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Admin

e HWK 1: due today.

 Recitation: Tue, 5:00 — 6:30 (see Piazza post)



Estimating Probabilities from Data: MLE and MAP

Useful Readings:

Mitchell, http://www.cs.cmu.edu/%7Etom/mlbook/Joint MLE MAP.pdf
Murphy, chapters 3,4



http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

The Joint Distribution

Example: Boolean variables A,B,C

A B C Prob

0] 0] 0 0.30

* The key to building probabilistic models is to 0 0 1 0.05
define a set of random variables, and to 0 1 0 0.10
consider the joint probability distribution over 0 1 1 0.05
them. 1 0 0 0.05

1 0] 1 0.10

1 1 0] 0.25

1 1 1 0.10




The Joint Distribution

Example: Boolean variables A,B,C
Recipe for making a joint distribution of M variables:

A B C Prob

0 0 0 0.30

1. Make a truth table listing all combinations of 0 0 1 0.05
values (M Boolean variables — 2™ rows). 0 1 0 0.10

2. For each combination of values, say how g ! ! 0.05
probable it is. ! o 0 R0

1 0 1 0.10

3. By the axioms of probability, these probabilities 1 1 0 0.25
must sum to 1. 1 1 1 0.10




Using the Joint Distribution

Once we have the Joint Distribution, [ 4l Hours Wealth prob

can ask for the probability of any [t worked

logical expression involving these No 40.5- Medium 0.253122

variables No 40.5- Rich 0.0245895
No 40.5+ Medium 0.0421768
No 40.5+ Rich 0.0116293
Yes 40.5- Medium 0.331313
Yes 40.5- Rich 0.0971295
Yes 40.5+ Medium 0.134106
Yes 40.5+ Rich 0.105933

P(E) = z P(row)

rows matching E



Using the Joint Distribution

Once we have the Joint Distribution, [ 4l Hours Wealth prob

can ask for the probability of any [t worked

logical expression involving these No 40.5- Medium 0.253122

variables No 40.5- Rich 0.0245895
No 40.5+ Medium 0.0421768
No 40.5+ Rich 0.0116293
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P( College & Medium) = 0.4654 Yes 40.5- Rich 0.0971295
Yes 40.5+ Medium 0.134106
Yes 40.5+ Rich 0.105933

P(E) = z P(row)

rows matching E



Using the Joint Distribution

Once we have the Joint Distribution, [ 4l Hours Wealth prob

can ask for the probability of any _|IEcels worked

logical expression involving these No 40.5- Medium 0.253122

variables No 40.5- Rich 0.0245895
No 40.5+ Medium 0.0421768
No 40.5+ Rich 0.0116293
Yes 40.5- Medium 0.331313

P(Medium) = 0.7604 Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106
Yes 40.5+ Rich 0.105933

P(E) = z P(row)

rows matching E



Inference with the Joint Distribution

Once we have the Joint Distribution,  [\£dl=[2 Hours Wealth prob
can ask for the probability of any _|Reaels worked
logical expression involving these LN 40.5- Medium 0.253122
variables No 40.5- Rich 0.0245895
No 40.5+ Medium 0.0421768
No 40.5+ Rich 0.0116293
0.4654 Yes 40.5- Medium 0.331313
P(College |[Medium) = 0.7604 — 0612 |Yes 40.5- Rich 0.0971295
' Yes 40.5+ Medium 0.134106
Yes 40.5+ Rich 0.105933
P(E1 | EZ) _ P(El A EZ) _ Zrows matching E;and E, P(I‘OW)

P(E2)

z:rows matching E,

P(row)




Learning and the Joint Distribution

Suppose we want to learn the College Hours Wealth prob
function f: (C,H) » W Degree worked
No 40.5- Medium 0.253122
. No 40.5- Rich 0.0245895
Equivalently, P(W 1 C, H) No 40 5+ Medium 0.0421768
No 40.5+ Rich 0.0116293
One  solution:  learn  joint |Yes 40.5- Medium 0.331313
distribution from data, calculate |yeq 40 5- Rich 00971295
P(WI1C H) Ves 40 5+ Medium 0.134106
Yes 40.5+ Rich 0.105933

0.0245895
0.0245895+0.253122

e.g., P(W =rich|C = no,H = 40.5-) =



Idea: learn classifiers by learning P(Y | X)

College Degree | Hours worked Wealth prob
No 40.5- Medium 0.253122
No 40.5- Rich 0.0245895
Consider Y = Wealth No 40 5+ Medium 0.0421768
X = (CollegeDegree, HoursWorked) | No 40.5+ Rich 0.0116293
Yes 40.5- Medium 0.331313
Yes 40.5- Rich 0.0971295
Yes 40.5+ Medium 0.134106
Yes 40.5+ Rich 0.105933

College Degree Hours worked P(rich|C,HW) P(medium|C,HW)




Estimating Probabilities from Data

MLE and MAP



Estimating the Bias of a Coin

Problem: Assume we can flip a coin with bias 0 several times. Estimate the
probability that it turns out heads when we flip it?

