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Today:
• Artificial neural networks

• Backpropagation 

Reading:
• Mitchell: Chapter 4

• Bishop: Chapter 5



Artificial Neural Network (ANN)

• Biological systems built of very complex 

webs of interconnected neurons. 

• Artificial Neural Networks built out of a densely interconnected set of simple 

units (e.g., sigmoid units).

• Highly connected to other neurons, and 

performs  computations by combining 

signals from other neurons. 

• Outputs of these computations may be 

transmitted to one or more other neurons. 

• Each unit takes real-valued inputs (possibly the outputs of other units) 

and produces a real-valued output (which may become input to many other units).





input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context “h__d”



ALVINN

[Pomerleau 1993]



Artificial Neural Networks to learn f: X  Y

• X feature space: (vector of) continuous and/or discrete vars

• Y ouput space: (vector of) continuous and/or discrete vars

• f𝐰 network of basic units

Find  parameters w to minimize 

Learning algorithm: given 𝑥𝑑 , 𝑡𝑑 𝑑∈𝐷, train weights w of all units 

to minimize sum of squared errors of predicted network outputs.

෍

𝑑∈𝐷

𝑓𝑤 𝑥𝑑 – 𝑡𝑑
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• f𝐰 typically a non-linear function, f𝐰: X → Y

Use gradient descent!



What type of units should we use?

• Classifier is a multilayer network of units.

Input layer Output layerHidden 

layer

0.5

0.3

1

• Each unit takes some inputs and produces one output. Output of 

one unit can be the input of another.



Multilayer network of Linear units?

• Advantage: we know how to do gradient descent on linear units

Input layer Output layerHidden 

layer

𝑣1 = 𝒘𝟏 ⋅ 𝒙
𝑤0,1

𝑥1

𝑥2

𝑥0 = 1

𝑧 = 𝒘𝟑 ⋅ 𝒗

𝑤1,1

𝑤2,1

𝑤0,2

𝑤1,2

𝑤2,2

𝑤3,2

𝑣2 = 𝒘𝟐 ⋅ 𝒙

𝑤3,1

Problem: linear of linear is just linear.

𝑧 = 𝑤3,1 𝒘𝟏 ⋅ 𝒙 + 𝑤3,2 𝒘𝟐 ⋅ 𝒙 = 𝑤3,1𝒘𝟏 +𝑤3,2𝒘𝟐 ⋅ 𝒙 = linear



Multilayer network of Perceptron units?

• Advantage: Can produce highly non-linear decision boundaries!

Input layer Output layerHidden 

layer

𝑣1 = (𝒘𝟏⋅ 𝒙)
𝑤0,1

𝑥1

𝑥2

𝑤1,1

𝑤2,1

𝑤0,2

𝑤1,2

𝑤2,2

𝑤3,2

𝑤3,1

𝑣2 = (𝒘𝟐⋅ 𝒙)

𝑧 = (𝒘3⋅ 𝒗)

Problem: discontinuous threshold is not differentiable.  Can’t do 

gradient descent.

Threshold function: 𝑥 = 1 if 𝑥 is positive, 0 if 𝑥 is negative.

𝑥0 = 1



Multilayer network of sigmoid units

• Advantage: Can produce highly non-linear decision boundaries!

Input layer Output layerHidden 

layer

𝑣1 = 𝝈(𝒘𝟏⋅ 𝒙)
𝑤0,1

𝑥1

𝑥2

𝑤1,1

𝑤2,1

𝑤0,2

𝑤1,2

𝑤2,2

𝑤3,2

𝑤3,1

𝑣2 = 𝝈(𝒘𝟐⋅ 𝒙)

𝑧 = 𝝈(𝒘𝟑⋅ 𝒗)

• Sigmoid is differentiable, so can use gradient descent

𝝈 𝑥 =
1

1 + 𝑒−𝑥
= Very useful in practice!

𝑥0 = 1



𝜎 is the sigmoid function; 𝜎 𝑥 =
1

1+𝑒−𝑥

Nice property:   
𝑑𝜎 𝑥

𝑑𝑥
= 𝜎 𝑥 1 − 𝜎 𝑥

We can derive gradient descent rules to train

• One sigmoid unit

• Multilayer networks of sigmoid units → Backpropagation

The Sigmoid Unit



Gradient Descent to Minimize Squared Error

Batch mode Gradient Descent:

Do until satisfied

1. Compute the gradient 𝛻𝐸𝐷[𝒘]

2. 𝒘 ← 𝒘− 𝜂𝛻𝐸𝐷[𝒘]

Incremental (stochastic) Gradient Descent:

Do until satisfied

1. Compute the gradient 𝛻𝐸𝑑[𝒘]

2. w← 𝒘− 𝜂𝛻𝐸𝑑[𝒘]

