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Motivation

Many situations involve repeated decision making 
in an uncertain environment.

• Deciding how to invest your money (buy or sell stocks)

• What route to drive to work each day

• Playing repeatedly a game  against an opponent with 
unknown strategy 

We will study:

Learning algos for such settings with connections to 
game theoretic notions of equilibria 



Expert 1 Expert 2 Expert 3

Online learning, minimizing regret, and 
combining expert advice.



Using “expert” advice

• We solicit n “experts” for their advice.  

Assume we want to predict the stock market.

Can we do nearly as well as best in hindsight?

• We then want to use their advice somehow to make 
our prediction.  E.g.,

Note: “expert” ´ someone with an opinion.  

• Will the market go up or down?

[Not necessairly someone who knows anything.]



Formal model
• There are n experts.

Can we do nearly as well as best in hindsight?

• Each expert makes a prediction in {0,1}

• For each round t=1,2, …, T

• The learner (using experts’ predictions) makes a 
prediction in {0,1}

• The learner observes the actual outcome. There is  a 
mistake if the predicted outcome is different form 
the actual outcome.

The learner gets to update his hypothesis.



Formal model
• There are n experts.

Can we do nearly as well as best in hindsight?

• Each expert makes a prediction in {0,1}

• For each round t=1,2, …, T

• The learner (using experts’ predictions) makes a prediction in {0,1}

• The learner observes the actual outcome. There is  a mistake if 
the predicted outcome is different form the actual outcome.

We are not given any other info besides the yes/no bits produced 
by the experts. We make no assumptions about the quality or 
independence of the experts.

We cannot hope to achieve an absolute level of quality in our 
predictions.



Simpler question

• We have n “experts”.

• A strategy that makes no more than lg(n) mistakes?

• One of these is perfect (never makes a mistake).  
We don’t know which one.



Halving algorithm

Take majority vote over all experts that have 
been correct so far.

I.e., if # surviving experts predicting 1 > # surviving experts 
predicting 0, then predict 1; else predict 0.

Claim:  If one of the experts  is perfect, then at most 
lg(n) mistakes.

Proof: Each mistake cuts # surviving by factor of 2,  so we 
make · lg(n) mistakes.

Note: this means ok for n to be very large.



Using “expert” advice
• If one expert is perfect,  get · lg(n) mistakes 

with halving algorithm.  

• But what if none is perfect?  Can we do nearly 
as well as the best one in hindsight? 



Using “expert” advice

Strategy #1: Iterated halving algorithm.  

• Makes at most log(n)*[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

At the end of an epoch we have crossed all the experts, so every single 
expert must make a mistake. So, the best expert must have made a 
mistake. We make at most log n mistakes per epoch.  

• Same as before, but once we've crossed off all the 
experts, restart from the beginning.

Divide the whole history into epochs. Beginning of an epoch is when we 
restart Halving; end of an epoch is when we have crossed off all the 
available experts.

• If OPT=0 we get the previous guarantee.



Using “expert” advice

Strategy #1: Iterated halving algorithm.  

Wasteful. Constantly forgetting what we've “learned”.  

• Makes at most log(n)*[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

• Same as before, but once we've crossed off all the 
experts, restart from the beginning.

Can we do better?



Weighted Majority Algorithm

Instead of crossing off, just lower its weight.

– Start with all experts having weight 1.

Weighted Majority Algorithm

Key Point:
A mistake doesn't completely disqualify an expert. 

– If then predict 1

else predict 0

– Predict based on weighted majority vote.



Weighted Majority Algorithm

Instead of crossing off, just lower its weight.

– Start with all experts having weight 1.

Weighted Majority Algorithm

Key Point:
A mistake doesn't completely disqualify an expert. 

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.



Analysis: do nearly as well as best expert 
in hindsight

If M = # mistakes we've made so far and 

OPT = # mistakes best expert has made so far, then:

Theorem: 



Analysis: do nearly as well as best expert 
in hindsight

If M = # mistakes we've made so far and 

OPT = # mistakes best expert has made so far, then:

Theorem: 

• Analyze W = total weight (starts at n).

constant  
ratio

• After each mistake, W drops by at least 25%.

So, after M mistakes, W is at most n(3/4)M.

Proof: 

• Weight of best expert is (1/2)OPT. So,



Randomized Weighted Majority

2.4(OPT + lg n) not so good if the best expert makes a 
mistake 20% of the time. 

Can we do better? 

• Yes. Instead of taking majority vote, use weights as 
probabilities & predict each outcome with prob. ~ to 
its weight.  (e.g., if 70% on up, 30% on down, then pick 70:30)

Key Point: smooth out the worst case.



Randomized Weighted Majority

2.4(OPT + lg n) not so good if the best expert makes a 
mistake 20% of the time. 

• Also, generalize ½ to 1- e. 

Can we do better? 

Equivalent to select an expert with probability 
proportional with its weight.

