Support Vector Machine II

Machine Learning 10-601B
Seyoung Kim

Many of these slides are derived from Tom Mitchell, Ziv Bar-Joseph. Thanks!
Max margin classifiers

- Instead of fitting all points, focus on boundary points
- Learn a boundary that leads to the largest margin from both sets of points

From all the possible boundary lines, this leads to the largest margin on both sides

These are the vectors supporting the boundary
Support Vector Machines

Two optimization problems: For the separable and non separable cases

\[
\min_w \frac{w^T w}{2}
\]

For all \(x \) in class + 1

\[w^T x + b \geq 1 \]

For all \(x \) in class - 1

\[w^T x + b \leq -1 \]

\[
\min_w \frac{w^T w}{2} + \sum_{i=1}^{n} C \varepsilon_i
\]

For all \(x_i \) in class + 1

\[w^T x_i + b \geq 1 - \varepsilon_i \]

For all \(x_i \) in class - 1

\[w^T x_i + b \leq -1 + \varepsilon_i \]

For all \(i \)

\[\varepsilon_i \geq 0 \]
Non linearly separable case

- Instead of minimizing the number of misclassified points we can minimize the distance between these points and their correct plane.

The new optimization problem is:

\[
\min_w \frac{w^T w}{2} + \sum_{i=1}^{n} C \varepsilon_i
\]

subject to the following inequality constraints:

For all \(x_i \) in class +1:
\[
w^T x + b \geq 1 - \varepsilon_i
\]

For all \(x_i \) in class -1:
\[
w^T x + b \leq -1 + \varepsilon_i
\]

Wait. Are we missing something?
Support Vector Machines

Two optimization problems: For the separable and non separable cases

Min $(w^Tw)/2$
For all x in class + 1
$w^Tx + b \geq 1$
For all x in class - 1
$w^Tx + b \leq -1$

\[
\begin{align*}
\min_w & \frac{w^Tw}{2} + \sum_{i=1}^{n} C\varepsilon_i \\
\text{For all } & x_i \text{ in class + 1} \\
& w^Tx_i + b \geq 1 - \varepsilon_i \\
\text{For all } & x_i \text{ in class - 1} \\
& w^Tx_i + b \leq -1 + \varepsilon_i \\
\text{For all } & i \\
& \varepsilon_i \geq 0
\end{align*}
\]

• Instead of solving these QPs directly we will solve a dual formulation of the SVM optimization problem

• The main reason for switching to this type of representation is that it would allow us to use a neat trick that will make our lives easier (and the run time faster)
An alternative (dual) representation of the SVM QP

• We will start with the linearly separable case

• Instead of encoding the correct classification rule and constraint we will use Lagrange multipliers to encode it as part of our minimization problem

\[
\text{Min } (w^T w)/2 \\
\text{For all } x \text{ in class } +1 \\
w^T x + b \geq 1 \\
\text{For all } x \text{ in class } -1 \\
w^T x + b \leq -1
\]

Why?

\[
\text{Min } (w^T w)/2 \\
(w^T x_i + b) y_i \geq 1
\]
An alternative (dual) representation of the SVM QP

We will start with the linearly separable case

Instead of encoding the correct classification rule as a constraint, we will use Lagrange multipliers to encode it as part of our minimization problem:

Recall that Lagrange multipliers can be applied to turn the following problem:

\[
\min_x x^2 \\
\text{s.t. } x \geq b
\]

To

\[
\min_x \max_\alpha x^2 - \alpha(x-b) \\
\text{s.t. } \alpha \geq 0
\]

Min \((w^Tw)/2\)

\((w^Tx_i+b)y_i \geq 1\)
Lagrange multiplier for SVMs

Dual formulation

\[
\min_{w,b} \max_\alpha \frac{w^T w}{2} - \sum_i \alpha_i [(w^T x_i + b) y_i - 1]
\]

\(\alpha_i \geq 0 \quad \forall i \)

Original (primal) formulation

Min \((w^T w)/2\)

\((w^T x_i + b)y_i \geq 1\)

\(w\): primal parameters
\(\alpha_i\)’s: dual parameters
Lagrange multiplier for SVMs

Dual formulation

\[
\min_{w, b} \max_{\alpha} \frac{w^T w}{2} - \sum_i \alpha_i [(w^T x_i + b) y_i - 1]
\]

\(\alpha_i \geq 0 \quad \forall i\)

Original (primal) formulation

Min \((w^T w)/2 \)

\((w^T x_i + b) y_i \geq 1\)

Using this new formulation we can derive \(w\) and \(b\) by taking the derivative w.r.t. \(w\) leading to:

\[
w = \sum_i \alpha_i x_i y_i, \text{ where } \alpha_i \geq 0
\]

taking the derivative w.r.t. \(b\) we get:

\[
\sum_i \alpha_i y_i = 0
\]
Lagrange multiplier for SVMs

Dual formulation
\[
\min_{w,b} \max_{\alpha} \frac{w^Tw}{2} - \sum_i \alpha_i[(w^Tx_i + b)y_i - 1]
\]
\[
\alpha_i \geq 0 \quad \forall i
\]

