
Maria-Florina Balcan
09/26/2018

Support Vector Machines (SVMs).

Kernelizing SVMs

Margin Based Guarantees for SVMs

Margin Important Theme in ML

• If large margin, # mistakes Peceptron makes is small
(independent on the dim of the ambient space)!

• If large margin 𝛾 and if alg. produces a large margin
classifier, then amount of data needed depends only on
R/𝛾 e.g., [Bartlett & Shawe-Taylor ’99].

+ +
+
+-

-
-

-
-

𝛾
𝛾

+

--

-
-

w

• Idea: Directly search for a large margin classifier!!!

Support Vector Machines (SVMs).

• Large margin can help prevent overfitting.

Geometric Margin

Definition: The geometric margin of example 𝑥 w.r.t. a linear sep.
𝑤 is the distance from 𝑥 to the plane 𝑤 ⋅ 𝑥 = 0.

𝑥1
w

Margin of example 𝑥1

𝑥2

Margin of example 𝑥2

If 𝑤 = 1, margin of x
w.r.t. w is |𝑥 ⋅ 𝑤|.

WLOG homogeneous linear separators [w0 = 0].

Input: 𝛾, S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: w, a separator of margin 𝛾 over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

If we know a lower bound on the margin 𝛾

+ +
+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w

First, the case where the data is truly linearly separable by margin 𝛾

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Output: maximum margin separator over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Find: some w and maximum 𝛾 where:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

If we know a lower bound on the margin 𝛾, also search for
the best possible 𝛾

+ +
+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Maximize 𝛾 under the constraint:

• w
2
= 1

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 𝛾

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1

𝑤’ = 𝑤/𝛾, then max 𝛾 is equiv. to minimizing ||𝑤’||2 (since ||𝑤’||2 = 1/𝛾2).

So, dividing both sides by 𝛾 and writing in terms of w’ we get:

+ +
+
+-

- -

-
-

𝛾
𝛾

+

--
-

-

w

+ +
++

-
- -

-
- +

--
-

-

w’𝑤’ ⋅ 𝑥 = −1

𝑤’ ⋅ 𝑥 = 1

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw 𝑤
2

s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1

This is a constrained
convex optimization
problem.

• The objective is convex (quadratic)

• All constraints are linear

• Can solve efficiently (in poly time) using standard quadratic
programing (QP) software

Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

𝑤
2
+ 𝐶(# misclassifications)

Issue 1: now have two objectives

• maximize margin

• minimize # of misclassifications.

Ans 1: Let’s optimize their sum: minimize

where 𝐶 is some tradeoff constant.

Issue 2: This is computationally very hard (NP-hard).

[even if didn’t care about margin and minimized # mistakes]

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Support Vector Machines (SVMs)
Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

Minimize 𝑤′
2

under the constraint:

• For all i, 𝑦𝑖𝑤′ ⋅ 𝑥𝑖 ≥ 1

+ +
++

-
- -

-
- +

--
-

-

w’𝑤’ ⋅ 𝑥 = −1

𝑤’ ⋅ 𝑥 = 1

Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

𝜉𝑖 are “slack variables”

Replace “# mistakes” with upper bound called “hinge loss”

𝑙 𝑤, 𝑥, 𝑦 = max(0,1 − 𝑦 𝑤 ⋅ 𝑥)

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

C controls the relative weighting between the

twin goals of making the 𝑤
2

small (margin is
large) and ensuring that most examples have
functional margin ≥ 1.

Support Vector Machines (SVMs)

Question: what if data isn’t perfectly linearly separable?

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Find

𝜉𝑖 ≥ 0

Replace “# mistakes” with upper bound called “hinge loss”

𝑙 𝑤, 𝑥, 𝑦 = max(0,1 − 𝑦 𝑤 ⋅ 𝑥)

++

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Total amount have to move the points to get them
on the correct side of the lines 𝑤 ⋅ 𝑥 = +1/−1,
where the distance between the lines 𝑤 ⋅ 𝑥 = 0 and
𝑤 ⋅ 𝑥 = 1 counts as “1 unit”.

Support Vector Machines (SVMs)

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Which is equivalent to:

Find

𝜉𝑖 ≥ 0

Primal
form

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i,

Find

0 ≤ αi ≤ Ci

Lagrangian
Dual

෍

i

yiαi = 0

Can be kernelized!!!

