Machine Learning 10-715

Maria Florina Balcan
Machine Learning Department
Carnegie Mellon University

10/15/2018
Today: Reading:
 Atrtificial neural networks » Mitchell: Chapter 4
« Backpropagation « Bishop: Chapter 5

Artificial Neural Network (ANN)

Biological systems built of very complex
webs of interconnected neurons.

Highly connected to other neurons, and
performs computations by combining
signals from other neurons.

Outputs of these computations may be
transmitted to one or more other neurons.

Artificial Neural Networks built out of a densely interconnected set of simple
units (e.g., sigmoid units).

Each unit takes real-valued inputs (possibly the outputs of other units)
and produces a real-valued output (which may become input to many other units).

Connectionist Models

Consider humans:
e Neuron switching time ™~ .001 second
e Number of neurons ~ 10"
e Connections per neuron ~ 10*~°
e Scene recognition time ~ .1 second

¢ 100 inference steps doesn’t seem like enough

— much parallel computation

Properties of artificial neural nets (ANN’s):
e Many neuron-like threshold switching units
e Many weighted interconnections among units

e Highly parallel, distributed process

Multilayer Networks of Sigmoid Units

a head
& hid

+ hod

* had

+ hawed
v heard
a heed
¢ hud

» who'd
»~ hoad

head hid A who’d hood

o 500 1000 1400
F1 {(Hz)

Input: two features from spectral analysis of a spoken sound
output: vowel sound occurring in the context “h__ d”

ALVINN
| [Pomerleau 1993]

30x32 Sensor
Input Retina ¥

Artificial Neural Networksto learnf: X 2> Y

o f,, typically a non-linear function, f,,: X =Y

X feature space: (vector of) continuous and/or discrete vars
Y ouput space: (vector of) continuous and/or discrete vars
f,, network of basic units

Learning algorithm: given (x,,t;) 4¢p, train weights w of all units
to minimize sum of squared errors of predicted network outputs.

Find parameters w to minimize Z(fw(xd)_ ta)’
deD

Use gradient descent!

What type of units should we use?

« Classifier is a multilayer network of units.

« Each unit takes some inputs and produces one output. Output of
one unit can be the input of another.

Input layer Hidden Output layer

Multilayer network of Linear units?

« Advantage: we know how to do gradient descent on linear units

Input layer Hidden Output layer
layer

Problem: linear of linear is just linear.

Z = W3,1(W1 . x) + W3,2(W2 . x) = (W3,1W1 + W3’2W2) - X = |Ineal’

Multilayer network of Perceptron units?

« Advantage: Can produce highly non-linear decision boundaries!

Hidden Output layer
layer

Input layer

Threshold function:

x = 11if x IS positive, 0 if x iIs negative.

Problem: discontinuous threshold is not differentiable. Can’t do

gradient descent.

Multilayer network of sigmoid units

« Advantage: Can produce highly non-linear decision boundaries!

« Sigmoid is differentiable, so can use gradient descent

Input layer Hidden Output layer
layer

Very useful in practice!

The Sigmoid Unit

Xl xp=1

.'I.'z

—)0

—). X 1
net g_:.an i X 0 = (net) = —
l+e

n

1
1+e~%

o is the sigmoid function; o(x) =

Nice property: dfl—;x) =o(x)(1—0(x))

We can derive gradient descent rules to train

* One sigmoid unit

« Multilayer networks of sigmoid units — Backpropagation

Gradient Descent to Minimize Squared Error

Goal: Given (xg,tg)gep find w to minimize Eplwl =7 Z(fw(xd) tq)?

debD

Batch mode Gradient Descent:
Do until satisfied
1. Compute the gradient VE,[w]

2. wew—nVEp[w] —
0E OE OE

VE
[w] owy dw; ~ Owy,

Incremental (stochastic) Gradient Descent:

Do until satisfied

« For each training example d in D
1. Compute the gradient VE;[w] E lw] = %(td — 0g4)*
2. Wew—nVE;[w]

Note: Incremental Gradient Descent can approximate Batch Gradient Descent
arbitrarily closely if n made small enough

Gradient descent in weight space

1
Goal: Given (x4, tq)aep find w to minimize Eplw] = EZ(fw(xd)— ty)?

deD

This error measure defines a
surface over the hypothesis
(i.e. weight) space

arror

W

13

Gradient descent in weight space

Gradient descent is an iterative process aimed at finding a

minimum In the error surface.

on each iteration

« current weights define a
point in this space

 find direction in which
error surface descends
most steeply

« take a step (i.e. update
weights) in that direction

14

Error

’W]

Gradient descent in weight space

Calculate the gradient of £: VE(w) =

OE OE OF

Take a step in the opposite direction
Dw = ~h VE(w) Error
o)
Dw, = -h —
ow,

ow, Ow, 8—wn

A

Taking derivative: chain rule

Recall the chain rule from calculus

y=f(u)
u = g(x)

Ty _ 1y fu
Tx Yux

Gradient Descent for the Sigmoid Unit

Given (x4, t;) gep find w to minimize Z(od_ t,)2
debD
04 = observed unit output for x,

04 = o(nety); nety = Z WiXijd

o0 = G(net) =

o = ‘ 1Z(td_0d) Z
debD
—Od) —Z(td—Od)< a‘(:/d)

lL+e

- Od)

dED deD !

dog Onet,
— t —
Z(a = %a) dnet; dw;
deD
. do do(net,) dnet d(w-xg)
But we know: d _ _0.(1— d _ .
anetd anetd Od(Od) and an' aWi xl'd

So:

z (tg — 04)0q(1 —04)x; 4

an
deD

Gradient Descent for the Sigmoid Unit

Given (x4, t;) gep find w to minimize Z(od_ £,)2
debD
04 = observed unit output for x,

04 = o(nety); nety = 2 WiXid

td — Od)Od(l a)Xid
deD

awl

&4 error term t,; — o, multiplied by o,(1 — 0,) that
comes from the derivative of the sigmoid function

0FE
aWi - Z 5d xi'd

debD

Update rule: w « w — nVE[w]

Gradient Descent for Multilayer Networks

: : L. 1 2
Given (x4, ty)qep find w to minimize Ez z (ok.a- tra)
deD keOutputs

head hid A who'd hood

head hid A who'd hood

Backpropagation Algorithm
Incremental/stochastic gradient descent

Initialize all weights to small random numbers.

