Support Vector Machines (SVMs).
Kernelizing SVMs
Margin Based Guarantees for SVMs

Maria-Florina Balcan
09/26/2018

Margin Important Theme in ML

* If large margin, # mistakes Peceptron makes is small
(independent on the dim of the ambient space)!

Large margin can help prevent overfitting.

If large margin y and if alg. produces a large margin
classifier, then amount of data needed depends only on
R/y e.g., [Bartlett & Shawe-Taylor '99]. -

+ Idea: Directly search for a large margin classifier!!

Support Vector Machines (SVMs).

Geometric Margin

WLOG homogeneous linear separators [w, = 0].

Definition: The geometric margin of example x w.r.t. a linear sep.
w is the distance from x to the plane w - x = 0.

Margin of example x;
If |lw|| =1, margin of x
w.r.t. wis |x - w|.

Margin of example x;

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

First, the case where the data is truly linearly separable by margin y

If we know a lower bound on the margin y

I_nM: V. S:{(Xli yl)l ---:(er Ym)};

Find: some w where:

o ||W||2=1

Foralli,yyw-x; >y

Output: w, a separator of margin y over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

If we know a lower bound on the margin y, also search for
the best possible y

I_nM: S:{(Xli yl)l --'I(Xm' ym)}:

Find: some w and maximum y where:

° ||W||2=1

Foralli,yyw-x; >y

Qutput: maximum margin separator over S

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

I_HM: S:{(Xlr yl)r ---:(XmJ yrn)};
Maximize y under the constraint:
2

Forall i, yw-x; >y

w' = w/y, then max y is equiv. to minimizing |[w’||? (since ||W’||* = 1/y?).
So, dividing both sides by y and writing in ferms of w' we get:

I_HM: S:{(Xlr yl)z --'z(Xm' ym)}'
Minimize ||w'||* under the constraint:

Forall i, yw' - x; > 1

Support Vector Machines (SVMs)

Directly optimize for the maximum margin separator: SVMs

Lnput: S={(x1, Y3 (¥m, Ym)}: This is a constrained
argmin 5.1 convex optimization
problem.
Foralli,yw-x; >1

The objective is convex (quadratic)
All constraints are linear

Can solve efficiently (in poly time) using standard quadratic
programing (QP) software

Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?

Issue 1: now have two objectives wox=-1
* maximize margin
* minimize # of misclassifications.

Ans 1. Let's optimize their sum: minimize

||w||2 + C(# misclassifications)

where C is some tradeoff constant.

Issue 2: This is computationally very hard (NP-hard). 4 b
[even if didn't care about margin and minimized # mistakes]

Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace "# mistakes” with upper bound called “hinge loss"

I_HM: S:{(Xlr Y1), ---:(Xm: :Vm)};
Minimize ||w'||* under the constraint:

Forall i, yw' -x; > 1

I_HM: S:{(Xlr yl): --w(Xm» Ym)}: w-x=-1
Find argminy gz ||W||2 + C);¢& s.t.:
Foralli,yw-x; >1—¢, -
§i=0

¢; are "slack variables”

Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace "# mistakes” with upper bound called “hinge loss"

I_nw: S:{(Xl' yl)l ---:(Xm» }’m)}:
Find argminy ¢, ¢ ||W||2 +CY;¢ s.t.

Forall i, yyw-x; >1—¢;
$i=0

¢; are “slack variables”

C controls the relative weighting between the

twin goals of making the ||w||” small (margin is
large) and ensuring that most examples have
functional margin > 1.

[(w,x,y) = max(0,1 —yw - x)

Support Vector Machines (SVMs)

Question: what if data isn't perfectly linearly separable?
Replace "# mistakes” with upper bound called “hinge loss"

I_nw: S:{(Xl' yl)l ---:(Xm» ym)}:
Find argminy ¢, ¢ ||W||2 +CY;¢ s.t.

Forall i, yyw-x; >1—¢;
& =0

Total amount have to move the points to get them

on the correct side of the linesw - x = +1/-1,

where the distance between the lines w - x = 0 and

w-x =1 counts as "1 unit”. \
‘. >

[(w,x,y) = max(0,1 —yw - x)

Support Vector Machines (SVMs)

I_nw: S:{(Xl' yl)l ---:(Xm» ym)}'

: . 2 . Primal
Find argminyg z llwl|” + CY; & s.t.: form
Forall i, yw-x; >1—¢;
& =0
Which is equivalent to: Can be kernelized!!
I_HM: S:{(Xlr Y1): ...,(Xm, Ym)}' Lagr'angian
Find argmina%ZiZj Vi¥j 4ioyX; - X — % @ S.t Dual
Foralli, 0<a; <C;

ZYiai =0
i

SVMs (Lagrangian Dual)

I_nM: S:{(Xll Y1)I ---:(Xm: Ym)};
Find argmina%Zizj ViVj 005X - Xj — X 0 8.t

Foralli, 0< o <C;

ZYiai=0 wex = -1
i

Final classifier is: w = Y a;yiX; -

The points x; for which a; # 0
are called the "support vectors”

Margin Based Guarantees for SVMs

VC-based bounds of linear separators

Learning guarantees: for linear separators in N-dimensional
space, with probability at least 1 — &,

1
2(N+1) logNE—T1 log (5)
* 2m

R(h) < R(h) +\/

Bound is uninformative for N > m.

