, observing the outcome:

• It turns Heads (i.e. X=1) αH times

• It turns Tails (i.e. X=0) αT times

How can we estimate the probability of heads θ = P X = 1 ?

Problem: Assume we can flip a coin with bias θ several times. Estimate the 
probability that it turns out heads when we flip it?

X=1 X=0Each flip yields a Boolean value for X, X~ Bernoulli(θ) 

P X = 1 = θ; P X = 0 = 1 − θBernoulli Random Variable



Estimating the Bias of a Coin

Problem: Assume we can flip a coin with bias θ several times.  How can we estimate the 
probability that it turns out heads when we flip it?

We flip it repeatedly, observing the outcome:

• It turns Heads (i.e. X=1) αH times

• It turns Tails (i.e. X=0) αT times

How can we estimate the probability of heads θ = P X = 1 ?

Two Cases:

• Case 1: 100 flips. E.g., 51 Heads (X=1) and 49 tails (X=0)

• Case 2: 3 flips. E.g., 2 Heads (X=1) and 1 tails (X=0)



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter ෠θ that maximizes likelihood of observed data P(data|෠θ)

෠θMLE =
αH

αT + αH

Principle 2: Maximum Aposteriori Probability

Choose parameter ෠θ that maximizes likelihood the posterior prob P(෠θ|data)

෠θMAP =
αH + #halucinated_Hs

(αT+#halucinated_Ts) + (αH+#halucinated_Hs)

E.g., 51 Heads (X=1) and 49 tails (X=0)

E.g., 2 Heads (X=1) and 1 tails (X=0)



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter ෠θ that maximizes likelihood of observed data P(data|෠θ)

෠θMLE =
αH

αT + αH

Principle 2: Maximum Aposteriori Probability

Choose parameter ෠θ that maximizes likelihood the posterior prob P(෠θ|data)

෠θMAP =
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Maximum Likelihood Estimation for Bernoulli Variables

Data D: {1, 0, 0, 1, … }

P X = 1 = θ P X = 0 = 1 − θ

Flips produce data D with αH heads (X=1) and αT tails (X=0)

Flips are i.i.d.:

• independent events

• identically distributed according to the Bernoulli distribution

MLE estimate: choose the value of 𝛉 that makes D most probable.

Intuition: we are more likely to observe data D if we are in a world where the appearance of this data is highly
probable. Therefore, we should estimate θ by assigning it whatever value maximizes the probability of having
observed D.



Maximum Likelihood Estimation for Bernoulli Variables

Data D: {1, 0, 0, 1, … }

P X = 1 = θ P X = 0 = 1 − θ

Therefore P D θ = θ 1 − θ 1 − θ θ… = θαH 1 − θ αT

Flips produce data D with αH heads (X=1) and αT tails (X=0)

Flips are i.i.d.:

෠θMLE = argmaxθ P D θ

෠θMLE = argmaxθ ln P D θ

• independent events

• identically distributed according to the Bernoulli distribution



Data D: {1, 0, 0, 1, … }

P X = 1 = θ P X = 0 = 1 − θ

αH heads and αT tails

෠θMLE = argmaxθ ln P D θ

= argmaxθ ln[θ
αH 1 − θ αT]

Set derivative to 0.
d

d θ
ln P D θ = 0

d

d θ
ln 𝜃 =

1

𝜃

d

d θ
ln P D θ =

d

d θ
[αH ln θ + αT ln(1 − θ)] = 

αH

θ
−

αT

1−θ

෠θMLE =
αH

αT + αH
Therefore

Maximum Likelihood Estimation for Bernoulli Variables



Summary: MLE for Bernoulli Variables

Problem: Assume we can flip a coin with bias θ several times. Estimate the 
probability that it turns out heads when we flip it?

X=1 X=0

P X = 1 = θ; P X = 0 = 1 − θBernoulli Random Variable

Each flip yields a Boolean value for X, X~ Bernoulli(θ) 

P X = θX 1 − θ 1−X

Data D of i.i.d flips produces αH heads (X=1) and αT tails (X=0)

Therefore P D θ = 𝛼1, 𝛼0 θ = θαH 1 − θ αT

෠θMLE = argmaxθ P D θ =
αH

αT + αH



High Probability Bound, Sample Complexity

Problem: Assume we can flip a coin with bias θ several times. Estimate the 
probability that it turns out heads when we flip it?