SVMs (Lagrangian Dual)

• Final classifier is: w = σiαiyixi

• The points xi for which αi ≠ 0
are called the “support vectors”

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i,

Find

0 ≤ αi ≤ Ci

෍

i

yiαi = 0 +

+

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

Margin Based Guarantees for SVMs

VC-based bounds of linear separators

• Learning guarantees: for linear separators in 𝑁-dimensional
space, with probability at least 1 − 𝛿,

𝑅 ℎ ≤ ෠𝑅 ℎ +
2 𝑁 + 1 log

𝜖𝑚
𝑁 + 1

𝑚
+

log
1
𝛿

2𝑚

• Bound is uninformative for 𝑁 ≫ 𝑚.

• But SVMs have been remarkably successful in high
dimensions.

• Can provide a theoretical justification via margin based bounds.

Mehryar Mohri – Foundations of Machine Learning

Rademacher Complexity of Linear Hypotheses

Theorem: Let 𝑆 ⊆ 𝑥: 𝑥 ≤ 𝑅 be a sample of size 𝑚 and
let 𝐻 = 𝑥 → 𝑤 ⋅ 𝑥: 𝑤 ≤ Λ . Then,

෡ℜ𝑆 𝐻 ≤
𝑅2Λ2

𝑚
.

Mehryar Mohri – Foundations of Machine Learning

Proof:
෡ℜ𝑠 𝐻 =

1

𝑚
E𝜎 sup

𝑤 ≤Λ
෍

𝑖=1

𝑚

𝜎𝑖𝑤 ⋅ 𝑥𝑖 =
1

𝑚
E𝜎 sup

𝑤 ≤Λ
𝑤 ⋅෍

𝑖=1

𝑚

𝜎𝑖𝑥𝑖

≤
Λ

𝑚
E𝜎 ‖෍

𝑖=1

𝑚

𝜎𝑖𝑥𝑖‖ ≤
Λ

𝑚
E𝜎 ‖෍

𝑖=1

𝑚

𝜎𝑖𝑥𝑖‖
2

1/2

Λ

𝑚
E𝜎 ෍

𝑖=1

𝑚

‖𝑥𝑖‖
2

1/2

≤
Λ 𝑚𝑅2

𝑚
≤

𝑅2Λ2

𝑚

Confidence Margin

Definition: the confidence functional margin of a real-valued
function ℎ at 𝑥, 𝑦 ∈ 𝑋 × 𝑌 is 𝜌ℎ 𝑥, 𝑦 = 𝑦ℎ(𝑥).

Mehryar Mohri – Foundations of Machine Learning

• Interpreted as the confidence of ℎ in its prediction.

• If correctly classified, coincides with |ℎ 𝑥 |.

Relationship with geometric margin for linear functions
ℎ: 𝑥 → 𝑤 ⋅ 𝑥, for 𝑥 in the sample,

𝜌ℎ 𝑥, 𝑦 = 𝜌𝑔𝑒𝑜𝑚 ‖𝑤‖

Confidence Margin Loss

Definition: for any confidence margin parameter 𝜌 > 0,
the 𝜌-margin loss function Φ𝜌 is defined by

Mehryar Mohri – Foundations of Machine Learning

For a sample 𝑆 = 𝑥1, … , 𝑥𝑚 and real-valued hypothesis ℎ, the
empirical margin loss is

෠𝑅𝜌 ℎ =
1

𝑚
෍

𝑖=1

𝑚

Φ𝜌 𝑦𝑖ℎ 𝑥𝑖 ≤
1

𝑚
෍

𝑖=1

𝑚

1𝑦𝑖ℎ 𝑥𝑖 <𝜌

0 𝜌 1

1

𝑦ℎ(𝑥)

Φ𝜌 𝑦ℎ 𝑥

General Margin Bound

• Theorem: Let 𝐻 be a set of real-valued functions. Fix
𝜌 > 0. For any 𝛿 > 0, with probability at least 1 − 𝛿, the
following holds for all ℎ ∈ 𝐻:

Mehryar Mohri – Foundations of Machine Learning

𝑅 ℎ ≤ ෠𝑅𝜌 ℎ +
2

𝜌
ℜ𝑚 𝐻 +

log
1
𝛿

2𝑚

𝑅 ℎ ≤ ෠𝑅𝜌 ℎ +
2

𝜌
෡ℜ𝑆 𝐻 + 3

log
2
𝛿

2𝑚

• Proof: Let ෩𝐻 = {𝑧 = 𝑥, 𝑦 → 𝑦ℎ 𝑥 : ℎ ∈ 𝐻}. Consider the
family of functions taking values in [0,1]:

෩𝑯 = {Φ𝜌 ∘ 𝑓: 𝑓 ∈ ෩𝐻}

• By the theorem of Lecture 3, with probability at least
1 − 𝛿, for all 𝑔 ∈ ෪𝑯,

Mehryar Mohri – Foundations of Machine Learning

𝐸[𝑔 𝑧] ≤
1

𝑚
෍

𝑖=1

𝑚

𝑔 𝑧𝑖 + 2ℜ𝑚
෩𝑯 +

log
1
𝛿

2𝑚

• Since Φ𝜌 is
1

𝜌
- Lipschitz, by Talagrand’s lemma,

• Thus,

𝐸 Φ𝜌 𝑦ℎ 𝑥 ≤ ෠𝑅𝜌 ℎ + 2ℜ𝑚 Φ𝜌 ∘ ෩𝐻 +
log

1
𝛿

2𝑚

ℜ𝑚 Φ𝜌 ∘ ෩𝐻 ≤
1

𝜌
ℜ𝑚

෩𝐻 =
1

𝜌𝑚
𝐸𝜎,𝑆[sup

ℎ∈𝐻
σ𝑖=1
𝑚 𝜎𝑖𝑦𝑖ℎ 𝑥𝑖] =

1

𝜌
ℜ𝑚 𝐻

• Since 1𝑦ℎ 𝑥 <0 ≤ Φ𝜌(𝑦ℎ 𝑥), this shows the first statement,
and similarly the second one.

Margin Bound – Linear Classifiers

Mehryar Mohri – Foundations of Machine Learning

• Corollary: Let 𝜌 > 0 and 𝐻 = {𝑥 → 𝑤 ⋅ 𝑥: 𝑤 ≤ Λ}.
Assume that 𝑋 ⊆ {𝑥: 𝑥 ≤ 𝑅}. Then, for any 𝛿 > 0, with
probability at least 1 − 𝛿, for any ℎ ∈ 𝐻:

𝑅 ℎ ≤ ෠𝑅𝜌 ℎ + 2
𝑅2Λ2/𝜌2

𝑚
+ 3

log
2
𝛿

2𝑚

• Proof: Follows directly the general margin bound and
the bound on ෡ℜ𝑆 𝐻 for linear classifiers.

High-Dimensional Feature Space

• Observations:

Mehryar Mohri – Foundations of Machine Learning

• Generalization bound does not depend on the dimension
but only on the margin.

• This suggests seeking a large-margin separating
hyperplane in a higher-dimensional feature space.

• Computational problems:

• Taking dot products in a high-dimensional feature space
can be very costly.

• Solution based on kernels.

• The importance of margins in machine learning.

• The SVM algorithm. Primal and Dual Form.

What you should know

• Kernelizing SVM.

• Margin Based Bounds for SVM.

Lagrange duality

SVM Dual

Additional Slides

Lagrange duality
Consider the following “primal” optimization problem:

min
𝑤

𝑓(𝑤)

subject to 𝑔𝑖 𝑤 ≤ 0 for 𝑖 = 1,2, … , 𝑘

To solve it, we define the Lagrangian:

𝐿 𝑤, 𝛼 = 𝑓 𝑤 +෍

𝑖=1

𝑘

𝛼𝑖𝑔𝑖(𝑤)

where the 𝛼𝑖 ≥ 0 are called Lagrange multiplers.

(Conceptually, think of 𝛼𝑖 as penalties for violating the 𝑔𝑖 𝑤 ≤ 0 constraints)

Now consider (𝑃 is for “primal”): Θ𝑃 𝑤 = max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼)

Note that if 𝑤 violates any 𝑔𝑖 𝑤 ≤ 0 constraints then Θ𝑃 𝑤 = ∞ (set
𝛼𝑖 to ∞). Else, Θ𝑃 𝑤 = 𝑓 𝑤 (set all 𝛼 to 0).