Each flip yields a Boolean value for X, X~ Bernoulli(0) X=1 X=0

Bernoulli Random Variable PX=1)=06; PX=0)=1-06

We flip it repeatedly, observing the outcome:

* It turns Heads (i.e. X=1) oy times

* It turns Tails (i.e. X=0) at times

How can we estimate the probability of heads 6 = P(X = 1)?



Estimating the Bias of a Coin

Problem: Assume we can flip a coin with bias 0 several times. How can we estimate the
probability that it turns out heads when we flip it?

We flip it repeatedly, observing the outcome:

e |t turns Heads (i.e. X=1) ay times

* It turns Tails (i.e. X=0) o times

How can we estimate the probability of heads 6 = P(X = 1)?

Two Cases:

e (Case 1:100 flips. E.g., 51 Heads (X=1) and 49 tails (X=0)
e (Case 2: 3flips. E.g., 2 Heads (X=1) and 1 tails (X=0)



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation E.g., 51 Heads (X=1) and 49 tails (X=0)

Choose parameter 6 that maximizes likelihood of observed data P(data|)

~ (XH
eMLE —

O(T‘l‘O(H

Principle 2: Maximum Aposteriori Probability  E.g., 2 Heads (X=1) and 1 tails (X=0)

Choose parameter 6 that maximizes likelihood the posterior prob P(8|data)

3 B ay + #halucinated_Hs
MAP (ap+#halucinated_Ts) + (ay+#halucinated_Hs)




Principles of Estimating Probabilities

Choose parameter 8 that maximizes likelihood of observed data P(data|®)

~ aH
OMLE =

O(T+O(H

Principle 2: Maximum Aposteriori Probability  E.g., 2 Heads (X=1) and 1 tails (X=0)

Choose parameter 0 that maximizes likelihood the posterior prob P(8|data)

3 B ay + #halucinated_Hs
MAP (ap+#halucinated_Ts) + (ay+#halucinated_Hs)




PX=1)=0 PX=0)=1-0

DataD:{1,0,0,1, ...}

Flips produce data D with oy heads (X=1) and o tails (X=0)
Flips are i.i.d.:
* independent events

* identically distributed according to the Bernoulli distribution

MLE estimate: choose the value of 8 that makes D most probable.

Intuition: we are more likely to observe data D if we are in a world where the appearance of this data is highly

probable. Therefore, we should estimate 0 by assigning it whatever value maximizes the probability of having
observed D.



Maximum Likelihood Estimation for Bernoulli Variables
PX=1)=6 PX=0)=1-6 -

Data D: {1,0,0, 1, ... }

Flips produce data D with ay heads (X=1) and o tails (X=0)

Flips are i.i.d.:

* independent events

identically distributed according to the Bernoulli distribution
Therefore P(D[6) = 06(1 —06)(1 —6)0 ... = 6%H(1 — 9)%T

éMLE = drgmaxg P(Dle)

Oyg = argmaxg In P(D|0)



Maximum Likelihood Estimation for Bernoulli Variables

PX=1)=0 PX=0)=1-0

Data D:{1,0,0, 1, ... } ay heads and ar tails

OyLg = argmaxg In P(D|0)
= argmaxg In[0%H (1 — 0)9“T]

d
Set derivative to O. ﬁln P(D|6) =0
le(DIE))—d In0+ arln(1—06 H _ 9T le—l
de = qeltuin®+arin(l—0)] =2 - de "o

A~ (043
Therefore OMLE =

O(T+O(H



Summary: MLE for Bernoulli Variables

Problem: Assume we can flip a coin with bias 0 several times. Estimate the
probability that it turns out heads when we flip it?