X=1 X=0

෠θMLE =
αH

αT + αH

Data D: {1, 0, 0, 1, … }

P X = 1 = θ

αH heads and αT tails; n = α0 + α1

For any ϵ > 0, P(෡|θMLE − θ ≥ ϵ ≤ 2 e−2nϵ
2

Hoeffding Inequality:

High Probability Bound: Want to know the coin parameter 𝜃 within 𝜖 > 0 with probability at least 
1 − 𝛿. How many flips?

Solve for n: n ≥
ln
2

δ

2 ϵ2
Set P(෡|θMLE − θ ≥ ϵ ≤ 2 e−2nϵ

2
≤ 𝛿



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter ෠θ that maximizes likelihood of observed data P(data|෠θ)

෠θMLE =
αH

αT + αH

Principle 2: Maximum Aposteriori Probability

Choose parameter ෠θ that maximizes likelihood the posterior prob P(෠θ|data)

෠θMAP =
αH + #halucinated_Hs

(αT+#halucinated_Ts) + (αH+#halucinated_Hs)



What if we have prior knowledge?

Prior Knowledge: E.g., I know that the coin is “close” to 50-50. 

50-50

Before data After data

MAP estimate: we should choose the value of Theta that is most probable, given the observed 
data D and our prior assumptions summarized by 𝐏(𝛉).



Bayesian Learning

Use Bayes Rule:

P θ D =
P D θ)P θ

P(D)

Equivalently:

P θ D ∝ P D θ) ⋅ P θ

posterior likelihood prior

MAP estimate: choose parameter ෡𝜽 that maximizes the posterior prob 𝐏(෡𝜽|𝐝𝐚𝐭𝐚), i.e. it 
chooses the value that is most probable given observed data and prior belief  



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation (MLE)

Choose parameter ෠θ that maximizes likelihood of observed data P(D|෠θ)

෠θMLE = argmaxθP(D|θ)

Principle 2: Maximum Aposteriori Probability (MAP)

Choose parameter ෠θ that maximizes the posterior prob P(෠θ|D), i.e. it chooses the value that is 
most probable given observed data and prior belief  

෠θMAP = argmaxθP(θ|D) = argmax𝜃 P D θ)P θ

As 𝑛 → ∞, prior is forgotten

For small sample sizes, prior is important



Which Prior Distribution?

• Prior represents the experts knowledge.

Uninformative Prior

• Closed-form expression of posterior.

Conjugate Prior

• P θ and P θ D have same form.

• Simple posterior form (engineer’s approach).



Beta Prior Distribution

I.e., P θ =
θβH−1 1−θ βT−1

B(βH,βT)
Assume θ~Beta(βH, βT)

More concentrated as values 
of βH, βT increase



MAP Estimate for Bernoulli Variables with  
Beta Prior Distribution

I.e., P θ =
θβH−1 1−θ βT−1

B(βH,βT)

෠θMAP =
αH + βH − 1

(αT+βT − 1) + (αH+βH − 1)

Assume θ~Beta(βH, βT)

Likelihood function  P D θ = θαH 1 − θ αT

Posterior: P θ D ∝ P D θ)P θ

P θ D ∝ θαH+βH−1 1 − θ αT+βT−1

Interpretation: like MLE, but hallucinating 𝛽𝐻 − 1 additional heads & 𝛽𝑇 − 1 additional tails

Note: as we get more sample effect of prior washed out.



Conjugate Priors

Likelihood function:  P D θ

Posterior: P θ D ∝ P D θ)P θ

Prior: P θ

Conjugate Prior: P θ is the conjugate prior for the likelihood function P D θ if the 
forms of P θ and P θ D are the same.



