10-701
Machine Learning

Logistic regression
Back to classification

1. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

2. Generative:
 - build a generative statistical model
 - e.g., Bayesian networks

3. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., decision tree
Generative vs. discriminative classifiers

- When using generative classifiers we relied on all points to learn the generative model.
- When using discriminative classifiers we mainly care about the boundary.
Our goal is to estimate w from a training data of $<x_i, y_i>$ pairs.

One way to find such relationship is to minimize the least squares error:

$$\arg \min_w \sum_i (y_i - wx_i)^2$$
Regression for classification

- In some cases we can use linear regression for determining the appropriate boundary.
- However, since the output is usually binary or discrete there are more efficient regression methods.
- Recall that for classification we are interested in the conditional probability $p(y \mid X ; \theta)$ where θ are the parameters of our model.
- When using regression θ represents the values of our regression coefficients (w).
Regression for classification

• Assume we would like to use linear regression to learn the parameters for $p(y \mid X ; \theta)$

• Problems?

\[w^T X \geq 0 \Rightarrow \text{classify as 1} \]
\[w^T X < 0 \Rightarrow \text{classify as -1} \]
The sigmoid function

- To classify using regression models, we replace the linear function with the sigmoid function:

\[g(h) = \frac{1}{1 + e^{-h}} \]

Always between 0 and 1

- Using the sigmoid we set (for binary classification problems)

\[p(y = 0 \mid X; \theta) = g(w^T X) = \frac{1}{1 + e^{w^T X}} \]

\[p(y = 1 \mid X; \theta) = 1 - g(w^T X) = \frac{e^{w^T X}}{1 + e^{w^T X}} \]

Parameters in the exponent, not a linear regression!
The sigmoid function

- To classify using regression models we replace the linear function with the sigmoid function:

\[g(h) = \frac{1}{1 + e^{-h}} \]

- Using the sigmoid we set (for binary classification problems)

\[p(y = 0 \mid X; \theta) = g(w^T X) = \frac{1}{1 + e^{w^T X}} \]

\[p(y = 1 \mid X; \theta) = 1 - g(w^T X) = \frac{e^{w^T X}}{1 + e^{w^T X}} \]

Note that we are defining the probabilities in terms of \(p(y/X) \). No need to use Bayes rule here!
Logistic regression vs. Linear regression

\[p(y = 0 \mid X; \theta) = g(w^T X) = \frac{1}{1 + e^{w^T X}} \]

\[p(y = 1 \mid X; \theta) = 1 - g(w^T X) = \frac{e^{w^T X}}{1 + e^{w^T X}} \]
Determining parameters for logistic regression problems

- So how do we learn the parameters?
- Similar to other regression problems we look for the MLE for \(w \)
- The likelihood of the data given the model is:

\[
L(y \mid X; w) = \prod_i (1 - g(X_i; w))^{y_i} g(X_i; w)^{(1-y_i)}
\]

Defining a new function, \(g \)

\[
p(y = 0 \mid X; \theta) = g(X; w) = \frac{1}{1 + e^{w^T x}}
\]

\[
p(y = 1 \mid X; \theta) = 1 - g(X; w) = \frac{e^{w^T x}}{1 + e^{w^T x}}
\]
Solving logistic regression problems

\[g(X; w) = \frac{1}{1 + e^{w^T X}} \]
\[1 - g(X; w) = \frac{e^{w^T X}}{1 + e^{w^T X}} \]

- The likelihood of the data is:
 \[L(y \mid X; w) = \prod_{i} (1 - g(X_i; w))^{y_i} g(X_i; w)^{(1-y_i)} \]

- Taking the log we get:
 \[
 LL(y \mid X; w) = \sum_{i=1}^{N} y_i \ln(1 - g(X_i; w)) + (1 - y_i) \ln g(X_i; w)
 = \sum_{i=1}^{N} y_i \ln \frac{1 - g(X_i; w)}{g(X_i; w)} + \ln g(X_i; w)
 = \sum_{i=1}^{N} y_i w^T X_i - \ln(1 + e^{w^T X_i})
 \]
Maximum likelihood estimation

\[
\frac{\partial}{\partial w^j} l(w) = \frac{\partial}{\partial w^j} \sum_{i=1}^{N} \{ y_i w^T X_i - \ln(1 + e^{w^T x_i}) \}
\]

\[
= \sum_{i=1}^{N} X_i^j \{ y_i - (1 - g(X_i; w)) \}
\]

\[
= \sum_{i=1}^{N} X_i^j \{ y_i - p(y^i = 1 | X_i; w) \}
\]

Taking the partial derivative w.r.t. each component of the \(w \) vector

\[
g(X; w) = \frac{1}{1 + e^{w^T X}}
\]

\[
1 - g(X; w) = \frac{e^{w^T X}}{1 + e^{w^T X}}
\]

Bad news: No close form solution!

