Hidden Markov Models I

Machine Learning 10-601B
Seyoung Kim

Many of these slides are derived from Tom Mitchell, Ziv Bar-Joseph. Thanks!
What’s wrong with Bayesian networks

• Bayesian networks are very useful for modeling joint distributions
• But they have their limitations:
 - Cannot account for temporal / sequence models
 - DAG’s (no self or any other loops)

This is not a valid Bayesian network!
Hidden Markov models

• Model a set of observation with a set of hidden states
 - Robot movement
 - Observations: range sensor, visual sensor
 - Hidden states: location (on a map)
Hidden Markov models

• Model a set of observation with a set of hidden states
 - Robot movement
 - **Observations:** range sensor, visual sensor
 - **Hidden states:** location (on a map)

1. Hidden states generate observations
2. Hidden states transition to other hidden states
Examples: Speech processing

Speech processing
 Observations: sound signals
 Hidden states: parts of speech, words
Example: Biological data

Biology

Observations: DNA base pairs
Hidden states: Genes

ATGAAGCTACTGTCTTCTATCGAACAAGCATGCGATATTTGCCG
ACTTAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAAGTGCGCCAAGTGTCTGAAGAA
CAACTGGGAGTGTCGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTG
ACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTTCTACTGATTTTTCCTCGAG
AAGACCTTGACATGATT

Intergenic Upstream
5' -

Start Codon Exon Splice Site Intron Splice Site Exon

Stop Codon Exon Splice Site Intron Splice Site 3'

Intergenic Downstream
Example: Gambling on dice outcome

- Two dice A and B, both skewed (output model).
- Can either stay with the same die or switch to the second die (transition model).

State transition diagram
A Hidden Markov Model

- A set of states $S = \{s_1 \ldots s_n\}$
 - In each time point we are in exactly one of these states
- A set of possible outputs $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$
 - In each time point we emit a symbol $\sigma_j \in \Sigma$
A Hidden Markov Model

- A set of states $S = \{s_1 \ldots s_n\}$
 - In each time point we are in exactly one of these states
- A set of possible outputs $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$
 - In each time point we emit a symbol $\sigma_j \in \Sigma$

States: A A A B B B B B A A
Observations: 1 2 2 1 1 2 1 1 1 2 2

State transition diagram
A Hidden Markov Model

• Probabilistic graphical models

States: A A A B B B B B A A
Observations: 1 2 2 1 1 2 1 1 1 2 2

State transition diagram
A Hidden Markov Model

- A set of states $S = \{s_1, \ldots, s_n\}$
 - In each time point we are in exactly one of these states
- A set of possible outputs $\Sigma = \{\sigma_1, \ldots, \sigma_m\}$
 - In each time point we emit a symbol $\sigma_j \in \Sigma$

- Random variables
 - States at each time point $Q = \{q_1, \ldots, q_T\}$
 - Each q_t can take on values from $\{s_1, \ldots, s_n\}$
 - Outputs at each time point $O = \{o_1, \ldots, o_T\}$
 - Each o_t can take on values from Σ

State transition diagram
A Hidden Markov Model

• Parameters of the model
 - $\Pi_i = \{\pi_1, ..., \pi_n\}$: initial state probabilities $P(q_1=s_i)$
 - the probability that we start at state s_i, $i=1,\ldots,n$
 - A transition probability model, $P(q_t = s_i \mid q_{t-1} = s_j)$
 - nxn matrix of transition probabilities
 - An emission probability model, $p(o_t = \sigma_j \mid q_t = s_i)$
 - nxs matrix of emission probabilities

State transition diagram
A Hidden Markov Model

- The joint probability of \((Q,O)\) is defined as

\[
P(Q,O) = p(q_1) \prod_{t=1}^{T} p(q_t | q_{t-1}) p(o_t | q_t)
\]

Diagram:

- Initial probability
- Transition probability
- Emission probability
A Hidden Markov Model

- The joint probability of \((Q,O)\) is defined as

\[
P(Q,O) = p(q_1)p(o_1 | q_1) \prod_{t=2}^{T} p(q_t | q_{t-1}) p(o_t | q_t)
\]

An important aspect of this definition is the Markov property:
\(q_{t+1}\) is conditionally independent of \(q_{t-1}\) (and any earlier time points) given \(q_t\)

More formally

\[
P(q_{t+1} = s_i \mid q_t = s_j) = P(q_{t+1} = s_i \mid q_t = s_j, q_{t-1} = s_j)
\]
What can we ask when using a HMM?