Lagrange duality
Consider the following “primal” optimization problem:

min
𝑤

𝑓(𝑤)

subject to 𝑔𝑖 𝑤 ≤ 0 for 𝑖 = 1,2, … , 𝑘

𝐿 𝑤, 𝛼 = 𝑓 𝑤 +෍

𝑖=1

𝑘

𝛼𝑖𝑔𝑖(𝑤)Θ𝑃 𝑤 = max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼) where

Θ𝑃 𝑤 = ቊ
𝑓 𝑤 𝑖𝑓 𝑎𝑙𝑙 𝑔𝑖 𝑤 ≤ 0 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

∞ 𝑖𝑓 𝑎𝑛𝑦 𝑔𝑖 𝑤 ≤ 0 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑑

So, our original problem is equivalent to:

min
w

Θ𝑃 𝑤 = min
𝑤

max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼)

Summarizing:

Lagrange duality
Consider the following “primal” optimization problem:

min
𝑤

𝑓(𝑤)

subject to 𝑔𝑖 𝑤 ≤ 0 for 𝑖 = 1,2, … , 𝑘

𝐿 𝑤, 𝛼 = 𝑓 𝑤 +෍

𝑖=1

𝑘

𝛼𝑖𝑔𝑖(𝑤)Θ𝑃 𝑤 = max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼) where

Our original pb equivalent to: min
w

Θ𝑃 𝑤 = min
𝑤

max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼)

Lagrange duality
Consider the following “primal” optimization problem:

min
𝑤

𝑓(𝑤)

subject to 𝑔𝑖 𝑤 ≤ 0 for 𝑖 = 1,2, … , 𝑘

𝐿 𝑤, 𝛼 = 𝑓 𝑤 +෍

𝑖=1

𝑘

𝛼𝑖𝑔𝑖(𝑤)Θ𝑃 𝑤 = max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼) where

Our original pb equivalent to: min
w

Θ𝑃 𝑤 = min
𝑤

max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼)

Consider a different function (𝐷 is for “dual”):

Θ𝐷 𝛼 = min
𝑤

𝐿(𝑤, 𝛼)

We can now pose the dual optimization problem:

m𝑎𝑥
𝛼:𝛼𝑖≥0

Θ𝐷 𝛼 = max
𝛼:𝛼𝑖≥0

min
𝑤

𝐿(𝑤, 𝛼)

[the order of “max” and “min” has been swapped]

Relation between primal and dual
Consider the following “primal” optimization problem:

min
𝑤

𝑓(𝑤)

subject to 𝑔𝑖 𝑤 ≤ 0 for 𝑖 = 1,2, … , 𝑘
𝐿 𝑤, 𝛼 = 𝑓 𝑤 +෍

𝑖=1

𝑘

𝛼𝑖𝑔𝑖(𝑤)

min
w

Θ𝑃 𝑤 = min
𝑤

max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼) m𝑎𝑥
𝛼:𝛼𝑖≥0

Θ𝐷 𝛼 = max
𝛼:𝛼𝑖≥0

min
𝑤

𝐿(𝑤, 𝛼)

Primal Dual

𝑝∗optimal primal value:

𝑑∗ = m𝑎𝑥
𝛼:𝛼𝑖≥0

Θ𝐷 𝛼 = max
𝛼:𝛼𝑖≥0

min
𝑤

𝐿(𝑤, 𝛼)𝑝∗ = min
𝑤

Θ𝑃(𝑤) = min
𝑤

max
𝛼:𝛼𝑖≥0

𝐿(𝑤, 𝛼)

𝑑∗ optimal dual value:

Simple to show 𝑑∗ ≤ 𝑝∗ (max min ≤ min max)

Under appropriate conditions (e.g., 𝑓 and 𝑔𝑖 are convex functions), 𝑑∗ = 𝑝∗.

So, can solve dual instead of primal.

Sufficient conditions for 𝑑∗ = 𝑝∗

Suppose 𝑓 and 𝑔𝑖 are convex functions.

Suppose ∃𝑤 s.t. 𝑔𝑖 𝑤 < 0 for all 𝑖. (constraints strictly feasible)

Then there exist 𝑤∗, 𝛼∗ such that 𝑤∗ is solution to primal, 𝛼∗ is
solution to dual, and 𝑑∗ = 𝑝∗ = 𝐿(𝑤∗, 𝛼∗).

Furthermore, 𝑤∗, 𝛼∗ satisfy Karush-Kuhn-Tucker (KKT) conditions:

•
𝜕

𝜕𝑤𝑖
𝐿(𝑤∗, 𝛼∗) = 0 for all 𝑖.

• 𝛼𝑖
∗𝑔𝑖 𝑤

∗ = 0 for all 𝑖.

