Introduction to Machine Learning
Independent Component Analysis

Barnabás Póczos
Independent Component Analysis
Independent Component Analysis

\[x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) \]
\[x_2(t) = a_{21}s_1(t) + a_{22}s_2(t) \]

Model

Observations (Mixtures)

ICA estimated signals
Independent Component Analysis

Model

\[x_1(t) = a_{11}s_1(t) + a_{12}s_2(t) \]
\[x_2(t) = a_{21}s_1(t) + a_{22}s_2(t) \]

We observe

\[
\begin{pmatrix}
 x_1(1) \\
 x_2(1)
\end{pmatrix},
\begin{pmatrix}
 x_1(2) \\
 x_2(2)
\end{pmatrix}, \ldots,
\begin{pmatrix}
 x_1(t) \\
 x_2(t)
\end{pmatrix}
\]

We want

\[
\begin{pmatrix}
 s_1(1) \\
 s_2(1)
\end{pmatrix},
\begin{pmatrix}
 s_1(2) \\
 s_2(2)
\end{pmatrix}, \ldots,
\begin{pmatrix}
 s_1(t) \\
 s_2(t)
\end{pmatrix}
\]

But we don’t know \(\{a_{ij}\} \), nor \(\{s_i(t)\} \)

Goal: Estimate \(\{s_i(t)\} \), (and also \(\{a_{ij}\} \))
The Cocktail Party Problem
SOLVING WITH PCA

Sources

Mixing

Observation

PCA Estimation

\[A \in \mathbb{R}^{M \times M} \]

\[x(t) = As(t) \]

\[y(t) = Wx(t) \]
The Cocktail Party Problem
SOLVING WITH ICA

Sources

Mixing

Observation

ICA Estimation

\[y(t) = Wx(t) \]

\[x(t) = As(t) \]

\[A \in \mathbb{R}^{M \times M} \]
ICA vs PCA, Similarities

- Perform linear transformations
- Matrix factorization

PCA: *low rank* matrix factorization for *compression*

\[
\begin{bmatrix}
X
\end{bmatrix}_N = \begin{bmatrix}
U & S
\end{bmatrix}_{M\times N}
\]

Columns of \(U \) = PCA vectors

ICA: *full rank* matrix factorization to *remove dependency* among the rows

\[
\begin{bmatrix}
X
\end{bmatrix}_N = \begin{bmatrix}
A & S
\end{bmatrix}_{N\times N}
\]

Columns of \(A \) = ICA vectors
ICA vs PCA, Similarities

- **PCA:** $X = US$, $U^TU = I$
- **ICA:** $X = AS$, A is invertible

- **PCA** does compression
 - $M < N$

- **ICA** does **not** do compression
 - same # of features ($M = N$)

- **PCA** just removes correlations, **not** higher order dependence
- **ICA** removes correlations, **and** higher order dependence

- **PCA:** some components are **more important** than others (based on eigenvalues)
- **ICA:** components are **equally important**
Note

- **PCA** vectors are orthogonal
- **ICA** vectors are **not** orthogonal
ICA vs PCA
ICA basis vectors extracted from natural images

Gabor wavelets, edge detection, receptive fields of V1 cells..., deep neural networks
PCA basis vectors extracted from natural images
ICA Application, Removing Artifacts from EEG

- EEG ~ *Neural cocktail party*
- Severe *contamination* of EEG activity by
 - eye movements
 - blinks
 - muscle
 - heart, ECG artifact
 - vessel pulse
 - electrode noise
 - line noise, alternating current (60 Hz)

- ICA can improve signal
 - effectively *detect, separate and remove* activity in EEG records from a wide variety of artifactual sources.
 - (Jung, Makeig, Bell, and Sejnowski)

- ICA weights (mixing matrix) help find *location* of sources
ICA Application, Removing Artifacts from EEG

EEG Scalp Channels

\[\text{VEOG} \]
\[\text{F3} \]
\[\text{FC5} \]
\[\text{Cz} \]
\[\text{Pz} \]

\[100 \mu V \]

\[\text{Unmixing (W)} \]

Independent Components

\[\text{IC1} \]
\[\text{IC2} \]
\[\text{IC3} \]
\[\text{IC4} \]

Activations \((u = WX) \)

Scalp Maps \((W^{-1}) \)

Fig from Jung
Removing Artifacts from EEG

Summed Projection of Selected Components

\[
x_0 = W^{-1}u_0
\]

Fig from Jung
ICA for Image Denoising

- Original
- Noisy
- Wiener filtered
- ICA denoised
 (Hoyer, Hyvarinen)
- Median filtered
Method for analysis and synthesis of human motion from motion captured data

- Provides perceptually meaningful “style” components
- 109 markers, (327dim data)
- Motion capture ⇒ data matrix

Goal: Find motion style components.