Each flip yields a Boolean value for X, X~ Bernoulli(0)
Bernoulli Random Variable PX=1)=06; PX=0)=1-106
P(X) =6*(1-6)'"%

Data D of i.i.d flips produces ay heads (X=1) and ar tails (X=0)
Therefore P(D|0) = (ay, @y|0) = 8%H(1 — 9)%T

Xy
06 ~+ (043

éMLE = argmaxg P(D|0) =




High Probability Bound, Sample Complexity

Problem: Assume we can flip a coin with bias 6 several times. Estimate the =

probability that it turns out heads when we flip it? Q\
DataD:{1,0,0, 1, ... } oy heads and o tails; n = ag + oy X=1 X=0
5 R PX=1)=
MLE = o + (043

Hoeffding Inequality:

Foranye > 0, P([Opig — 0= €) < 2 e720€’

High Probability Bound: Want to know the coin parameter 6 within € > 0 with probability at least
1 — 6. How many flips?
In2

Set P([Bye — 0]=€) <2e72" <§  Solveforn:n > —



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter 8 that maximizes likelihood of observed data P(data|®)

~ O(H
OMLE =

O(T+O(H

Choose parameter 0 that maximizes likelihood the posterior prob P(8|data)

3 B ay + #halucinated_Hs
MAP T (ap+#halucinated_Ts) + (ag+#halucinated_Hs)




What if we have prior knowledge?

Prior Knowledge: E.g., | know that the coin is “close” to 50-50.

MAP estimate: we should choose the value of Theta that is most probable, given the observed
data D and our prior assumptions summarized by P(0).

Before data After data

P()

P(6|D)

50-50 0



Bayesian Learning

Use Bayes Rule: P(D|0)P(8)

P(6|D) = 20

Equivalently:
P(6|D) < P(D|0) - P(O)

Bayes, Thomas (1763) An essay

posterior likelihood prior towards solving a problem in the
doctrine of chances. Philosophical

Transactions of the Royal Society of
London, 53:370-418

MAP estimate: choose parameter 8 that maximizes the posterior prob P(0|data), i.e. it
chooses the value that is most probable given observed data and prior belief



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation (MLE)

Choose parameter 6 that maximizes likelihood of observed data P(D|0)
éMLE — argmaxeP(D|6)
Principle 2: Maximum Aposteriori Probability (MAP)

Choose parameter 6 that maximizes the posterior prob P(8|D), i.e. it chooses the value that is
most probable given observed data and prior belief

Opap = argmaxgP(0|D) = argmaxy P(D|6)P(6)

As n — oo, prior is forgotten

For small sample sizes, prior is important



Which Prior Distribution?

Prior represents the experts knowledge.

Simple posterior form (engineer’s approach).

Uninformative Prior

P(9)

0
Conjugate Prior

Closed-form expression of posterior.

 P(6) and P(6|D) have same form.



Beta Prior Distribution

PH~-1(1-@)PT1
B(Bu,BT)

Assume B~Beta(By, Br) e, P(0) =

Beta(2,2)

Beta(1,1)

Beta pdf

0.8 . More concentrated as values
0.4 08 | of By, Pt increase

(0] 02 04 0.6 0.8 1 0 02 04 0.6 0.8 1
parameter value parameter value

Beta(3,2) Beta(30,20)

1.5+ J 5r

Beta pdf

0.5+

0 02 04 0.6 0.8 1 0 02 04 0.6 0.8 1
parameter value parameter value



MAP Estimate for Bernoulli Variables with
Beta Prior Distribution

PH~1(1-@)PT1
B(Bu,BT)

Assume O~Beta(By, Br) l.e.,, P(0) =
Likelihood function P(D[6) = 8“H(1 — 0)“T
Posterior: P(6|D) o< P(D|0)P(0)

P(8|D) o gn+Pr—1(1 — g)ar+hr-1

Interpretation: like MILE, but hallucinating S — 1 additional heads & [+ — 1 additional tails

é - Ay -+ BH —1
MAP T (ap+Br — 1) + (ag+By — 1)

Note: as we get more sample effect of prior washed out.



Conjugate Priors
Likelihood function: P(D|0)
Prior: P(0)

Posterior: P(6|D) < P(D|B)P(6)

Conjugate Prior: P(0) is the conjugate prior for the likelihood function P(D|0) if the
forms of P(0) and P(0|D) are the same.