Good news: Concave function
Gradient ascent

\[z = x(y - g(w; x)) \]

\[\text{Slope} = \frac{\partial z}{\partial w} \]

- Going in the direction to the slope will lead to a larger \(z \)
- But not too much, otherwise we would go beyond the optimal \(w \)
Gradient descent

\[z = (f(w) - y)^2 \]

Slope = \(\frac{\partial z}{\partial w} \)

- Going in the *opposite* direction to the slope will lead to a smaller \(z \)
- But not too much, otherwise we would go beyond the optimal \(w \)
Gradient ascent for logistic regression

\[
\frac{\partial}{\partial w^j} l(w) = \sum_{i=1}^N X_i^j \{ y_i - (1 - g(X_i; w)) \}
\]

We use the gradient to adjust the value of \(w \):

\[
w^j \leftarrow w^j + \varepsilon \sum_{i=1}^N X_i^j \{ y_i - (1 - g(X_i; w)) \}
\]

Where \(\varepsilon \) is a (small) constant which is the learning rate for this algorithm
Algorithm for logistic regression

1. Choose ϵ
2. Start with a guess for w
3. For all j set $w^j \leftarrow w^j + \epsilon \sum_{i=1}^{N} X_i^j \{ y_i - (1 - g(X_i; w)) \}$
4. If no improvement for $LL(y | X; w) = \sum_{i=1}^{N} y_i \ln(1 - g(X_i; w)) + (1 - y_i) \ln g(X_i; w)$
 stop. Otherwise go to step 3

Example
Regularization

- Similar to other data estimation problems, we may not have enough samples to learn good models for logistic regression classification.
- One way to overcome this is to ‘regularize’ the model, impose additional constraints on the parameters we are fitting.
- For example, let’s assume that w_j comes from a Gaussian distribution with mean 0 and variance σ^2 (where σ^2 is a user defined parameter): $w_j \sim N(0, \sigma^2)$
- In that case we have a prior on the parameters and so:

$$p(y = 1, \theta \mid X) \propto p(y = 1 \mid X; \theta) p(\theta)$$
Regularization

- If we regularize the parameters we need to take the prior into account when computing the posterior for our parameters

\[p(y = 1, \theta \mid X) \propto p(y = 1 \mid X; \theta) p(\theta) \]

- Here we use a Gaussian model for the prior.
- Thus, the log likelihood changes to:

\[\text{\(LL(y; w \mid X) = \sum_{i=1}^{N} y_i w^T X_i - \ln(1 + e^{w^T X_i}) - \sum_{j} \frac{(w_j)^2}{2\sigma^2}\)}} \]

- And the new update rule (after taking the derivative w.r.t. \(w^i\)) is:

\[w^j \leftarrow w^j + \varepsilon \sum_{i=1}^{N} X_i^j \{ y_i - (1 - g(X_i; w)) \} - \varepsilon \frac{w^j}{\sigma^2} \]

Also known as the MAP estimate

Assuming mean of 0 and removing terms that are not dependent on \(w\)

The variance of our prior model
Regularization

- There are many other ways to regularize logistic regression
- The Gaussian model leads to an L2 regularization (we are trying to minimize the square value of w)
- Another popular regularization is an L1 which tries to minimize $|w|$
Logistic regression for more than 2 classes

- Logistic regression can be used to classify data from more than 2 classes. Assume we have k classes then:

- for $i < k$ we set

$$p(y = i \mid X; \theta) = g(w_i^0 + w_i^1 x^1 + \ldots + w_i^d x^d) = g(w_i^T X)$$

where

$$g(z_i) = \frac{e^{z_i}}{1 + \sum_{j=1}^{k-1} e^{z_j}}$$

$$z_i = w_i^0 + w_i^1 x^1 + \ldots + w_i^d x^d$$

And for k we have

$$p(y = k \mid X; \theta) = 1 - \sum_{i=1}^{k-1} p(y = i \mid X; \theta) \Rightarrow$$

$$p(y = k \mid X; \theta) = \frac{1}{1 + \sum_{j=1}^{k-1} e^{z_j}}$$
Logistic regression for more than 2 classes

- Logistic regression can be used to classify data from more than 2 classes. Assume we have k classes then:
- For $i < k$ we set
 $$p(y = i \mid X; \theta) = g(w_i^0 + w_i^1 x^1 + \ldots + w_i^d x^d) = g(w_i^T X)$$

where
 $$g(z_i) = \frac{e^{z_i}}{1 + \sum_{j=1}^{k-1} e^{z_j}}$$

And for k we have
 $$p(y = k \mid X; \theta) = 1 - \sum_{i=1}^{k-1} p(y = i \mid X; \theta)$$
 $$p(y = k \mid X; \theta) = \frac{1}{1 + \sum_{j=1}^{k-1} e^{z_j}}$$

Binary logistic regression is a special case of this rule.
Update rule for logistic regression with multiple classes

\[\frac{\partial}{\partial w^j_m} l(w) = \sum_{i=1}^N X^j_i \{ \delta_m(y_i) - p(y_i = m \mid X_i; w) \} \]

Where \(\delta(y_i) = 1 \) if \(y_i = m \) and \(\delta(y_i) = 0 \) otherwise

The update rule becomes:

\[w^j_m \leftarrow w^j_m + \varepsilon \sum_{i=1}^N X^j_i \{ \delta_m(y_i) - p(y_i = m \mid X_i; w) \} \]
Data transformation

• Similar to what we did with linear regression we can extend logistic regression to other transformations of the data

\[p(y = 1 \mid X; w) = g(w_0^0 + w_1^1 \phi^1(X) + \ldots + w_d^d \phi^d(X)) \]

• As before, we are free to choose the basis functions
Important points

• Advantage of logistic regression over linear regression for classification
• Sigmoid function
• Gradient ascent / descent
• Regularization
• Logistic regression for multiple classes
Logistic regression

- The name comes from the **logit** transformation:

\[
\log \frac{p(y = i \mid X; \theta)}{p(y = k \mid X; \theta)} = \log \frac{g(z_i)}{g(z_k)} = w_i^0 + w_i^1 x^1 + \ldots + w_i^d x^d
\]