ICA ⇒ 6 independent components (emotion, content,...)

ICA Theory
Statistical (in)dependence

Definition (Independence)

\(Y_1, Y_2 \) are independent \(\Leftrightarrow p(y_1, y_2) = p(y_1)p(y_2) \)

Definition (Shannon entropy)

\[
H(Y) = H(Y_1, \ldots, Y_m) = -\int p(y_1, \ldots, y_m) \log p(y_1, \ldots, y_m) dy.
\]

Definition (KL divergence)

\[
0 \leq KL(f \| g) = \int f(x) \log \frac{f(x)}{g(x)} dx
\]

Definition (Mutual Information)

\[
0 \leq I(Y_1, \ldots, Y_M) = \int p(y_1, \ldots, y_M) \log \frac{p(y_1, \ldots, y_M)}{p(y_1) \ldots p(y_M)} dy
\]
Solving the ICA problem with i.i.d. sources

ICA problem: \(x = As, \ s = [s_1; \ldots ; s_M] \) are jointly independent.

Ambiguity:
\(s = [s_1; \ldots ; s_M] \) sources can be recovered only up to sign, scale and permutation.

Proof:

- \(P = \) arbitrary permutation matrix,
- \(\Lambda = \) arbitrary diagonal scaling matrix.

\[\Rightarrow x = [AP^{-1}\Lambda^{-1}]\Lambda Ps \]
Solving the ICA problem

Lemma:
We can assume that $E[s] = 0$.

Proof:
Removing the mean does not change the mixing matrix.
$x - E[x] = A(s - E[s])$.

In what follows we assume that $E[ss^T] = I_M$, $E[s] = 0$.
Whitening

- Let $\Sigma \doteq \text{cov}(x) = E[xx^T] = AE[ss^T]A^T = AA^T$. (We assumed centered data)

- Do SVD: $\Sigma \in \mathbb{R}^{N \times N}$, $\text{rank}(\Sigma) = M$,
 $\Rightarrow \Sigma = UDU^T$,
 where $U \in \mathbb{R}^{N \times M}$, $U^TU = I_M$, **Signular vectors**
 $D \in \mathbb{R}^{M \times M}$, diagonal with rank M. **Singular values**
Let $Q \triangleq D^{-1/2}U^T \in \mathbb{R}^{M \times N}$ whitening matrix
Let $A^* \triangleq QA$
$x^* \triangleq Qx = QAs = A^*s$ is our new (whitened) ICA task.

We have,

$$E[x^*x^{*T}] = E[Qxx^TQ^T] = Q\Sigma Q^T = (D^{-1/2}U^T)UDU^T(UD^{-1/2}) = I_M$$

$$\Rightarrow E[x^*x^{*T}] = I_M, \text{ and } A^*A^*T = I_M.$$
Whitening solves half of the ICA problem

Note:

The number of free parameters of an N by N orthogonal matrix is \((N-1)(N-2)/2\).

⇒ whitening solves half of the ICA problem

After whitening it is enough to consider orthogonal matrices for separation.
Solving ICA

ICA task: Given \(x \),
- find \(y \) (the estimation of \(s \)),
- find \(W \) (the estimation of \(A^{-1} \))

ICA solution: \(y = Wx \)
- Remove mean, \(E[x] = 0 \)
- Whitening, \(E[xx^T] = I \)
- Find an orthogonal \(W \) optimizing an objective function
 - Sequence of 2-d Jacobi (Givens) rotations

![Original](original)
![Mixed](mixed)
![Whitened](whitened)
![Rotated](rotated)

(original | mixed | whitened | rotated)

(demixed)
Optimization Using Jacobi Rotation Matrices

\[G(p, q, \theta) = \begin{pmatrix}
1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \cos(\theta) & \cdots & -\sin(\theta) & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \sin(\theta) & \cdots & \cos(\theta) & \cdots & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1
\end{pmatrix} \]

\[\in \mathbb{R}^{M \times M} \]

Observation: \(x = As \)