Using this new formulation we can derive \(w \) and \(b \) by taking the derivative w.r.t. \(w \) leading to:
\[
w = \sum_i \alpha_i x_i y_i, \text{ where } \alpha_i \geq 0
\]

Taking the derivative w.r.t. \(b \) we get:
\[
\sum_i \alpha_i y_i = 0
\]

Original (primal) formulation
\[
\text{Min } (w^Tw)/2
\]
\[
(w^Tx_i + b)y_i \geq 1
\]

Substituting \(w \) into our target function and using the additional constraint we get:

Dual formulation
\[
\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j
\]
\[
\sum_i \alpha_i y_i = 0
\]
\[
\sum_i \alpha_i = 0
\]
\[
\alpha_i \geq 0 \quad \forall i
\]
Dual SVM - interpretation

For α's that are not 0

$W = \sum_i \alpha_i x_i y_i$
Computational Cost

• During training, the computational costs for solving primal vs. dual problems are

Primal problem:
\[
\begin{align*}
\min \ (w^T w) / 2 \\
(w^T x_i + b) y_i \geq 1
\end{align*}
\]

Dual problem:
\[
\begin{align*}
\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j \\
\sum_i \alpha_i y_i = 0 \\
\alpha_i \geq 0 \quad \forall i
\end{align*}
\]

- The cost of QP solver depends on \#variables
- Often, \(n < m \), where \(n = \#\text{samples} \), \(m = \#\text{input features} \)
 -> Solving dual is often more efficient
- Even when \(n > m \), working with dual allows you to use kernels!
Computational Cost

- During testing, the computational costs using primal vs. dual representations are

 \[y_{\text{new}} = \text{sign}(w^T x_{\text{new}} + b) \]

 Using primal variables:

 \[y_{\text{new}} = \text{sign}(\sum_i \alpha_i y_i x_i^T x_{\text{new}} + b) \]

 Using dual variables:

 \(m \) operation

 \(mr \) operations where \(r \) is the number of support vectors (\(\alpha_i > 0 \))

If one uses dual parameters to make predictions, the prediction depends only on the support vectors, but this is not explicitly represented in the primal
Dual formulation for non linearly separable case

\[
\min_w \frac{w^Tw}{2} + \sum_{i=1}^{n} C\varepsilon_i
\]

For all \(x_i\) in class + 1

\[
w^Tx + b \geq 1 - \varepsilon_i
\]

For all \(x_i\) in class - 1

\[
w^Tx + b \leq -1 + \varepsilon_i
\]

For all \(i\)

\[\varepsilon_i \geq 0\]
Dual formulation for non linearly separable case

Dual target function:

$$\max_{\alpha} \sum_i \alpha_i \left(-\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j \right)$$

$$\sum_i \alpha_i y_i = 0$$

$$C > \alpha_i \geq 0 \quad \forall i$$

To evaluate a new sample x_j we need to compute:

$$w^T x_j + b = \sum_i \alpha_i y_i x_i \cdot x_j + b$$

The only difference is that the α_i's are now bounded.
Dual SVM – Interpretation for Non-linearly Separable Case

Support vectors: data points in the wrong side of margin

\[w = \sum_i \alpha_i x_i y_i \]

For \(\alpha \)'s that are not 0
Let \(t = (w^T x_i + b) y_i \)

Ideal classifier:

\[
\text{Error}(t) = \begin{cases}
0 & \text{if } t > 0 \\
1 & \text{if } t < 0
\end{cases}
\]

\(t > 0 \) for both positive and negative training samples if classified correctly

\([1- t]_+ \) denotes positive part

Hinge Loss
FROM LINEAR TO NON-LINEAR DECISION BOUNDARY
Classifying in 1-d

Can an SVM correctly classify this data?

What about this?
Can an SVM correctly classify this data?

And now?

Classifying in 1-d
The original input space \((x)\) can be mapped to some higher-dimensional feature space \((\phi(x))\) where the training set is separable:

\[
\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)
\]

Non-linear SVMs: 2D

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt
Non-linear SVMs: 2D

- The original input space (x) can be mapped to some higher-dimensional feature space $(\phi(x))$ where the training set is separable:

$$x = (x_1, x_2) \quad \Phi: x \rightarrow \phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1 x_2)$$

If data is mapped into sufficiently high dimension, then samples will in general be linearly separable; N data points are in general separable in a space of $N-1$ dimensions or more!!!
Transformation of Inputs

• Possible problems
 – High computation burden due to high-dimensionality
 – Many more parameters

• SVM solves these two issues simultaneously
 – “Kernel tricks” for efficient computation
 – Dual formulation only assigns parameters to samples, not features
Quadratic kernels

- While working in higher dimensions is beneficial, it also increases our running time because of the dot product computation.
- However, there is a neat trick we can use.
- Consider all quadratic terms for $x_1, x_2 \ldots x_m$.

$$\max_{\alpha} \sum_i \alpha_i - \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(x_i) \Phi(x_j)$$

$$\sum_i \alpha_i y_i = 0$$

$$\alpha_i \geq 0 \quad \forall i$$

m is the number of features in each vector.