MAP Estimate for Bernoulli Variables with
Beta Prior Distribution

Likelihood function P(D|0) = 6%H(1 — 0)YT (Binomial)
BH-1(1—0)BT—
If prior is beta distribution, 6~Beta([y, ) l.e., P(B) = O a-o)r
B(Bu.BT)
then posterior : P(6|D) « P(D|8)P(0) ox 8%+ Bu=1(1 — @)%r+Br—1 ~Beta(ay + By, o1 + Pr)
Therefore
Oniap oy + P Mode of Beta

- (ar+Br—1) + (ag+Puy — 1) distribution



MAP Estimate for Dice Rolling with
Dirichlet Prior Distribution @

Dice Roll Problem: 6 outcomes instead of 2. vV

Likelihood function is ~ Multinomial (64, ..., 6x) P(D|0) = 6?1932 sz

k Bi—1
i=18;"

If prior is Dirichlet distribution, 6~Dirichlet(3,, 2, ..., Bx) P(B) = B(B1,B2--Bx)
1,P2,--Pk

then posterior:

P(6|D) < P(D|0)P(8) o Dirichlet(a; + B4, ..., ax + PBx)

For Multinomial, conjugate prior is Dirichlet.



Principles of Estimating Probabilities

Principle 1: Maximum Likelihood Estimation (MLE)

Choose parameter 6 that maximizes likelihood of observed data P(D|0)
éMLE — argmaxeP(D|6)
Principle 2: Maximum Aposteriori Probability (MAP)

Choose parameter 6 that maximizes likelihood the posterior prob P(8|D), i.e. it chooses the
value that is most probable given observed data and prior belief

Opap = argmaxgP(0|D) = argmaxy P(D|6)P(6)

As n — oo, prior is forgotten

For small sample sizes, prior is important



Bayesians vs. Frequentists

You are no
good when
sample is
JuEll

You give a
different

answer for
different
priors

33



What About Continuous Random Variables?

Gaussian Random Variable

X ~ N(y,0), then /\ : i |
(Kl 0) = ——e ] o
X “’l G — e Y rJ:.1;- 2 g 1;-
p o ZT[ 31/ G \ A } \

u=0 | " u=0



What About Continuous Random Variables?

Observed data D: /\

3 4 5 6 7 8 9 Sleep hrs

Parameters: y- mean, ¢ variance

Sleep hours are i.i.d.:

* independent events
« identically distributed according to Gaussian distribution

Goal: estimate u, o



MLE for Mean of Gaussian

Observed data D: /\

3 4 5 6 7 8 9 Sleep hrs
1\ _=w?
Probability of i.i.d. samples D = {x4, ...,xx} P(D|y,0) = e o°
oV 2T .
{i=1...N}
Log-likelihood of data  In P(D|y, ) = | ( ! )N S
og-likelihood of data | o) =1n e o
g oV2T

{i=1..N}

(x; — H)Z
0-2

In P(D|y, 0) = —Nln(G\/ZT[) —
{i=1,...N}



MLE for Mean of Gaussian

1 \" _Gxi=p?
Probability of i.i.d. samples D = {x4, ...,xy} P(D|y,0) = < ) e 202
OV2T/ (21N

o 2
In P(D|y, 0) = —NIn(ov2m) — Z &5 — W)

202
{i=1,..,.N}

d d (xj—p* Xj —
A POl o) = z i —° _ , 2 (xi — W
du _ du 2o? _

{i=1,...N} {i=1,...N}

~ YoX;
et diuln P(Dly,0) =0 Therefore 2._; (i — 1) =0 mLe = =



MLE for Variance of Gaussian

1 \" _Gi=p?
Probability of i.i.d. samples D = {xq, ..., xn} P(D|u,0) = < ) 1_[ e 202
OV 21w

o 2
In P(D|y, 0) = —NIn(ov2m) — Z &5 — W)

202
{i=1,..,.N}

_ do 20% o |
{i=1,..,N} {i=1,...N}

d B d d (xj—w* N (xi — W)*
Eln P(Dlu,G) — —N%ln(ﬁ\/%)— z = ——+2 z

~) 2
(x: —
Set ddu In P(D“l; G) =0 Therefore 6‘2 — Zl( ! u)



Learning Gaussian Parameters

2
MLE 6'2MLE _ Zl( 1 P-)
N
~ _ 2. Xi
UMLE N

Bayesian learning/estimation is also possible.

Conjugate priors:
Mean: Gaussian prior
Variance: Wishart distribution



What you should know

* MLE, MAP
* Coins, Dice, Gaussian



