Online learning, minimizing regret, and
combining expert advice.

Maria Florina (Nina) Balcan
11/12/2018

"The weighted majority algorithm” N. Littlestone & M. Warmuth

"Online Algorithms in Machine Learning” (survey) A. Blum

Motivation

Many situations involve repeated decision making
In an uncertain environment.

- Deciding how to invest your money (buy or sell stocks)
* What route to drive to work each day

* Playing repeatedly a game against an opponent with
unknown strategy

We will study:

Learning algos for such settings with connections to
game theoretic notions of equilibria

Online learning, minimizing regret, and
combining expert advice.

Expert 1 Expert 2
i\

Using “"expert” advice
Assume we want to predict the stock market.

- We solicit n "experts” for their advice.
Will the market go up or down?

- We then want to use their advice somehow to make
our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor's dog | truth
down up up up up
down up up down down

Ui
Can we do nearly as well as best in hindsight?
-

Note: "expert” = someone with an opinion.
[Not necessairly someone who knows anything.] |

)

Formal model

 There are n experts.
For eachround t=12, .., T

Each expert makes a prediction in {O,1}

The learner (using experts’ predictions) makes a
prediction in {O,1}

The learner observes the actual outcome. There is a
mistake if the predicted outcome is different form
the actual outcome.

The learner gets to update his hypothesis.

®)

Can we do hearly as well as best in hindsight?

&

Formal model

There are n experts.
For each round t=12, ..., T

Each expert makes a prediction in {O,1}
The learner (using experts' predictions) makes a prediction in {0,1}

The learner observes the actual outcome. There is a mistake if
the predicted outcome is different form the actual outcome.

A
94

Can we do nearly as well as best in hindsight? {17

We are not given any other info besides the yes/no bits produced
by the experts. We make no assumptions about the quality or
independence of the experts.

We cannot hope to achieve an absolute level of quality in our
predictions.

Simpler question

- We have n "experts”.

* One of these is perfect (never makes a mistake).

We don't know which one.

* A strategy that makes no more than Ig(n) mistakes?

Halving algorithm

Take majority vote over all experts that have
been correct so far.

I.e., if # surviving experts predicting 1 > # surviving experts
predicting O, then predict 1; else predict O.

Claim: If one of the experts is perfect, then at most
lg(n) mistakes.

Proof: Each mistake cuts # surviving by factor of 2, so we
make < Ig(n) mistakes.

Note: this means ok for n to be very large.

Using “"expert” advice

* If one expert is perfect, get < Ig(n) mistakes
with halving algorithm.

* But what if none is perfect? Can we do nearly
as well as the best one in hindsight?

Using “"expert” advice

Strategy #1: Iterated halving algorithm.

- Same as before, but once we've crossed off all the
experts, restart from the beginning.

« Makes at most log(n)*[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Divide the whole history into epochs. Beginning of an epoch is when we
restart Halving; end of an epoch is when we have crossed of f all the
available experts.

At the end of an epoch we have crossed all the experts, so every single
expert must make a mistake. So, the best expert must have made a
mistake. We make at most log n mistakes per epoch.

» If OPT=0 we get the previous guarantee.

Using “"expert” advice

Strategy #1: Iterated halving algorithm.

- Same as before, but once we've crossed off all the
experts, restart from the beginning.

« Makes at most log(n)*[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Wasteful. Constantly forgetting what we've "learned”.

Can we do better? ® é

¥

Weighted Majority Algorithm

Key Point:
A mistake doesn't completely disqualify an expert.
Instead of crossing off, just lower its weight.

Weighted Majority Algorithm

- Start with all experts having weight 1.
- Predict based on weighted majority vote.

-If > w;> Y w; thenpredictl

;=1 1:x;=0

else predict O

Weighted Majority Algorithm

Key Point:
A mistake doesn't completely disqualify an expert.
Instead of crossing off, just lower its weight.

Weighted Majority Algorithm

- Start with all experts having weight 1.
- Predict based on weighted majority vote.

