10-701
Machine Learning

Classification
Where we are

- **Density Estimator**
 - Inputs
 - Output: Probability
 - Today

- **Classifier**
 - Inputs
 - Output: Predict category
 - Today

- **Regressor**
 - Inputs
 - Output: Predict real no.
 - Later
Classification

- Assume we want to teach a computer to distinguish between cats and dogs …
Bayes decision rule

- If we know the conditional probability \(p(x \mid y) \) and class priors \(p(y) \) we can determine the appropriate class by using Bayes rule:

\[
P(y = i \mid x) = \frac{P(x \mid y = i)P(y = i)}{P(x)} = q_i(x)
\]

- We can use \(q_i(x) \) to select the appropriate class.
- We chose class 0 if \(q_0(x) \geq q_1(x) \) and class 1 otherwise.
- This is termed the ‘Bayes decision rule’ and leads to optimal classification.
- However, it is often very hard to compute …
Bayes decision rule

\[P(y = i \mid x) = \frac{P(x \mid y = i)P(y = i)}{P(x)} \stackrel{\text{def}}{=} q_i(x) \]

- We can also use the resulting probabilities to determine our confidence in the class assignment by looking at the likelihood ratio:

\[L(x) = \frac{q_0(x)}{q_1(x)} \]

Also known as likelihood ratio, we will talk more about this later.
Bayes decision rule: Example

1. Normal Gaussians
2. \(\mathbf{x} \)
3. \(\mu_1 \)
4. \(\Sigma_1 \)
5. \(\mu_2 \)
6. \(\Sigma_2 \)

Diagram:
- Two elliptical distributions with centroids \(\mu_1 \) and \(\mu_2 \)
- Covariance matrices \(\Sigma_1 \) and \(\Sigma_2 \)
- Points \(\mathbf{x} \) indicated within each distribution

Diagram Right:
- Similar distributions with slightly different overlap
- Dashed line indicating decision boundary
Bayes error

• For the Bayes decision rule we can calculate the probability of an error
 • This is the probability that we assign a sample to the wrong class, also known as the risk

• The risk for sample \(x \) is:

\[
R(x) = \min\{P_1(x)P(y=1), P_0(x)P(y=0)\} \div P(x)
\]
Bayes error

• The probability that we assign a sample to the wrong class, is known as the risk.

• The risk for sample x is:
 \[R(x) = \frac{\min\{P_1(x)P(y=1), P_0(x)P(y=0)\}}{P(x)} \]

• We can also compute the expected risk (the risk for the entire range of values of x):

\[
E[r(x)] = \int_{x} r(x)p(x)dx = \int_{x} \min\{p_1(x)p(y=1), p_0(x)p(y=0)\}dx = p(y=0)\int_{L_0} p_0(x)dx + p(y=1)\int_{L_1} p_1(x)dx
\]

L_1 is the region where we assign instances to class 1.
Loss function

• The risk value we computed assumes that both errors (assigning instances of class 1 to class 0 and vice versa) are equally harmful.
• However, this is not always the case.
• Why?
• In general our goal is to minimize loss, often defined by a loss function: \(L_{0,1}(x) \) which is the penalty we pay when assigning instances of class 0 to class 1

\[
E[L] = L_{0,1}p(y = 0) \int_{L_1} p_0(x)dx + L_{1,0}p(y = 1) \int_{L_0} p_1(x)dx
\]
Types of classifiers

1. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

2. Generative:
 - build a generative statistical model
 - e.g., Naïve Bayes

3. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., decision tree
Classification

• Assume we want to teach a computer to distinguish between cats and dogs …

Several steps:
1. feature transformation
2. Model / classifier specification
3. Model / classifier estimation (with regularization)
4. feature selection
Classification

• Assume we want to teach a computer to distinguish between cats and dogs …

Several steps:
1. feature transformation
2. Model / classifier specification
3. Model / classifier estimation (with regularization)
4. feature selection

How do we encode the picture? A collection of pixels? Do we use the entire image or a subset? …
Classification