But SVMs have been remarkably successful in high
dimensions.

Can provide a theoretical justification via margin based bounds.

Mehryar Mohri - Foundations of Machine Learning

Rademacher Complexity of Linear Hypotheses

Theorem: Let S < {x:||x|| < R} be a sample of size m and
let H={x > w-x:||lw|| £A}. Then,

Rs(H) < ﬂ

Proof: 1 m 1
R(H) =—E su ZO'-W°X- = — w - zgx
s m "[uwuls)z\i:1 ‘ l] m l||w||<A ‘ l]
m m
< 2k, I B (I ol
s —Eo |) ox||
=1 i=1

m 1/2
A 5 AVmR?2 R2A2
o EO‘ ”xl” < <

Mehryar Mohri - Foundations of Machine Learning

Confidence Margin

Definition: the confidence functional margin of a real-valued
function h at (x,y) € X XY is p,(x,y) = yh(x).

Interpreted as the confidence of h in its prediction.

If correctly classified, coincides with |h(x)].

Relationship with geometric margin for linear functions
h:x - w-x, for x in the sample,

lpon(x, ¥)| = Pgeom lwl|

Mehryar Mohri - Foundations of Machine Learning

Confidence Margin Loss

Definition: for any confidence margin parameter p > 0,
the p-margin loss function @, is defined by

ch (yh(x)) 1

S .1 yh(x)

For a sample S = (x4, ..., x;,) and real-valued hypothesis h, the
empirical margin loss is

A 1w 1w
R,(h) = EZ ®,(y;ih(x)) < EZ Ly nxp<p
l= 1=

Mehryar Mohri - Foundations of Machine Learning

General Margin Bound

Theorem: Let H be a set of real-valued functions. Fix
p > 0. For any 6 > 0, with probability at least 1 — &, the
following holds for all h € H:

1
logg

2m

R(h) < R,(h) +%SRm(H) +

2
logg

2m

~ 2 -
R(h) < R,(h) + EERS(H) + 3
Proof: Let H = {z = (x,y) - yh(x):h € H}. Consider the

family of functions taking values in [0,1]:
17={Cl>p0f:f6ﬁ}

Mehryar Mohri - Foundations of Machine Learning

By the theorem of Lecture 3, with probability at least
1-46,forall g € H,

1
log =
E[g(2)] < zg(z)+ 29 (H) + |52
Thus, 1
" . log s
E[®,(yh(x))] < R,(R) + 2R, (P, 0 H) + —

Since @, is % - Lipschitz, by Talagrand's lemma,
9am(q)p © H) < 19%m(ﬁ) = iEJ,S[Sup Yiz1 0iyih(x)] = - R, (H)
p pm "7 ek p

Since 1yp <0 < P, (Yh(x)), this shows the first statement,
and similarly the second one.

Mehryar Mohri - Foundations of Machine Learning

Margin Bound - Linear Classifiers

Corollary: Let p >0and H = {x » w - x: |lw|| < A}.
Assume that X € {x:||x|]| < R}. Then, for any § > 0, with
probability at least 1 — &, for any h € H:

los 2
085
2m

. R2A2/p?
R(h) < R,(h) + 2 + 3
m

Proof: Follows directly the general margin bound and
the bound on Rs(H) for linear classifiers.

Mehryar Mohri - Foundations of Machine Learning

High-Dimensional Feature Space

Observations:

Generalization bound does not depend on the dimension
but only on the margin.

This suggests seeking a large-margin separating
hyperplane in a higher-dimensional feature space.

Computational problems:

Taking dot products in a high-dimensional feature space
can be very costly.

Solution based on kernels.

Mehryar Mohri - Foundations of Machine Learning

What you should know

* The importance of margins in machine learning.

* The SVM algorithm. Primal and Dual Form.

« Kernelizing SVM.

* Margin Based Bounds for SVM.

Additional Slides

Lagrange duality
SVM Dudl

Lagrange duality

Consider the following "primal” optimization problem:
min f (w)

subject to g;(w) <0fori=12, ..,k

To solve it, we define the Lagrangian:
k

Lw,@) = fW) +) ayg;(w)

=1
where the a; = 0 are called Lagrange multiplers.

(Conceptually, think of «; as penalties for violating the g;(w) < 0 constraints)

Now consider (P is for "primal”): ©p,(w) = max L(w,a)

a:a;=0

Note that if w violates any g;(w) < 0 constraints then 0p(w) = oo (set
a; to). Else, Op(w) = f(w) (set all a to 0).