- Penalize mistakes by cutting weight in half.

prediction correct

weights 1 1 1 1
predictions Y Y Y N Y Y
weights 1 1 1 .5
predictions Y N N Y N Y
weights 1 .5 .5 .5

Analysis: do nearly as well as best expert
in hindsight

Theorem: If M = # mistakes we've made so far and
OPT = # mistakes best expert has made so far, then:

M < 24(0OPT +Ign)

Analysis: do nearly as well as best expert
in hindsight
Theorem: If M =# mistakes we've made so far and
OPT = # mistakes best expert has made so far, then:

M < 24(0OPT +Ign)
Proof:
 Analyze W = total weight (starts at n).

- After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.

Weight of best expert is (1/2)°°T, So,

(1/2)0FPT < n3/4)M constant
(4/3)M < p20PT ratio
M < 2.4(0PT +Ign)

Randomized Weighted Majority

2.4(OPT + lg n) not so good if the best expert makes a
mistake 20% of the time.

o?
/®

L7

N

- Yes. Instead of taking majority vote, use weights as
probabilities & predict each outcome with prob. ~ to
its weight. (e.g., if 70% on up, 30% on down, then pick 70:30)

Can we do better?

Key Point: smooth out the worst case.

Randomized Weighted Majority

2.4(OPT + lg n) not so good if the best expert makes a
mistake 20% of the time.

Can we do better?)

N

- Yes. Instead of taking majority vote, use weights

as probabilities. (e.g., if 70% on up, 30% on down, then
pick 70:30)

- Also, generalize 3 to 1- ¢.

Equivalent to select an expert with probability
proportional with its weight.

Randomized Weighted Majority

Initially: w% =1 and p} = 1/n, for each expert i.
At time t.
See experts predicions. Select an expert i with probability pi.

See correct answer, induces |l0oss vector 4.

Update the weights.
If £ =1, then let w! ; = wj(1 —e);
else (¢ = 0) let wj; = wj.

Let pi—l-l = w§+1/Wt+1, where W11 = > iex w§+1

Formal Guarantee for Randomized
Weighted Majority

Theorem: If M = expected # mistakes we've made so
far and OPT = # mistakes best expert has made so
far, then:

M < (1+e)OPT + (1/¢) log(n)

Analysis

Key idea: if the algo has significant expected loss, then
the total weight must drop substantially.

Say at time t we have fraction F, of weight on experts
that made mistake.

Forallt, Wir1 = Wi (1 —€eF})

F, is our expected loss at time 1, probability we make a
mistake at time t.

Analysis

- Say at time t we have fraction F, of weight on experts
that made mistake.

» So, we have probability F, of making a mistake, and we
remove an ¢F, fraction of the total weight.

= Weipa = n(1-e F)(1 - e Fy)...
= In(Wipg) = In(n) + X, [In(1 - e F)] < In(n) - e 2, F,
(using In(1-x) < x)
= In(n) - ¢ M. (X F, = E[# mistakes])
+ If best expert makes OPT mistakes, In(W¢;,) > In((1-€)°FT).

* Now solve: In(n) - ¢ M > OPT In(1-¢).

—OPTIn(1 —¢) 4+ In(n)

S

M <

~ (14+¢/2)OPT + 1 log(n)
5

Randomized Weighted Majority

Solves to:

< —OPT In(1 —¢)+ In(n)

~(14+¢/2)OPT + é In(n)

S

M < 1390PT +2Inn <+ e=1/2
M < 1.150PT +4Inn < e=1/4

M < 1.07OPT +8Inn +c=1/8

Summarizing
. E[# mistakes] < (1+£)OPT + &-tlog(n)(® ®

- If set ¢=(log(n)/OPT)¥2 to balance the two terms out
(or use guess-and-double), get bound of

+ E[mistakes]<OPT+2(OPT-log n)/2

Note: Of course we might not know OPT, so if running T time
steps, since OPT < T, set ¢ to get additive loss (2T log n)!/?

y E[mis’rakes]gOPT+ regret

* So,regret/T — 0. [no regret algorithm]

What if have n options, not n predictors?

