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The Naïve Bayes Algorithm



Bayes Rule

Bayes Rule: 𝐏 𝐀 𝐁 =
𝐏 𝐁 𝐀)𝐏 𝐀

𝐏(𝐁)

P A B posterior

priorP(A)

…by no means merely a curious speculation in the doctrine of chances, 

but necessary to be solved in order to a sure foundation for all our 

reasonings concerning past facts, and what is likely to be hereafter…. 

necessary to be considered by any that would give a clear account of the 

strength of analogical or inductive reasoning…



Applying Bayes Rule

Bayes Rule: 𝐏 𝐀 𝐁 =
𝐏 𝐁 𝐀)𝐏 𝐀

𝐏(𝐁)

P A = 0.05,

𝐏 𝐀 𝐁 =
𝐏 𝐁 𝐀)𝐏 𝐀

𝐏 𝐁 𝐀 𝐏 𝐀 + 𝐏 𝐁 ഥ𝑨 𝑷(ഥ𝑨)

P B|A = 0.8, P B|ഥA = 0.2

A = you got flu B = you just coughed

What is P(flu|cough)=P(A|B)?



Learning and the Joint Distribution

Suppose we want to learn the 
function f: C, H → W

Equivalently, P(W ∣ C, H)

One solution: learn joint
distribution from data, calculate
P(W ∣ C, H)

e.g., P W = rich C = no, H = 40.5 − =
0.0245895

0.0245895+0.253122

College 
Degree 

Hours 
worked

Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933



Idea: learn classifiers by learning P(Y ∣ X)

Consider Y = Wealth

College Degree Hours worked P(rich|C,HW) P(medium|C,HW)

No < 40.5 .09 .91

No > 40.5 .21 .79

Yes < 40.5 .23 .77

Yes > 40.5 .38 .62

College Degree Hours worked Wealth prob

No 40.5- Medium 0.253122

No 40.5- Rich 0.0245895

No 40.5+ Medium 0.0421768

No 40.5+ Rich 0.0116293

Yes 40.5- Medium 0.331313

Yes 40.5- Rich 0.0971295

Yes 40.5+ Medium 0.134106

Yes 40.5+ Rich 0.105933

X = ⟨CollegeDegree, HoursWorked⟩



Are we done?!?

One approach: use this representation to learn 
P(Y|X).



One approach: use this representation to learn P(Y|X).

Main problem: learning P(Y|X) might require more 
data than we have…

Consider learning joint distributions with 100 attributes

Number of rows in this table? 2100 ∼ 10010 ∼ 1030

Number of people on Earth? 109

Fraction of rows with 0 training examples: 0.9999

Example:



What to do?

1. Be smart about how to estimate probabilities

2. Be smart about how to represent joint distributions



Be smart about how to estimate probabilities

Principle 1: Maximum Likelihood Estimation

Choose parameter ෠θ that maximizes likelihood of observed data P(data|෠θ)

෠θMLE =
αH

αT + αH

Principle 2: Maximum Aposteriori Probability

Choose parameter ෠θ that maximizes likelihood the posterior prob P(෠θ|data)

෠θMAP =
αH + #halucinated_Hs

(αT+#halucinated_Ts) + (αH+#halucinated_Hs)



Be smart about how to represent joint distributions

Naïve Bayes algorithms assumes that

i.e., Xi and Xj are conditionally independent given Y, for all i ≠ j

P X1, X2, … , Xn Y =ෑ

i

P(Xi|Y)



Conditional Independence

Definition

X is conditionally independent of Y given Z iff

the probability distribution governing X is independent of Y, given the value of Z.

(∀ 𝐱, 𝐲, 𝐳): 𝐏 𝐗 = 𝐱 𝐘 = 𝐲, 𝐙 = 𝐳 = 𝐏(𝐗 = 𝐱|𝐙 = 𝐳)

We often write as 𝐏 𝐗 𝐘, 𝐙 = 𝐏 𝐗 𝐙

E.g., P Thunder Rain, Lightening = P Thunder Lightening

Note: does NOT mean that Thunder if independent of Rain.



Conditional Independence

X is conditionally independent of Y given Z iff

the probability distribution governing X is independent of Y, given the value of Z.

(∀ 𝐱, 𝐲, 𝐳): 𝐏 𝐗 = 𝐱 𝐘 = 𝐲, 𝐙 = 𝐳 = 𝐏(𝐗 = 𝐱|𝐙 = 𝐳)

P Thunder Rain, Lightening = P Thunder Lightening

It does NOT mean that Thunder if independent of Rain.

E.g.,  3 Boolean random variables to describe the weather: Thunder, Rain, Lightening.

Thunder is independent of Rain given Lightning. Lightning causes Thunder, once we know whether or not 
there is Lightning, no additional information about Thunder is provided by the value of Rain.

Clear dependence of Thunder on Rain in general, but there is no conditional dependence once we know 
the value of Lightning.