• For each training example 𝑑 in 𝐷

𝐸𝑑 𝒘 ≡
1

2
𝑡𝑑 − 𝑜𝑑

2

Note: Incremental Gradient Descent can approximate Batch Gradient Descent 

arbitrarily closely if 𝜂 made small enough

Goal: Given 𝑥𝑑 , 𝑡𝑑 𝑑∈𝐷 find w to minimize 𝐸𝐷 𝒘 =
1

2
෍

𝑑∈𝐷

𝑓𝑤 𝑥𝑑 – 𝑡𝑑
2

𝛻𝐸 𝒘 ≡
𝜕𝐸

𝜕𝑤0
,
𝜕𝐸

𝜕𝑤1
, … ,

𝜕𝐸

𝜕𝑤𝑛



Gradient descent in weight space

figure from Cho & Chow, Neurocomputing 1999

This error measure defines a 

surface over the hypothesis 

(i.e. weight) space

w1
w2

13

Goal: Given 𝑥𝑑 , 𝑡𝑑 𝑑∈𝐷 find w to minimize 𝐸𝐷 𝒘 =
1

2
෍

𝑑∈𝐷

𝑓𝑤 𝑥𝑑 – 𝑡𝑑
2



Gradient descent in weight space

w1

w2        

Error

on each iteration

• current weights define a 

point in this space

• find direction in which 

error surface descends 

most steeply

• take a step (i.e. update 

weights) in that direction 

Gradient descent is an iterative process aimed at finding a 

minimum in the error surface.
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Gradient descent in weight space

w1

w2        

Error

-
¶E

¶w1

-
¶E

¶w2

 
ÑE(w) =

¶E

¶w0

,  
¶E

¶w1

,  ,  
¶E

¶wn

é

ë
ê

ù

û
ú

Dw = -h ÑE w( )

Dwi = -h 
¶E

¶wi

Calculate the gradient of E:

Take a step in the opposite direction



Taking derivative: chain rule

y = f (u)

u = g(x)

¶y

¶x
=

¶y

¶u

¶u

¶x

Recall the chain rule from calculus



od = observed unit output for 𝑥𝑑

Gradient Descent for the Sigmoid Unit

𝜕𝐸

𝜕𝑤𝑖
=

𝜕

𝜕𝑤𝑖

1

2
෍

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑
2 =

1

2
෍

𝑑∈𝐷

𝜕

𝜕𝑤𝑖
𝑡𝑑 − 𝑜𝑑

2

=
1

2
෍

𝑑∈𝐷

2 𝑡𝑑 − 𝑜𝑑
𝜕

𝜕𝑤𝑖
𝑡𝑑 − 𝑜𝑑 = ෍

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑 −
𝜕𝑜𝑑
𝜕𝑤𝑖

= −෍

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑
𝜕𝑜𝑑
𝜕𝑛𝑒𝑡𝑑

𝜕𝑛𝑒𝑡𝑑
𝜕𝑤𝑖

But we know:
𝜕𝑜𝑑
𝜕𝑛𝑒𝑡𝑑

=
𝜕𝜎 𝑛𝑒𝑡𝑑
𝜕𝑛𝑒𝑡𝑑

= 𝑜𝑑 1 − 𝑜𝑑 and
𝜕𝑛𝑒𝑡𝑑
𝜕𝑤𝑖

=
𝜕 𝒘 ⋅ 𝒙𝒅

𝜕𝑤𝑖
= 𝑥𝑖,𝑑

So:
𝜕𝐸

𝜕𝑤𝑖
= −෍

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑 𝑜𝑑 1 − 𝑜𝑑 𝑥𝑖,𝑑

Given 𝑥𝑑 , 𝑡𝑑 𝑑∈𝐷 find w to minimize ෍
𝑑∈𝐷

𝑜𝑑– 𝑡𝑑
2

netd =෍

i

wixi,dod = σ(netd);



od = observed unit output for 𝑥𝑑

Gradient Descent for the Sigmoid Unit

𝜕𝐸

𝜕𝑤𝑖
= −෍

𝑑∈𝐷

𝑡𝑑 − 𝑜𝑑 𝑜𝑑 1 − 𝑜𝑑 𝑥𝑖,𝑑

Given 𝑥𝑑 , 𝑡𝑑 𝑑∈𝐷 find w to minimize ෍
𝑑∈𝐷

𝑜𝑑– 𝑡𝑑
2

netd =෍

i

wixi,dod = σ(netd);

𝜕𝐸

𝜕𝑤𝑖
= −෍

𝑑∈𝐷

𝛿𝑑 𝑥𝑖,𝑑

𝛿𝑑 error term 𝑡𝑑 − 𝑜𝑑 multiplied by 𝑜𝑑 1 − 𝑜𝑑 that 
comes from the derivative of the sigmoid function

Update rule: 𝑤 ← 𝑤 − 𝜂𝛻𝐸[𝑤]



Gradient Descent for Multilayer Networks

Given 𝑥𝑑 , 𝑡𝑑 𝑑∈𝐷 find w to minimize 
1

2
෍

𝑑∈𝐷

෍

𝑘∈𝑂𝑢𝑡𝑝𝑢𝑡𝑠

𝑜𝑘,𝑑– 𝑡𝑘𝑑
2



Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do:

• For each training example (𝑥, 𝑡) do:

1. Input the training example to the network and 

compute the network outputs 

2. For each output unit 𝑘:

3. For each hidden unit ℎ:

4. Update each network weight 𝑤𝑖,𝑗

𝛿𝑘 ← 𝑜𝑘(1 − 𝑜𝑘)(𝑡𝑘 − 𝑜𝑘)

𝛿ℎ ← 𝑜ℎ 1 − 𝑜ℎ σ𝑘∈𝑜𝑢𝑡𝑝𝑢𝑡𝑠𝑤ℎ,𝑘𝛿𝑘

𝑤𝑖,𝑗 ← 𝑤𝑖,𝑗 + Δw𝑖,𝑗

where Δ𝑤𝑖,𝑗 = 𝜂𝛿𝑗𝑥𝑖,𝑗

𝑘

ℎ

o = observed unit output

t = target output

x = input
xi,j = 𝑖th input to 𝑗th unit

wij = wt from i to j

Incremental/stochastic gradient descent





• Validation/generalization error first 

decreases, then increases. 

• Weights tuned to fit the idiosyncrasies of 

the training examples that are not 

representative of the general distribution.

• Stop when lowest error over validation set.

• Not always obvious when lowest error over 

validation set has been reached.



Dealing with Overfitting

Our learning algorithm involves a parameter 

n=number of gradient descent iterations

How do we choose n to optimize future error? 

• Separate available data into training and validation set

• Use training to perform gradient descent

• n  number of iterations that optimizes validation set error



Dealing with Overfitting

• Regularization techniques

• norm constraint

• dropout

• early stopping

• …





Expressive Capabilities of ANNs

Boolean functions:

• Every Boolean function can be represented by a network with a 

single hidden layer

• But might require exponential (in number of inputs) hidden 
units

Continuous functions:

• Every bounded continuous function can be approximated with 

arbitrarily small error, by network with one hidden layer 

[Cybenko 1989; Hornik et al. 1989]

• Any function can be approximated to arbitrarily accuracy by a 

network with two hidden layers [Cybenko 1988]



Or function

𝑥1

𝑥2

𝑥𝑛

𝑥𝑖1 ∨ 𝑥𝑖2 ∨ ⋯∨ 𝑥𝑖𝑘

…

1

0

1

𝑥0 = 1

−0.5

𝑤𝑖 = 1 if 𝑖 is an 𝑖𝑗

𝑤𝑖 = 0 otherwise

And function

𝑥1

𝑥2

𝑥𝑛

𝑥𝑖1 ∧ 𝑥𝑖2 ∧ ⋯∧ 𝑥𝑖𝑘

…

1

0

1

𝑥0 = 1

0.5 − 𝑘

𝑤𝑖 = 1 if 𝑖 is an 𝑖𝑗

𝑤𝑖 = 0 otherwise

And with negations

𝑥1

𝑥2

𝑥𝑛

𝑥𝑖1 ∧ ҧ𝑥𝑖2 ∧ ⋯∧ 𝑥𝑖𝑘
…

1

0

−1

𝑥0 = 1

0.5 − 𝑡

𝑤𝑖 = 1 if 𝑖 is 𝑖𝑗 not negated

𝑤𝑖 = 0 otherwise

𝑤𝑖 = −1 if 𝑖 is 𝑖𝑗 negated

𝑡 = # not negated

Representing Simple Boolean Functions

Inputs 𝑥𝑖 ∈ {0,1}



General Boolean functions

Can write any Boolean function as a truth table:

000 | +
001 | −
010 | −
011 | +
100 | −
101 | −
110 | +
111 | +

View as OR of ANDs, with one AND for each 

positive entry.

ҧ𝑥1 ҧ𝑥2 ҧ𝑥3 ∨ ҧ𝑥1𝑥2𝑥3 ∨ 𝑥1𝑥2 ҧ𝑥3 ∨ 𝑥1𝑥2𝑥3

Then combine AND and OR networks into a 2-layer network.

Every Boolean function can be represented by a network with a 

single hidden layer; might require exponential # of hidden units



Other Activation Functions

– Generalizations of ReLU gReLU 𝑧 =
max 𝑧, 0 + 𝛼min{𝑧, 0}

– Leaky-ReLU 𝑧 = max{𝑧, 0} + 0.01min{𝑧, 0}

– Parametric-ReLU 𝑧 : 𝛼 learnable

𝑧

gReLU 𝑧



Artificial Neural Networks: Summary

• Highly non-linear regression/classification

• Vector valued inputs and outputs

• Potentially millions of parameters to estimate

• Actively used to model distributed comptutation in the brain

• Hidden layers learn intermediate representations

• Stochastic gradient descent, local minima problems

• Overfitting and how to deal with it.



Other Activation Functions

• Problem with sigmoid: saturation

𝑦𝑥
𝑟(⋅)

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Too small gradient



Other Activation Functions

• Activation function ReLU (rectified linear 

unit)

– ReLU 𝑧 = max{𝑧, 0}

Figure from Deep learning, by 
Goodfellow, Bengio, Courville.



Other Activation Functions

• Activation function ReLU (rectified linear 

unit)

– ReLU 𝑧 = max{𝑧, 0}Gradient 0

Gradient 1