- We're not combining n experts, we're choosing one.
» Can we still do it?

* Nice feature of RWM: can be applied when experts
are n different options

- E.g., ndifferent ways to drive to work each day, n
different ways to invest our money.

Randomized Weighted Majority

Initially: w% =1 and p} = 1/n, for each expert i.
At time t.
See experts predicions. Select an expert i with probability pi.

See correct answer; induces loss vector #;.

Update the weights.
If £ =1, then let w! ; = wj(1 —e);
else (¢ = 0) let wj; = wj.

Let p}_ , = wj /W1, where W1 =Y ex w4

Note: Did not see the predictions to select an expert (only
needed to see their losses to update our weights)

What if have n options, not n predictors?

- We're not combining n experts, we're choosing one.
» Can we still do it?

* Nice feature of RWM: can be applied when experts
are n different options

E.g., n different ways to drive to work each day, n
different ways to invest our money.

* We did not see the predictions in order to select an
expert (only needed to see their losses to update
our weights)

Decision Theoretic Version; Formal model

 There are n experts.
For eachround t=12, .., T

* No predictions. The learner produces a prob distr. on
experts based on their past performance p,

* The learner is given a loss vector |. and incurs expected
loss I, - p;.

* The learner updates the weights.

a &
90

A

The guarantee also applies to this modellll

[Interesting for connections between GT and Learning.]

Can generalize to losses in [0,1]

+ If expertihas loss [, do: w; + w;(1-l¢).

[before if an expert had a loss of 1, we multiplied by (1-epsilon), if
it had loss of O we left it alone, now we do linearly in between]

- Same analysis as before.

Summarizing
. E[# mistakes] < (1+£)OPT + &-tlog(n)(® ®

- If set ¢=(log(n)/OPT)¥2 to balance the two terms out
(or use guess-and-double), get bound of

+ E[mistakes]<OPT+2(OPT-log n)/2

Note: Of course we might not know OPT, so if running T time
steps, since OPT < T, set ¢ to get additive loss (2T log n)!/?

y E[mis’rakes]gOPT+ regret

* So,regret/T — 0. [no regret algorithm]

Lower Bounds

Consider T< log n. 3 a stochastic series of expert
predictions and correct answers such that for any alg,
we have E[#mistakes]=T/2 and yet the best expert
makes O mistakes.

At t=1, half the experts predict O, half predict 1. Correct answer given
by fair coin flip.

At t=2, 3,.. : of experts correct so far, half predict O and half predict 1.
Correct answer given by fair coin flip.

Any online algorithm incurs an expected loss of 1/2 at each time step.

Yet, for T < log n there will always be some expert with O mistakes.

Lower Bounds

Our second lower bound shows the dependence on sqrt(T)
is needed. Consider n=2.

Expert 1 always predicts 0. Expert 2 always predicts 1. Correct answer
given by fair coin flip.

Any online algorithm has 50% chance of predicting correctly at each time
step, so expected loss of T/2.

E(loss of best expert) = E(min(#heads, #tails)) = T/2 - \Theta(\sqrt(T))

Summary

» Can use to combine multiple algorithms to do nearly as
well as best in hindsight.

» Can apply RWM in situations where experts are making
choices that cannot be combined.

- E.g., repeated game-playing.
- E.g., online shortest path problem

- Extensions:

- Online linear and more generally convex optimization.

e.g., 'Online Convex Programming
and Generalized Infinitesimal Gradient Ascent”,
ICML 2003. Test of Time Award at ICML

Summary

» Can use to combine multiple algorithms to do nearly as
well as best in hindsight.

» Can apply RWM in situations where experts are making
choices that cannot be combined.

- E.g., repeated game-playing.
- E.g., online shortest path problem

- Extensions:

- "bandit" problem.
- efficient algs for some cases with many experts.
- Sleeping experts / "specialists” setting.