Until satisfied, Do:

« For each training example (x, t) do: :
0 = observed unit output

t = target output

X = input
x;; = ith input to jth unit

1. Input the training example to the network and
compute the network outputs

2. For each output unit k:

Ok « 0, (1 — ox)(tx — 0k)
w; = wt from i to |
3. For each hidden unit h:

6p < op(1 — 0p) Xkeoutputs WhkOk

4. Update each network weight w; ;
Wi,j «— Wi,j + AWL'J'

where AWi,j = 775]3(,'1’]

More on Backpropagation

e Gradient descent over entire network weight
vector

e Easily generalized to arbitrary directed graphs

e Will find a local, not necessarily global error
minimuim

— In practice, often works well (can run multiple
times)

e Often include weight momentum o
Aw; j(n) = nd;x; j + alAw; j(n — 1)
e Minimizes error over training examples

— Will it generalize well to subsequent
examples?

e Training can take thousands of iterations —
slow!

e Using network after training is very fast

Overfitting in ANNs

Error

Error

0.01
0.009
0.003
0.007
0.006
0.005
0.004
0.003
0.002

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Error versus weight updates (example 1)

“ -
- Training set error * .
Validation set error '
Ky _
+
0 5000 10000 15000 20000
Number of weight updates
Error versus weight updates (example 2)

q\ T T T

L *“ Training set error * 4
”‘wa,,l . Validation set error +

- ++ -

+
| . S MIMIM B
- . M -
L T
-
- * —
-
0.‘

0 1000 2000 3000 4000 5000 6000

Number of weight updates

Validation/generalization error first
decreases, then increases.

Weights tuned to fit the idiosyncrasies of
the training examples that are not
representative of the general distribution.

Stop when lowest error over validation set.

Not always obvious when lowest error over
validation set has been reached.

Error ve
= = = n i
0.009 s Training set error .
I W I V I I Validation set error +
0.008 r
0.007
g o

Our learning algorithm involves a parameter o —————o
n=number of gradient descent iterations
How do we choose n to optimize future error?

« Separate available data into training and validation set
« Use training to perform gradient descent
 n < number of iterations that optimizes validation set error

Dealing with Overfitting

« Regqularization techniques
* norm constraint
 dropout
« early stopping

Convergence of Backpropagation

Gradient descent to some local minimum
e Perhaps not global minimum...
e Add momentum
e Stochastic gradient descent

e Train multiple nets with different inital weights

Nature of convergence
e Initialize weights near zero
e Therefore, initial networks near-linear

e Increasingly non-linear functions possible as
tralning progresses

Expressive Capabilities of ANNs

Boolean functions:

« Every Boolean function can be represented by a network with a
single hidden layer

« But might require exponential (in number of inputs) hidden
units

Continuous functions:

« Every bounded continuous function can be approximated with
arbitrarily small error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

« Any function can be approximated to arbitrarily accuracy by a
network with two hidden layers [Cybenko 1988]

Representing Simple Boolean Functions
Inputs x; € {0,1}

Or function

xil V.X'i2 V "'V.X'ik

w; = 1ifiisan i

w; = 0 otherwise

And function

Xil /\Xi2 N\ ---/\xl-k

w; = 1ifiisan i

w; = 0 otherwise

And with negations

Xil /\fiz N\ ---/\xik

w; = 1if i is i; not negated
w; = —1if i is i; negated
w; = 0 otherwise

t = # not negated

General Boolean functions

Every Boolean function can be represented by a network with a
single hidden layer; might require exponential # of hidden units

Can write any Boolean function as a truth table:

000
001
010
011
100
101
110
111

View as OR of ANDs, with one AND for each
positive entry.

X1X2X3 V X1X2X3 V X1X2X3 V X1X2X3

Then combine AND and OR networks into a 2-layer network.

Other Activation Functions

— Generalizations of ReLU gReLU(z) =
max{z, 0} + a min{z, 0}

— Leaky-ReLU(z) = max{}, 0} + 0.01
— Parametric-ReLU(2): a

in{z, 0}
gReLU(2)

Artificial Neural Networks: Summary

* Highly non-linear regression/classification

« Vector valued inputs and outputs

« Potentially millions of parameters to estimate

« Actively used to model distributed comptutation in the brain
« Hidden layers learn intermediate representations

« Stochastic gradient descent, local minima problems
« OQOverfitting and how to deal with it.

Other Activation Functions

* Problem with sigmoid: saturation

: 0.5
Too small gradient \

0

-5 0 5

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Other Activation Functions

 Activation function RelLU (rectified linear

unit)

The Rectified Linear Activation Function
]

max{0, z }

9(z)

Figure from Deep learning, by
Goodfellow, Bengio, Courville.

Other Activation Functions

« Activation function ReLU (rectifiegy"
unit)
Gradient O | he Rectified Linear Activation Function