- A few examples:
 - “Which die is currently being used?”
 - “What is the probability of a 6 in the next role?”
 - “What is the probability of 6 in any of the next 3 roles?”
Inference in HMMs

• Computing $P(Q)$ and $P(q_t = s_i)$
 - If we cannot look at observations
• Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$
 - When we have observation and care about the last state only
• Computing $\text{argmax}_Q P(Q \mid O)$
 - When we care about the entire path
Which die is currently being used?

- We played t rounds so far
- We want to determine $P(q_t = A)$
- Let’s assume for now that we cannot observe any outputs (we are blind folded)
- How can we compute this?
\(P(q_t = A) \)?

- Simple answer: Consider “all” paths that end in A. For each such path \(Q \), let’s determine \(P(Q) \)

\[
Q = q_1, \ldots, q_{t-1}, A
\]

\[
P(Q) = P(q_1, \ldots, q_{t-1}, A) = P(A \mid q_1, \ldots, q_{t-1}) P(q_1, \ldots, q_{t-1})
\]

\[
= P(A \mid q_{t-1}) P(q_1, \ldots, q_{t-1})
\]

\[
= P(A \mid q_{t-1}) \ldots P(q_2 \mid q_1) P(q_1)
\]

Markov property!

Initial probability
Simple answer:

1. Let’s determine $P(Q)$ where Q is any path that ends in A

$Q = q_1, \ldots, q_{t-1}, A$

$P(Q) = P(q_1, \ldots, q_{t-1}, A)$

$= P(A \mid q_1, \ldots, q_{t-1}) \cdot P(q_1, \ldots, q_{t-1})$

$= P(A \mid q_{t-1}) \cdot P(q_1, \ldots, q_{t-1})$

$= P(A \mid q_{t-1}) \cdot \ldots \cdot P(q_2 \mid q_1) \cdot P(q_1)$

2. $P(q_t = A) = \Sigma P(Q)$

where the sum is over all sets of t states that end in A
P(q_t = A)?

• Simple answer:
 1. Let’s determine P(Q) where Q is any path that ends in A

 \[Q = q_1, \ldots, q_{t-1}, A \]

 \[P(Q) = P(q_1, \ldots, q_{t-1}, A) \]

 \[= P(A \mid q_1, \ldots, q_{t-1}) P(q_1, \ldots, q_{t-1}) \]

 \[= P(A \mid q_{t-1}) P(q_1, \ldots, q_{t-1}) \]

 \[= P(A \mid q_{t-1}) \ldots P(q_2 \mid q_1) P(q_1) \]

 2. \[P(q_t = A) = \Sigma P(Q) \]

 where the sum is over all sets of t states that end in A

Q: How many sets Q are there?
A: A lot! \(2^{t-1} \)

Not a feasible solution
\[P(q_t = A), \text{ the smart way} \]

- Let’s define \(p_t(i) \) as the probability of being in state \(i \) at time \(t \): \(p_t(i) = p(q_t = s_i) \)
- We can determine \(p_t(i) \) by induction
 1. \(p_1(i) = \Pi_i \)
 2. \(p_t(i) = ? \)
$P(q_t = A)$, the smart way

- Let’s define $p_t(i) = \text{probability state } i \text{ at time } t = p(q_t = s_i)$
- We can determine $p_t(i)$ by induction
 1. $p_1(i) = \Pi_i$
 2. $p_t(i) = \sum_j p(q_t = s_i \mid q_{t-1} = s_j) p_{t-1}(j)$
\(P(q_t = A) \), the smart way

- Lets define \(p_t(i) = \) probability state \(i \) at time \(t = p(q_t = s_i) \)
- We can determine \(p_t(i) \) by induction
 1. \(p_1(i) = \Pi_i \)
 2. \(p_t(i) = \Sigma_j p(q_t = s_i \mid q_{t-1} = s_j)p_{t-1}(j) \)

This type of computation is called dynamic programming

Complexity: \(O(n^2 \cdot t) \)

Number of states in our HMM

<table>
<thead>
<tr>
<th>Time / state</th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inference in HMMs

- Computing $P(Q)$ and $P(q_t = s_i)$

- Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$

- Computing $\arg\max_Q P(Q)$
But what if we observe outputs?

- So far, we assumed that we could not observe the outputs
- In reality, we almost always can.

| v | P(v |A) | P(v |B) |
|---|------|------|
| 1 | .3 | .1 |
| 2 | .2 | .1 |
| 3 | .2 | .1 |
| 4 | .1 | .2 |
| 5 | .1 | .2 |
| 6 | .1 | .3 |
But what if we observe outputs?

- So far, we assumed that we could not observe the outputs.
- In reality, we almost always can.