Conditional Independence

Equivalent to 𝐏 𝐗, 𝐘 𝐙 = 𝐏 𝐗 𝐙 𝐏(𝐘|𝐙)

Definition

X is conditionally independent of Y given Z iff

the probability distribution governing X is independent of Y, given the value of Z.

(∀ 𝐱, 𝐲, 𝐳): 𝐏 𝐗 = 𝐱 𝐘 = 𝐲, 𝐙 = 𝐳 = 𝐏(𝐗 = 𝐱|𝐙 = 𝐳)

We often write as 𝐏 𝐗 𝐘, 𝐙 = 𝐏 𝐗 𝐙



Conditional Independence

Claim

X is conditionally independent of Y given Z iff 𝐏 𝐗 𝐘, 𝐙 = 𝐏 𝐗 𝐙

Equivalent to 𝐏 𝐗, 𝐘 𝐙 = 𝐏 𝐗 𝐙 𝐏(𝐘|𝐙)

𝐏 𝐗, 𝐘 𝐙 = 𝐏 𝐗 𝐘, 𝐙 𝐏(𝐘|𝐙)

= 𝐏 𝐗 𝐙 𝐏(𝐘|𝐙)



Conditional Independence
Claim

If Xi and Xj are conditionally independent given Y, for all i ≠ j

P X1, X2, … , Xn Y =ෑ

i

P(Xi|Y)

If X1, … , Xn, Y are all Boolean, how many parameters do we need to describe 
P X1, X2, … , Xn Y and P(Y)?   

• Without the conditional independence assumption: 2 2𝑛 − 1 + 1

• With conditional independence assumption: 2𝑛 + 1



Naïve Bayes in a Nutshell

Bayes Rule: P Y = yk X1, … , Xn =
P Y = yk P(X1, … , Xn|Y = yk)

𝑃(𝑋)

So, to pick the most probably Y for  Xnew = (X1
new, X2

new, … , Xn
new)

If Xi and Xj are conditionally independent given Y, for all i ≠ j

P Y = yk X1, … , Xn =
P Y = yk ςiP(Xi|Y = yk)

𝑃(𝑋)

Ynew = argmaxykP Y = yk ෑ

i

P(Xi
new|Y = yk)



Naïve Bayes: discrete Xi

• Classify  Xnew = (X1
new, X2

new, … , Xn
new)

• For each value yk, estimate πk = P(Y = yk); get ෞπk

[Ideal rule: Ynew = argmaxykP Y = yk ςiP(Xi
new|Y = yk)]

Training phase (input: training examples)

• For each value xij of attribute Xi estimate θi,j,k = P(Xi = xij|Y = yk);

Testing phase:

Ynew = argmaxykෞπkෑ

i

෣θi,new,k

get ෢θi,j,k



Estimating parameters Y, Xi discrete

• For each value yk, get ෞπk = ෡P Y = yk =
#D Y=yk

|D|

• For each value xij of attribute Xi estimate θi,j,k = P(Xi = xij|Y = yk);

get ෢θi,j,k = ෡P(Xi = xij|Y = yk) =
#D Xi=xij∧ Y=yk

#D Y=yk

Maximum Likelihood Estimation

Number of items in 
dataset D for which Y=yk



Sublety 1: Violation of the Naïve Bayes Assumption

• Nonetheless, NB is widely used:

– NB often performs well, even when assumption is violated

– [Domingos & Pazzani ’96] discuss some conditions for good performance

• Usually features are not conditionally independent given the label

P X1, X2, … , Xn Y ≠ෑ

i

P(Xi|Y)



Subtlety 2: Insufficient Training Data

• Thus no matter what the values X2, … , Xn take, we obtain:

• What if we never see a training instance where X1 = a and Y = b? 

e.g., Y = SpamEmail, X = "Earn"

෡P X1 = a Y = b = 0

෡P Y = b X1 = a, X2, … , Xn = 0

෡P X1 = a, X2, … , Xn Y = ෡P(X1= a) ෑ

i≠1

P(Xi|Y)

෡P X1 = a Y = b = 0

• Solution: use MAP estimate!!!!



Estimating parameters Y, Xi discrete

• For each value yk, get ෞπk = ෡P Y = yk =
#D Y=yk +l

D +lK

• For each value xij of attribute Xi estimate θi,j,k = P(Xi = xij|Y = yk);

get ෢θi,j,k = ෡P(Xi = xij|Y = yk) =
#D Xi=xij∧ Y=yk +l

#D Y=yk +lJ

Maximum Likelihood Estimation

J - number of distinct values that feature i can take; l determines the strength of this 
smoothing; assume the hallucinated examples are spread evenly over the possible values 
of Xi; so, number of hallucinated examples is lJ.



What you should know…

22

• Naïve Bayes classifier

• What’s the assumption

• Why we use it

• How do we learn it

• Why is Bayesian estimation important