The $\sqrt{2}$ term will become clear in the next slide.

$$\Phi(x) = \begin{bmatrix} \frac{1}{\sqrt{2}} x_1 \\ \vdots \\ \frac{1}{\sqrt{2}} x_m \\ \sqrt{2} x_1 x_2 \\ \vdots \\ \sqrt{2} x_{m-1} x_m \end{bmatrix}$$

m+1 linear terms

m quadratic terms

m(m-1)/2 pairwise terms
Dot product for quadratic kernels

How many operations do we need for the dot product?

\[
\Phi(x)\Phi(z) = \begin{pmatrix}
1 & 1 \\
\sqrt{2}x_1 & \sqrt{2}z_1 \\
\vdots & \vdots \\
\sqrt{2}x_m & \sqrt{2}z_m \\
\end{pmatrix} = \sum_i 2x_i z_i + \sum_i x_i^2 z_i^2 + \sum_{i,j=i+1} 2x_i x_j z_i z_j + 1
\]

\[\begin{array}{cccc}
x_1^2 & \bullet & z_1^2 \\
\vdots & \ddots & \vdots \\
x_m^2 & \bullet & z_m^2 \\
\end{array}\]

\[\begin{array}{cccc}
\sqrt{2}x_1 x_2 & \sqrt{2}z_1 z_2 \\
\vdots & \ddots & \vdots \\
\sqrt{2}x_{m-1} x_m & \sqrt{2}z_{m-1} z_m \\
\end{array}\]

= $m \times m \times m(m-1)/2 \approx m^2$
The kernel trick

How many operations do we need for the dot product?

$$
\Phi(x)\Phi(z) = \sum_i 2x_i z_i + \sum_i x_i^2 z_i^2 + \sum_i \sum_{j=i+1} 2x_i x_j z_i z_j + 1
$$

$$
m \quad m \quad m(m-1)/2 \quad \approx m^2
$$

However, we can obtain dramatic savings by noting that

$$
\Phi(x)\Phi(z) = k(x,z) = (x^T z + 1)^2 = (x^T z)^2 + 2(x^T z) + 1 = \left(\sum_i x_i z_i \right)^2 + \sum_i 2x_i z_i + 1
$$

$$
= \sum_i 2x_i z_i + \sum_i x_i^2 z_i^2 + \sum_i \sum_{j=i+1} 2x_i x_j z_i z_j + 1
$$

We only need m operations!

Note that to evaluate a new sample we are also using dot products so we save there as well
Kernel SVM

Our dual target function:

\[
\max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \Phi(x_i)^T \Phi(x_j)
\]

\[
\sum_i \alpha_i y_i = 0
\]

\[
\alpha_i \geq 0 \quad \forall i
\]

To evaluate a new sample \(x_j \) we need to compute:

\[
w^T x_j + b = \sum_i \alpha_i y_i \Phi(x_i)^T \Phi(x_j) + b
\]

\[
\sum_k (x_i, x_j) \alpha_i y_i = 0
\]

\[
\alpha_i \geq 0 \quad \forall i
\]
Other kernels

• The kernel trick works for higher order polynomials as well.

• For example, a polynomial of degree 4 can be computed using \((x^Tz + 1)^4\)
 and, for a polynomial of degree \(d\) \((x^Tz + 1)^d\)

• Beyond polynomials there are other very high dimensional basis functions that can be made practical by finding the right Kernel Function:
 - Radial-Basis-style Kernel Function:
 \[
 K(x, z) = \exp\left(-\frac{(x - z)^2}{2\sigma^2}\right)
 \]
 - Neural-net-style Kernel Function:
 \[
 K(x, z) = \tanh(\kappa x \cdot z - \delta)
 \]
Why do SVMs work?

• If we are using huge feature spaces (with kernels) how come we are not overfitting the data?
 - Number of parameters remains the same (and most are set to 0)
 - While we have a lot of input values, at the end we only care about the support vectors and these are usually a small group of samples
 - The minimization (or the maximizing of the margin) function acts as a sort of regularization term leading to reduced overfitting
Software

- A list of SVM implementation can be found at http://www.kernel-machines.org/software
- Some implementation (such as LIBSVM) can handle multi-class classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available
Multi-class classification with SVMs

What if we have data from more than two classes?

- Most common solution: One vs. all
 - create a classifier for each class against all other data
 - for a new point use all classifiers and compare the margin for all selected classes

Note that this is not necessarily valid since this is not what we trained the SVM for, but often works well in practice
Applications of SVMs

- Bioinformatics
- Machine Vision
- Text Categorization
- Ranking (e.g., Google searches)
- Handwritten Character Recognition
- Time series analysis

→ Lots of very successful applications!!!
Important points

• Maximum margin principle
• Target function for SVMs
• Linearly separable and non separable cases
• Dual formulation of SVMs
• Support vectors of SVMs
• Kernel trick and computational complexity