• Assume we want to teach a computer to distinguish between cats and dogs …

Several steps:
1. feature transformation
2. Model / classifier specification
3. Model / classifier estimation (with regularization)
4. feature selection

What type of classifier should we use?
Classification

• Assume we want to teach a computer to distinguish between cats and dogs …

Several steps:
1. feature transformation
2. Model / classifier specification
3. Model / classifier estimation (with regularization)
4. feature selection

How do we learn the parameters of our classifier? Do we have enough examples to learn a good model?
Classification

- Assume we want to teach a computer to distinguish between cats and dogs …

Several steps:
1. feature transformation
2. Model / classifier specification
3. Model / classifier estimation (with regularization)
4. feature selection

Do we really need all the features? Can we use a smaller number and still achieve the same (or better) results?
Supervised learning

- Classification is one of the key components of ‘supervised learning’
- Unlike other learning paradigms, in supervised learning the teacher (us) provides the algorithm with the solutions to some of the instances and the goal is to generalize so that a model / method can be used to determine the labels of the unobserved samples
Types of classifiers

- We can divide the large variety of classification approaches into roughly two main types

1. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

2. Generative:
 - build a generative statistical model
 - e.g., Bayesian networks

3. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., decision tree
K nearest neighbors
K nearest neighbors (KNN)

- A simple, yet surprisingly efficient algorithm
- Requires the definition of a distance function or similarity measures between samples
- Select the class based on the majority vote in the k closest points
K nearest neighbors (KNN)

- Need to determine an appropriate value for k
- What happens if we chose $k=1$?
- What if $k=3$?
K nearest neighbors (KNN)

- Choice of k influences the ‘smoothness’ of the resulting classifier.
- In that sense it is similar to a kernel methods (discussed later in the course).
- However, the smoothness of the function is determined by the actual distribution of the data ($p(x)$) and not by a predefined parameter.
The effect of increasing k
The effect of increasing k

We will be using Euclidian distance to determine what are the k nearest neighbors:

$$d(x, x') = \sqrt{\sum_i (x_i - x'_i)^2}$$
KNN with k=1
KNN with $k=3$

Ties are broken using the order:
Red, Green, Blue
KNN with k=5

Ties are broken using the order:
Red, Green, Blue
Comparisons of different k’s

K = 1

K = 3

K = 5
A probabilistic interpretation of KNN

- The decision rule of KNN can be viewed using a probabilistic interpretation.
- What KNN is trying to do is approximate the Bayes decision rule on a subset of the data.
- To do that we need to compute certain properties including the conditional probability of the data given the class \(p(x|y) \), the prior probability of each class \(p(y) \) and the marginal probability of the data \(p(x) \).
- These properties would be computed for some small region around our sample and the size of that region will be dependent on the distribution of the test samples.*

* Remember this idea. We will return to it when discussing kernel functions.
Computing probabilities for KNN

- Let V be the volume of the m dimensional ball around z containing the k nearest neighbors for z (where m is the number of features).
- Then we can write

$$p(x)V = P = \frac{K}{N}$$

$$p(x) = \frac{K}{NV}$$

$$p(x \mid y = 1) = \frac{K_1}{N_1V}$$

$$p(y = 1) = \frac{N_1}{N}$$

- Using Bayes rule we get:

$$p(y = 1 \mid z) = \frac{p(z \mid y = 1)p(y = 1)}{p(z)} = \frac{K_1}{K}$$

z – new data point to classify
V - selected ball
P – probability that a random point is in V
N - total number of samples
K - number of nearest neighbors
N$_1$ - total number of samples from class 1
K$_1$ - number of samples from class 1 in K
Computing probabilities for KNN

- Using Bayes rule we get:

\[
p(y = 1 | z) = \frac{p(z | y = 1) p(y = 1)}{p(z)} = \frac{K_1}{K}
\]

Using Bayes decision rule we will chose the class with the highest probability, which in this case is the class with the highest number of samples in \(K \).
Important points

• Optimal decision using Bayes rule
• Types of classifiers
• Effect of values of k on knn classifiers
• Probabilistic interpretation of knn