Table

| v | \(P(v |A) \) | \(P(v |B) \) |
|---|---|---|
| 1 | .3 | .1 |
| 2 | .2 | .1 |
| 3 | .2 | .1 |
| 4 | .1 | .2 |
| 5 | .1 | .2 |
| 6 | .1 | .3 |

Does observing the sequence 5, 6, 4, 5, 6, 6 Change our belief about the state?
When outputs are observed

- We want to compute \(P(q_t = A \mid O_1 \ldots O_t) \)
\(P(q_t = A | O) \) when outputs are observed

- We want to compute \(P(q_t = A \mid O_1 \ldots O_t) \)
- Let’s start with a simpler question. Given a sequence of states \(Q \), what is \(P(Q \mid O_1 \ldots O_t) = P(Q \mid O) \)?
 - It is pretty simple to move from \(P(Q) \) to \(P(q_t = A) \)

\[
\begin{array}{cccccc}
q_1 & \rightarrow & q_2 & \rightarrow & q_3 & \rightarrow & \ldots & \rightarrow & q_T \\
| & | & | & | & | & | & | & | \\
| & | & | & | & | & | & | & \\
o_1 & \rightarrow & o_2 & \rightarrow & o_3 & \rightarrow & \ldots & \rightarrow & o_T \\
\end{array}
\]
$P(q_t = A | O)$ when outputs are observed

- We want to compute $P(q_t = A \mid O_1 \ldots O_t)$
- Let’s start with a simpler question. Given a sequence of states Q, what is $P(Q \mid O_1 \ldots O_t) = P(Q \mid O)$?
 - It is pretty simple to move from $P(Q)$ to $P(q_t = A)$
 - In some cases $P(Q)$ is the more important question
 - Speech processing
 - NLP
We can use Bayes rule:

\[P(Q | O) = \frac{P(O | Q)P(Q)}{P(O)} \]

Easy, \(P(O | Q) = P(o_1 | q_1) P(o_2 | q_2) \ldots P(o_t | q_t) \)
We can use Bayes rule:

\[
P(Q \mid O) = \frac{P(O \mid Q)P(Q)}{P(O)}
\]

Easy, \(P(Q) = P(q_1) P(q_2 \mid q_1) \ldots P(q_t \mid q_{t-1}) \)
We can use Bayes rule:

\[
P(Q \mid O) = \frac{P(O \mid Q)P(Q)}{P(O)}
\]

Hard!
P(O)

• What is the probability of seeing a set of observations:
 – An important question in its own rights, for example classification using two HMMs H_1 and H_2
 • Compute $P(O|H_1)$ and $P(O|H_1)$, classify to the model with higher probability
Define $\alpha_t(i) = P(o_1, o_2 \ldots, o_t \land q_t = s_i)$

- $\alpha_t(i)$ is the probability that we:
 1. Observe $o_1, o_2 \ldots, o_t$
 2. End up at state i

How do we compute $\alpha_t(i)$?
When outputs are observed

- We want to compute $P(q_t = A \mid O_1 \ldots O_t)$
- For ease of writing we will use the following notations (commonly used in the literature)
 - $a_{i,j} = P(q_t = s_i \mid q_{t-1} = s_j)$
 - $b_i(o_t) = P(o_t \mid s_i)$

Transition probability

Emission probability
Computing $\alpha_t(i)$

- $\alpha_1(i) = P(o_1 \land q_1 = i) = P(o_1 | q_1 = s_i) \Pi_i$

We must be at a state in time t

- Chain rule

- Markov property
Computing $\alpha_t(i)$

- $\alpha_t(i) = P(o_1 \land q_1 = i) = P(o_1 | q_1 = s_i) \Pi_i$

\[
\begin{align*}
\alpha_{t+1}(i) &= P(O_1 \ldots O_{t+1} \land q_{t+1} = s_i) = \\
&= \sum_j P(O_1 \ldots O_t \land q_t = s_j \land O_{t+1} \land q_{t+1} = s_i) = \\
&= \sum_j P(O_{t+1} \land q_{t+1} = s_i | O_1 \ldots O_t \land q_t = s_j) P(O_1 \ldots O_t \land q_t = s_j) = \\
&= \sum_j P(O_{t+1} \land q_{t+1} = s_i | O_1 \ldots O_t \land q_t = s_j) \alpha_t(j) = \\
&= \sum_j P(O_{t+1} | q_{t+1} = s_i) P(q_{t+1} = s_i | q_t = s_j) \alpha_t(j) = \\
&= \sum_j b_i(O_{t+1}) a_{j,i} \alpha_t(j)
\end{align*}
\]

We must be at a state in time t.

