\[H_{\text{final}} = \text{sign} \left(\begin{array}{c} 0.42 \\ +0.65 \\ +0.92 \end{array} \right) \]
Training set: \(\{(x_1, y_1), ..., (x_m, y_m)\} \subseteq X \times \{-1, 1\} \)

Let \(D_1(i) = \frac{1}{m} \).

At each iteration \(t \):
1. Find weak learner \(h_t \) minimizing
 \[
 \varepsilon_t = \sum_{i=1}^{m} D_t(i) \cdot 1(h_t(x_i) \neq y_i).
 \]
2. Set \(D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)) \), where
 \[
 \alpha_t = \frac{1}{2} \ln \frac{1 - \varepsilon_t}{\varepsilon_t}
 \]
 and
 \[
 Z_t = \sum_{j=1}^{m} D_t(j) \exp \left(-\alpha_t y_j h_t(x_j) \right)
 \]
Adaboost uses this weighting mechanism to “force” the weak learner to focus on the problematic examples in the next iteration.

Formally,

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)), \quad \alpha_t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t} \]

and

\[Z_t = \sum_{j=1}^{m} D_t(j) \exp \left(-\alpha_t y_j h_t(x_j) \right) \]

Why?

Adaboost uses this weighting mechanism to focus on the problematic examples in the next iteration.

Formally,

\[\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) = \frac{1}{2} \]
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)), \text{ where } \alpha_t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t}. \]

What is \(D_{t+1}(i) \) when \(h_t(x_i) = y_i \)?

Your answer should only be in terms of \(\varepsilon_t, D_t(i), \) and \(Z_t \).
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)) \], where \(\alpha_t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t} \).

What is \(D_{t+1}(i) \) when \(h_t(x_i) = y_i \)?

Your answer should only be in terms of \(\varepsilon_t, D_t(i), \) and \(Z_t \).

Answer.

\[\frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)) = \frac{1}{Z_t} D_t(i) \exp(-\alpha_t) = \frac{1}{Z_t} D_t(i) \sqrt{\frac{\varepsilon_t}{1-\varepsilon_t}}. \]
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \sqrt{\frac{\varepsilon_t}{1-\varepsilon_t}} \text{ when } h_t(x_i) = y_i. \]

What is \(\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) = y_i) \)?

Your answer should only be in terms of \(Z_t \) and \(\varepsilon_t \).

\[\varepsilon_t = \sum_{i=1}^{m} D_t(i) \cdot 1(h_t(x_i) \neq y_i) \]
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \sqrt{\frac{\varepsilon_t}{1-\varepsilon_t}} \] when \(h_t(x_i) = y_i \).

What is \(\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) = y_i) \)?

Your answer should only be in terms of \(Z_t \) and \(\varepsilon_t \).

\[\varepsilon_t = \sum_{i=1}^{m} D_t(i) \cdot 1(h_t(x_i) \neq y_i) \]

Answer.

\[\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) = y_i) = \frac{\sqrt{\varepsilon_t(1-\varepsilon_t)}}{Z_t} \]
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)), \text{ where } \alpha_t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t}. \]

What is \(D_{t+1}(i) \) when \(h_t(x_i) \neq y_i \)?

Your answer should only be in terms of \(\varepsilon_t, D_t(i), \) and \(Z_t \).
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)), \text{ where } \alpha_t = \frac{1}{2} \ln \frac{1-\varepsilon_t}{\varepsilon_t}. \]

What is \(D_{t+1}(i) \) when \(h_t(x_i) \neq y_i \)?
Your answer should only be in terms of \(\varepsilon_t, D_t(i), \) and \(Z_t \).

Answer.

\[
\frac{1}{Z_t} D_t(i) \exp(-\alpha_t y_i h_t(x_i)) = \frac{1}{Z_t} D_t(i) \exp(\alpha_t) = \frac{1}{Z_t} D_t(i) \sqrt{\frac{1 - \varepsilon_t}{\varepsilon_t}}.
\]
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \sqrt{\frac{1-\varepsilon_t}{\varepsilon_t}} \] when \(h_t(x_i) \neq y_i \).

What is \(\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) \)?

Your answer should only be in terms of \(Z_t \) and \(\varepsilon_t \).

\[\varepsilon_t = \sum_{i=1}^{m} D_t(i) \cdot 1(h_t(x_i) \neq y_i) \]
Question.

\[D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \sqrt{\frac{1-\varepsilon_t}{\varepsilon_t}} \text{ when } h_t(x_i) \neq y_i. \]

What is \(\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) \)?

Your answer should only be in terms of \(Z_t \) and \(\varepsilon_t \).

\[\varepsilon_t = \sum_{i=1}^{m} D_t(i) \cdot 1(h_t(x_i) \neq y_i) \]

Answer.

\[\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) = \frac{\sqrt{\varepsilon_t(1-\varepsilon_t)}}{Z_t} \]
Question.

We saw that

\[
\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) = \sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) = y_i)
\]

\[
= \frac{\sqrt{\varepsilon_t(1 - \varepsilon_t)}}{Z_t}
\]

Why does this mean that \(\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) = \frac{1}{2}\)?
Answer.

\[
z_1 = \sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) = \mathbb{P}_{(x,y) \sim D_{t+1}}[1(h_t(x) \neq y)]
\]

\[
z_2 = \sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) = y_i) = \mathbb{P}_{(x,y) \sim D_{t+1}}[1(h_t(x) = y)]
\]

\[z_1 + z_2 = 1 \text{ and } z_1 = z_2.\]

Therefore,

\[
z_1 = \sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) = \frac{1}{2}.
\]
Adaboost uses this weighting mechanism to “force” the weak learner to focus on the problematic examples in the next iteration.

Therefore,

\[
\sum_{i=1}^{m} D_{t+1}(i) \cdot 1(h_t(x_i) \neq y_i) = \frac{1}{2}.
\]