Estimation: \(y = Wx \)

\[W = \arg \min_{\tilde{W} \in \mathcal{W}} J(\tilde{W}x), \quad \tilde{W} \in \mathcal{W} \]

where \(\mathcal{W} = \{ W | W = \prod_{i} G(p_{i}, q_{i}, \theta_{i}) \} \)
ICA Cost Functions

Let \(y = Wx, \ y = [y_1; \ldots; y_M] \), and let us measure the dependence using Shannon’s mutual information:

\[
J_{ICA_1}(W) \doteq I(y_1, \ldots, y_M) \doteq \int p(y_1, \ldots, y_M) \log \frac{p(y_1, \ldots, y_M)}{p(y_1) \ldots p(y_M)} \, dy,
\]

Let \(H(y) \doteq H(y_1, \ldots, y_M) \doteq -\int p(y_1, \ldots, y_M) \log p(y_1, \ldots, y_M) \, dy \).

Lemma

\[
H(Wx) = H(x) + \log | \det W |
\]

Proof: Homework

Therefore,

\[
I(y_1, \ldots, y_M) = \int p(y_1, \ldots, y_M) \log \frac{p(y_1, \ldots, y_M)}{p(y_1) \ldots p(y_M)} \\
= -H(y_1, \ldots, y_M) + H(y_1) + \ldots + H(y_M) \\
= -H(x_1, \ldots, x_M) - \log | \det W | + H(y_1) + \ldots + H(y_M).
\]
ICA Cost Functions

\[I(y_1, \ldots, y_M) = \int p(y_1, \ldots, y_M) \log \frac{p(y_1, \ldots, y_M)}{p(y_1) \ldots p(y_M)} \]
\[= -H(y_1, \ldots, y_M) + H(y_1) + \ldots + H(y_M) \]
\[= -H(x_1, \ldots, x_M) - \log |\det W| + H(y_1) + \ldots + H(y_M). \]

\(H(x_1, \ldots, x_M) \) is constant, \(\log |\det W| = 0. \)

Therefore,

\[J_{ICA_2}(W) \triangleq H(y_1) + \ldots + H(y_M) \]

The covariance is fixed: I. Which distribution has the largest entropy?

\[\Rightarrow \text{go away from normal distribution} \]
The sum of independent variables converges to the normal distribution

⇒ For separation go far away from the normal distribution
⇒ Negentropy, |kurtozis| maximization
Maximum Entropy
Independent Subspace Analysis

\[S^1 \in \mathbb{R}^2 \quad S^2 \in \mathbb{R}^2 \quad S^3 \in \mathbb{R}^2 \]

\[S = \begin{pmatrix} S^1 \\ S^2 \\ S^3 \end{pmatrix} \in \mathbb{R}^6 \]

\[X^1 \in \mathbb{R}^2 \quad X^2 \in \mathbb{R}^2 \quad X^3 \in \mathbb{R}^2 \]

Observation

\[X^i = A_{i1}S^1 + A_{i2}S^2 + A_{i3}S^3, \quad A_{ij} \in \mathbb{R}^{2 \times 2} \]

\[A \in \mathbb{R}^{6 \times 6} \text{ unknown mixing matrix} \]

\[X = \begin{pmatrix} X^1 \\ X^2 \\ X^3 \end{pmatrix} = AS \in \mathbb{R}^6 \]

Goal:
Estimate \(A \) and \(S \) observing samples from \(X = AS \) only
Independent Subspace Analysis

Hidden sources

\[S = \begin{pmatrix} S^1 \\ S^2 \\ S^3 \end{pmatrix} \in \mathbb{R}^6 \]

Observation

\[X = \begin{pmatrix} X^1 \\ X^2 \\ X^3 \end{pmatrix} = AS \in \mathbb{R}^6 \]

Estimation

\[\hat{S} = WX = WAS \in \mathbb{R}^6 \]

\[W \in \mathbb{R}^{6 \times 6} \]

In case of perfect separation, \(WA \) is a block permutation matrix.