MAP Estimate for Bernoulli Variables with  
Beta Prior Distribution

I.e., P θ =
θβH−1 1−θ βT−1

B(βH,βT)

෠θMAP =
αH + βH

(αT+βT − 1) + (αH+βH − 1)

If prior is beta distribution, θ~Beta(βH, βT)

Likelihood function  P D θ = θαH 1 − θ αT

then posterior : P θ D ∝ P D θ)P θ ∝ θαH+βH−1 1 − θ αT+βT−1 ~Beta(αH + βH, αT + βT)

Therefore

(Binomial)

Mode of Beta
distribution



MAP Estimate for Dice Rolling with  
Dirichlet Prior Distribution

P θ =
ς

k
i=1 θi

βi−1

B(β1,β2,…,βk)
If prior is Dirichlet distribution, θ~Dirichlet(β1, β2, … , βk)

Dice Roll Problem: 6 outcomes instead of 2.

then posterior:

P θ D ∝ P D θ)P θ ∝ Dirichlet(α1 + β1, … , αk + βk)

For Multinomial, conjugate prior is Dirichlet.

Likelihood function is ∼ Multinomial(θ1, … , θk) P D θ = θ1
α1θ2

α2⋯θ𝑘
αk



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation (MLE)

Choose parameter ෠θ that maximizes likelihood of observed data P(D|෠θ)

෠θMLE = argmaxθP(D|θ)

Principle 2: Maximum Aposteriori Probability (MAP)

Choose parameter ෠θ that maximizes likelihood the posterior prob P(෠θ|D), i.e. it chooses the 
value that is most probable given observed data and prior belief  

෠θMAP = argmaxθP(θ|D) = argmax𝜃 P D θ)P θ

As 𝑛 → ∞, prior is forgotten

For small sample sizes, prior is important



Bayesians vs. Frequentists

33

You are no 
good when 
sample is 

small You give a 
different 

answer for 
different 

priors



What About Continuous Random Variables?

X ∼ N(μ, σ), then

p x μ, σ =
1

σ 2π
e
−
x−μ 2

σ2

m=0 m=0

s2
s2

Gaussian Random Variable



What About Continuous Random Variables?

6543 7 8 9 Sleep hrs

Observed data D:

Parameters: μ- mean, σ2 variance

Sleep hours are i.i.d.:

• independent events

• identically distributed according to Gaussian distribution

Goal: estimate μ, σ



MLE for Mean of Gaussian

P D μ, σ =
1

σ 2π

𝑁

ෑ

𝑖=1…𝑁

e
−
xi−μ

2

σ2

6543 7 8 9 Sleep hrs

Observed data D:

Probability of i.i.d. samples D = {x1, … , xN}

Log-likelihood of data ln P D μ, σ = ln
1

σ 2π

𝑁

ෑ

𝑖=1…𝑁

e
−
xi−μ

2

σ2

ln P D μ, σ = −N ln σ 2π − ෍

i=1,…,N

xi − μ 2

σ2



P D μ, σ =
1

σ 2π

𝑁

ෑ

i=1,…,N

e
−
xi−μ

2

2σ2Probability of i.i.d. samples D = {x1, … , xN}

ln P D μ, σ = −N ln σ 2π − ෍

i=1,…,N

xi − μ 2

2σ2

MLE for Mean of Gaussian

d

𝑑 𝜇
ln P D μ, σ = − ෍

i=1,…,N

d

𝑑 𝜇

xi − μ 2

2σ2
= 2 ෍

i=1,…,N

xi − μ

2σ2

Set 
d

𝑑 𝜇
ln P D μ, σ = 0 Therefore σ i=1,…,N xi − μ = 0 ොμMLE =

σi xi
N



P D μ, σ =
1

σ 2π

𝑁

ෑ

𝑖=1…𝑁

e
−
xi−μ

2

2σ2Probability of i.i.d. samples D = {x1, … , xN}

ln P D μ, σ = −N ln σ 2π − ෍

i=1,…,N

xi − μ 2

2σ2

MLE for Variance of Gaussian

d

d σ
ln P D μ, σ = −N

d

d σ
ln σ 2π − ෍

i=1,…,N

d

d σ

xi − μ 2

2σ2
= −

N

σ
+ 2 ෍

i=1,…,N

xi − μ 2

2σ3

Set 
d

d μ
ln P D μ, σ = 0 Therefore ො𝜎2MLE =

σi xi − ොμ 2

N



Learning Gaussian Parameters

MLE: ො𝜎2MLE =
σi xi − μ 2

N

ොμMLE =
σi xi
N

Bayesian learning/estimation is also possible.

Conjugate priors:

Mean: Gaussian prior

Variance: Wishart distribution



What you should know

• MLE, MAP

• Coins, Dice, Gaussian