• 𝑔𝑖 𝑤
∗ ≤ 0 for all 𝑖.

• 𝛼𝑖
∗ ≥ 0 for all 𝑖.

And, any solution to KKT conditions is optimal for primal & dual.

Sufficient conditions for 𝑑∗ = 𝑝∗

Suppose 𝑓 and 𝑔𝑖 are convex functions.

Suppose ∃𝑤 s.t. 𝑔𝑖 𝑤 < 0 for all 𝑖. (constraints strictly feasible)

Then there exist 𝑤∗, 𝛼∗ such that 𝑤∗ is solution to primal, 𝛼∗ is
solution to dual, and 𝑑∗ = 𝑝∗ = 𝐿(𝑤∗, 𝛼∗).

Furthermore, 𝑤∗, 𝛼∗ satisfy Karush-Kuhn-Tucker (KKT) conditions:

•
𝜕

𝜕𝑤𝑖
𝐿(𝑤∗, 𝛼∗) = 0 for all 𝑖.

• 𝛼𝑖
∗𝑔𝑖 𝑤

∗ = 0 for all 𝑖.

• 𝑔𝑖 𝑤
∗ ≤ 0 for all 𝑖.

• 𝛼𝑖
∗ ≥ 0 for all 𝑖.

And, any solution to KKT conditions is optimal for primal & dual.

KKT dual complementarity

If 𝛼𝑖
∗ > 0 then 𝑔𝑖 𝑤

∗ = 0, i.e., this
constraint is “tight”.

Primal
optimization:

min
1

2
𝑤

2

subject to 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 ≥ 1 for all 𝑖.

Rewrite constraints as: 𝑔𝑖 𝑤 = 1 − 𝑦𝑖 𝑤 ⋅ 𝑥𝑖 ≤ 0 for all 𝑖.

So, the Lagrangian is: 𝐿 𝑤, 𝛼 =
1

2
𝑤

2
+෍

𝑖

𝛼𝑖(1 − 𝑦𝑖(𝑤 ⋅ 𝑥𝑖))

Let’s now solve for the dual: Θ𝐷 𝛼 = min
𝑤

𝐿(𝑤, 𝛼)

To do this, we set 𝛻𝑤𝐿 𝑤, 𝛼 = 0:

𝑤 −෍

𝑖

𝛼𝑖𝑦𝑖 𝑥𝑖 = 0 𝑤 =෍

𝑖

𝛼𝑖𝑦𝑖 𝑥𝑖which means

Support Vector Machines (SVMs)

Plugging our solution 𝑤 = σ𝑖 𝛼𝑖𝑦𝑖 𝑥𝑖 back into the Lagrangian
equation:

𝐿 𝑤, 𝛼 =෍

𝑖

𝛼𝑖 −
1

2
෍

𝑖,𝑗

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗(𝑥𝑖 ⋅ 𝑥𝑗)

and simplifying, we get:

𝐿 𝑤, 𝛼 =
1

2
𝑤

2
+෍

𝑖

𝛼𝑖(1 − 𝑦𝑖(𝑤 ⋅ 𝑥𝑖))

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i,

Find

αi ≥ 0

Lagrangian
Dual

Support Vector Machines (SVMs)

Support Vector Machines (SVMs)

Input: S={(x1, 𝑦1), …,(xm, 𝑦m)};

argminw,𝜉1,…,𝜉𝑚 𝑤
2
+ 𝐶σ𝑖 𝜉𝑖 s.t.:

• For all i, 𝑦𝑖𝑤 ⋅ 𝑥𝑖 ≥ 1 − 𝜉𝑖

Which is equivalent to:

Find

𝜉𝑖 ≥ 0

Primal
form

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i,

Find

0 ≤ αi ≤ Ci

Lagrangian
Dual

෍

i

yiαi = 0

Can be kernelized!!!

SVMs (Lagrangian Dual)

• Final classifier is: w = σiαiyixi

• The points xi for which αi ≠ 0
are called the “support vectors”

Input: S={(x1, y1), …,(xm, ym)};

argminα
1

2
σiσj yiyj αiαjxi ⋅ xj − σiαi s.t.:

• For all i,

Find

0 ≤ αi ≤ Ci

෍

i

yiαi = 0 +

+

+

+-
- -

-

-

+

--
-

-

w𝑤 ⋅ 𝑥 = −1

𝑤 ⋅ 𝑥 = 1