Lagrange duality
Consider the following "primal” optimization problem:
mvgn f(w)
subject to g;(w) <0fori=12, ..,k

k
Op(w) = max L(w,a) where Lw,a)=/f(w)+ Z a;g;(w)

a:a;=0 e
1=
Summarizing:

0p(w) = {f (w) if all g;(w) < 0 satisfied

o if any g;(w) < 0 violated

So, our original problem is equivalent to:

min Op(w) = min max L(w,a)
w w aa;=z0

Lagrange duality

Consider the following "primal” optimization problem:
min f (w)

subject to g;(w) <0fori=12, ..,k

k
Op(w) = max L(w,a) where Lw,a)=/f(w)+ 2 a;g;(w)

a:a;=0 _
=1

Our original pb equivalent to: min ©p(w) = min max L(w,a)

a:a;=20

Lagrange duality

Consider the following "primal” optimization problem:
min f (w)

subject to g;(w) <0fori=12, ..,k)

Op(w) = max L(w,a) where Lw,a)=/f(w)+ Z a;g;(w)

a:a;=0

1=1

Our original pb equivalent to: min ©p(w) = min max L(w,a)

w aa;=z0

Consider a different function (D is for "dual”):

Op(a) = m‘}n L(w,a)

We can now pose the dual optimization problem:

max Op(a) = max min L(w,a)
a:a;=0 a:a;iz0 w

[the order of "max" and "min" has been swapped]

Relation between primal and dual

Consider the following "primal” optimization problem:
min f(w) k

W Lw,@) = (W) +) a;gi(w)
subject to g;(w) <0fori=12, ..,k i=1

Primal Dual

i — mi max OH(a) = max min L(w,«a
min Op(w) min ar};?go L(w,a) e p(@) e (W, a)
p*optimal primal value: d* optimal dual value:
p*=min 0,() = min mas, L(w,) @' = max 0,(@) = may min L(w, o)

Simple to show d* < p* (max min < min max)

Under GPPI“OPI"iGTZ conditions (e.g., f and g; are convex functions), d* = p*.

So, can solve dual instead of primal.

Sufficient conditions for d* = p*

Suppose f and g; are convex functions.

Suppose 3w s.t. g;(w) < 0 for all i. (constraints strictly feasible)

Then there exist w*, a* such that w* is solution to primal, a* is
solution to dual, and d* = p* = L(w*, a¥).
Furthermore, w*, a* satisfy Karush-Kuhn-Tucker (KKT) conditions:

d
aWL'

Lw*,a*) =0 forall i.

e a;g;(w*) =0 foralli.
e g;(w*) <0 foralli.

e a; =0 foralli.

And, any solution to KKT conditions is optimal for primal & dual.

Sufficient conditions for d* = p*

Suppose f and g; are convex functions.

Suppose 3w s.t. g;(w) < 0 for all i. (constraints strictly feasible)

Then there exist w*, a* such that w* is solution to primal, a* is
solution to dual, and d* = p* = L(w*, a®).
Furthermore, w*, a* satisfy Karush-Kuhn-Tucker (KKT) conditions:

0

aWi

Lw*,a*) =0 forall i.

T .
[* a;giw?) =0 foralli.] KKT dual complementarity

e g;(w) <0 foralli.

If a > 0 then g;(w*) = 0, i.e., this

constraint is "tight".
e a; =0 foralli.

And, any solution to KKT conditions is optimal for primal & dual.

Support Vector Machines (SVMs)

1 2
Primal min§||wl|

optimization: subject to y;(w - x;) = 1 forall i.

Rewrite constraints as: g(w) =1—-y;(w-x;) <0foralli.

1
So, the Lagrangian is: L(w,a) =5 1wl + Z a;(1—yi(w-x;))

Let's now solve for the dual: 0p(a) = min L(w, @)

To do this, we set V,L(w,a) = 0:

w — z a;y; xi = 0 which means w = 2 a;yi X
i I

Support Vector Machines (SVMs)

Plugging our solution w = }.; a;y; x; back into the Lagrangian
equation: 1)
Lw,@) =5 [wl[* +) a1 = yiw - x)

l

and simplifying, we get:
1
Liw,a) = z a; — Ez Viyjaiai(x; - xj)

Lagrangian
Flnd argmina%ZiZj Yin o(io(jxi . X]- — Zi o s.t.: DUGI

Foralli, o;>0

Support Vector Machines (SVMs)

I_nw: S:{(Xl' yl)l ---:(Xm» ym)}'

: . 2 . Primal
Find argminyg z llwl|” + CY; & s.t.: form
Forall i, yw-x; >1—¢;
& =0
Which is equivalent to: Can be kernelized!!
I_HM: S:{(Xlr Y1): ...,(Xm, Ym)}' Lagr'angian
Find argmina%ZiZj Vi¥j 4ioyX; - X — % @ S.t Dual
Foralli, 0<a; <C;

ZYiai =0
i

SVMs (Lagrangian Dual)

I_nM: S:{(Xll Y1)I ---:(Xm: Ym)};
Find argmina%Zizj ViVj 005X - Xj — X 0 8.t

Foralli, 0< o <C;

ZYiai=0 wex = -1
i

Final classifier is: w = Y a;yiX; -

The points x; for which a; # 0
are called the "support vectors”