Objective:

\[
\min_{W \in \mathbb{R}^{6 \times 6}} I(\hat{S}^1, \hat{S}^2, \hat{S}^3)
\]
ICA Algorithms
ICA algorithm based on Kurtosis maximization

Kurtosis = 4th order cumulant

Measures

• the distance from normality
• the degree of peakedness

$$\kappa_4(y) = E\{y^4\} - \frac{3}{2} \left(E\{y^2\} \right)^2$$

$$= 3 \text{ if } E\{y\} = 0 \text{ and whitened}$$

![Graphs showing different values of kurtosis](image)
The Fast ICA algorithm (Hyvärinen)

- Given whitened data \(z \)
- Estimate the 1\(^{st} \) ICA component:

\[
\star y = w^Tz, \quad \|w\| = 1, \quad \iff w^T = 1^{st} \text{ row of } W
\]

\[
\star \text{maximize kurtosis } f(w) = \kappa_4(y) = \mathbb{E}[y^4] - 3
\]

with constraint \(h(w) = \|w\|^2 - 1 = 0 \)

\[
\star \text{At optimum } f'(w) + \lambda h'(w) = 0^T \quad (\lambda \text{ Lagrange multiplier})
\]

\[
\Rightarrow 4\mathbb{E}[(w^Tz)^3z] + 2\lambda w = 0
\]

Solve this equation by Newton–Raphson’s method.
Newton method for finding a root
Example: Finding a Root

http://en.wikipedia.org/wiki/Newton%27s_method
Newton Method for Finding a Root

Goal: \(\phi : \mathbb{R} \rightarrow \mathbb{R} \)

\[\phi(x^*) = 0 \]

\[x^* = ? \]

Linear Approximation (1st order Taylor approx):

\[\phi(x + \Delta x) = \phi(x) + \phi'(x)\Delta x + o(|\Delta x|) \]

Therefore,

\[0 \approx \phi(x) + \phi'(x)\Delta x \]

\[x^* - x = \Delta x = -\frac{\phi(x)}{\phi'(x)} \]

\[x_{k+1} = x_k - \frac{\phi(x)}{\phi'(x)} \]
Illustration of Newton’s method

Goal: finding a root

\[\hat{f}(x) = f(x_0) + f'(x_0)(x - x_0) \]

\[x = x_0 + \Delta x_{NT} \]

In the next step we will linearize here in \(x \)
Newton Method for Finding a Root

This can be generalized to multivariate functions

\[F : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

\[0_m = F(x^*) = F(x + \Delta x) = F(x) + \nabla F(x) \Delta x + o(|\Delta x|) \]

Therefore,

\[0_m = F(x) + \nabla F(x) \Delta x \]

\[\Delta x = -[\nabla F(x)]^{-1} F(x) \]

[Pseudo inverse if there is no inverse]

\[\Delta x = x_{k+1} - x_k, \text{ and thus} \]

\[x_{k+1} = x_k - [\nabla F(x_k)]^{-1} F(x_k) \]

Newton method: Start from \(x_0 \) and iterate.
Newton method for FastICA
The Fast ICA algorithm (Hyvarinen)

Solve: \(F(w) = 4\mathbb{E}[(w^Tz)^3z] + 2\lambda w = 0 \)

Note: \(y = w^Tz, \|w\| = 1, z \text{ white} \Rightarrow \mathbb{E}[(w^Tz)^2] = 1 \)

The derivative of \(F \):

\[
F'(w) = 12\mathbb{E}[(w^Tz)^2zz^T] + 2\lambda I \approx 12\mathbb{E}[(w^Tz)^2]\mathbb{E}[zz^T] + 2\lambda I = 12\mathbb{E}[(w^Tz)^2]I + 2\lambda I = 12I + 2\lambda I
\]
The Fast ICA algorithm (Hyvarinen)

The Jacobian matrix becomes diagonal, and can easily be inverted.

\[w(k + 1) = w(k) - [F'(w(k))]^{-1} F(w(k)) \]

\[w(k + 1) = w(k) - \frac{4\mathbb{E}[(w(k)^T z)^3 z] + 2\lambda w(k)}{12 + 2\lambda} \]

\[
(12 + 2\lambda)w(k + 1) = (12 + 2\lambda)w(k) - 4\mathbb{E}[(w(k)^T z)^3 z] - 2\lambda w(k)
\]

\[
-\frac{12 + 2\lambda}{4} w(k + 1) = -3w(k) + \mathbb{E}[(w(k)^T z)^3 z]
\]

Therefore,

Let \(w_1 \) be the fix pont of:

\[
\tilde{w}(k + 1) = \mathbb{E}[(w(k)^T z)^3 z] - 3w(k)
\]

\[
w(k + 1) = \frac{\tilde{w}(k + 1)}{\|\tilde{w}(k + 1)\|}
\]

- Estimate the 2\(^{nd}\) ICA component similarly using the \(w \perp w_1 \) additional constraint... and so on ...
Thanks for your Attention