• Yes. Instead of taking majority vote, use weights 
as probabilities.  (e.g., if 70% on up, 30% on down, then 
pick 70:30)



Randomized Weighted Majority



Formal Guarantee for Randomized 
Weighted Majority

If M = expected # mistakes we've made so 
far and OPT = # mistakes best expert has made so 
far, then:

Theorem: 

M · (1+e)OPT + (1/e) log(n)



Analysis

• Say at time t we have fraction Ft of weight on experts 
that made mistake.

i.e., 

• For all t, 

• Ft is our expected loss at time t; probability we make a 
mistake at time t.

• Key idea: if the algo has significant expected loss, then 
the total weight must drop substantially.



Analysis
• Say at time t we have fraction Ft of weight on experts 

that made mistake.

• So, we have probability Ft of making a mistake, and we 
remove an eFt fraction of the total weight.

– Wfinal = n(1-e F1)(1 - e F2)…

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] · ln(n) - e t Ft
(using ln(1-x) < -x)

= ln(n) - e M.            ( Ft = E[# mistakes])

• If best expert makes OPT mistakes, ln(Wfinal) > ln((1-e)OPT).

• Now solve: ln(n) - e M > OPT ln(1-e).



Randomized Weighted Majority

Solves to:



Summarizing

• E[# mistakes] · (1+e)OPT + e-1log(n).

• If set e=(log(n)/OPT)1/2 to balance the two terms out 
(or use guess-and-double), get bound of

• E[mistakes]·OPT+2(OPT¢log n)1/2

Note: Of course we might not know OPT, so if running T time 
steps, since OPT · T, set ² to get additive loss (2T log n)1/2

regret• E[mistakes]·OPT+2(T¢log n)1/2

• So, regret/T ! 0. [no regret algorithm]



What if have n options, not n predictors? 

• We’re not combining n experts, we’re choosing one.  

• Can we still do it?

• Nice feature of RWM: can be applied when experts 
are n different options

• E.g., n different ways to drive to work each day, n 
different ways to invest our  money.



Randomized Weighted Majority

Note: Did not see the predictions to select an expert (only 
needed to see their losses to update our weights)



What if have n options, not n predictors? 

• We’re not combining n experts, we’re choosing one.  

• Can we still do it?

• Nice feature of RWM: can be applied when experts 
are n different options

• We did not see the predictions in order to select an 
expert (only needed to see their losses to update 
our weights)

• E.g., n different ways to drive to work each day, n 
different ways to invest our  money.



Decision Theoretic Version; Formal model

• There are n experts.

The guarantee also applies to this model!!!

• For each round t=1,2, …, T

• No predictions. The learner produces a prob distr. on 
experts based on their past performance pt.

• The learner is given a loss vector lt and incurs expected 
loss lt ¢ pt.

• The learner updates the weights.

[Interesting for connections between GT and Learning.]



Can generalize to losses in [0,1]

• If expert i has loss li, do: wi Ã wi(1-lie).

[before if an expert had a loss of 1, we multiplied by (1-epsilon), if 
it had loss of 0 we left it alone, now we do linearly in between]

• Same analysis as before.



Summarizing

• E[# mistakes] · (1+e)OPT + e-1log(n).

• If set e=(log(n)/OPT)1/2 to balance the two terms out 
(or use guess-and-double), get bound of

• E[mistakes]·OPT+2(OPT¢log n)1/2

Note: Of course we might not know OPT, so if running T time 
steps, since OPT · T, set ² to get additive loss (2T log n)1/2

regret• E[mistakes]·OPT+2(T¢log n)1/2

• So, regret/T ! 0. [no regret algorithm]



Lower Bounds

Consider T< log n. 9 a stochastic series of expert 
predictions and correct answers such that for any alg, 
we have E[#mistakes]=T/2 and yet the best expert 
makes 0 mistakes.

• At t=1, half the experts predict 0, half predict 1.  Correct answer given 
by fair coin flip. 

• At t=2, 3,… : of experts correct so far, half predict 0 and half predict 1.  
Correct answer given by fair coin flip.

• Any online algorithm incurs an expected loss of 1/2 at each time step.

• Yet, for T < log n there will always be some expert with 0 mistakes.



Lower Bounds

• Expert 1 always predicts 0.  Expert 2 always predicts 1.  Correct answer 
given by fair coin flip.

• Any online algorithm has 50% chance of predicting correctly at each time 
step, so expected loss of T/2.

• E(loss of best expert) = E(min(#heads, #tails)) = T/2 - \Theta(\sqrt(T))

Our second lower bound shows the dependence on sqrt(T)
is needed.   Consider n=2.



Summary
• Can use to combine multiple algorithms to do nearly as 

well as best in hindsight.

• Can apply RWM in situations where experts are making 
choices that cannot be combined.

– E.g., repeated game-playing.

– E.g., online shortest path problem 

• Extensions: 

– Online linear and more generally convex optimization.

e.g., “Online Convex Programming
and Generalized Infinitesimal Gradient Ascent”, 
ICML 2003. Test of Time Award at ICML



Summary
• Can use to combine multiple algorithms to do nearly as 

well as best in hindsight.

• Can apply RWM in situations where experts are making 
choices that cannot be combined.

– E.g., repeated game-playing.

– E.g., online shortest path problem 

• Extensions: 

– “bandit” problem.

– efficient algs for some cases with many experts.

– Sleeping experts / “specialists” setting.