Chain rule

Markov property
Example: Computing $\alpha_3(B)$

- We observed 2,3,6

\[
\begin{align*}
\alpha_1(A) &= P(2 \land q_1 = A) = P(2 \mid q_1 = A) \Pi_A \cdot .2 \cdot .7 = .14, \quad \alpha_1(B) = .1 \cdot .3 = .03 \\
\alpha_2(A) &= \sum_{j=A,B} b_A(3) a_{j,A} \alpha_1(j) = .2 \cdot .8 \cdot .14 + .2 \cdot .2 \cdot .03 = 0.0236, \quad \alpha_2(B) = 0.0052 \\
\alpha_3(B) &= \sum_{j=A,B} b_B(6) a_{j,B} \alpha_2(j) = .3 \cdot .2 \cdot .0236 + .3 \cdot .8 \cdot .0052 = 0.00264
\end{align*}
\]

<table>
<thead>
<tr>
<th>v</th>
<th>$P(v \mid A)$</th>
<th>$P(v \mid B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.3</td>
<td>.1</td>
</tr>
<tr>
<td>2</td>
<td>.2</td>
<td>.1</td>
</tr>
<tr>
<td>3</td>
<td>.2</td>
<td>.1</td>
</tr>
<tr>
<td>4</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>5</td>
<td>.1</td>
<td>.2</td>
</tr>
<tr>
<td>6</td>
<td>.1</td>
<td>.3</td>
</tr>
</tbody>
</table>

\[\Pi_A = 0.7\]
\[\Pi_b = 0.3\]
Where we are

- We want to compute $P(Q \mid O)$
- For this, we only need to compute $P(O)$
- We know how to compute $\alpha_t(i)$

From now its easy

$\alpha_t(i) = P(o_1, o_2 \ldots, o_t \land q_t = s_i)$

so

$P(O) = P(o_1, o_2 \ldots, o_t) = \sum_i P(o_1, o_2 \ldots, o_t \land q_t = s_i) = \sum_i \alpha_t(i)$

note that

$p(q_t=s_i \mid o_1, o_2 \ldots, o_t) = \frac{\alpha_t(i)}{\sum_j \alpha_t(j)}$

$P(A \mid B) = P(A \land B) / P(B)$
Complexity

• How long does it take to compute $P(Q | O)$?
 – $P(Q)$: $O(n)$
 – $P(O|Q)$: $O(n)$
 – $P(O)$: $O(n^2t)$
Inference in HMMs

- Computing $P(Q)$ and $P(q_t = s_i)$
- Computing $P(Q | O)$ and $P(q_t = s_i | O)$
- Computing $\arg\max_Q P(Q)$
Most probable path

- We are almost done ...
- One final question remains
 How do we find the most probable path, that is Q^* such that
 $$P(Q^* \mid O) = \text{argmax}_Q P(Q \mid O)?$$
- This is an important path
 - The words in speech processing
 - The set of genes in the genome etc.
Example

- What is the most probable set of states leading to the sequence:

\[1,2,2,5,6,5,1,2,3\]?
Most probable path

\[
\text{arg max}_Q P(Q \mid O) = \text{arg max}_Q \frac{P(O \mid Q)P(Q)}{P(O)} = \text{arg max}_Q P(O \mid Q)P(Q)
\]

We will use the following definition:

\[
\delta_t (i) = \max_{q_1 \ldots q_{t-1}} p(q_1 \ldots q_{t-1} \land q_t = s_i \land O_1 \ldots O_t)
\]

In other words we are interested in the most likely path from 1 to t that:

1. Ends in \(S_i\)
2. Produces outputs \(O_1 \ldots O_t\)
Computing $\delta_t(i)$

$$\delta_t(i) = \max_{q_1 \ldots q_{t-1}} p(q_1 \ldots q_{t-1} \land q_t = s_i \land O_1 \ldots O_t)$$

Initialization at $t=1$

$$\delta_1(i) = p(q_1 = s_i \land O_1)$$

$$= p(q_1 = s_i) p(O_1 \mid q_1 = s_i)$$

$$= \pi_i b_i(O_1)$$

Q: Given $\delta_t(i)$, how can we compute $\delta_{t+1}(i)$?

A: To get from $\delta_t(i)$ to $\delta_{t+1}(i)$ we need to

1. Add an emission for time $t+1$ (O_{t+1})

2. Transition to state s_i

$$\delta_{t+1}(i) = \max_{q_1 \ldots q_t} p(q_1 \ldots q_t \land q_{t+1} = s_i \land O_1 \ldots O_{t+1})$$

$$= \max_j \delta_t(j) p(q_{t+1} = s_i \mid q_t = s_j) p(O_{t+1} \mid q_{t+1} = s_i)$$

$$= \max_j \delta_t(j) a_{j,i} b_i(O_{t+1})$$
The Viterbi algorithm

\[\delta_{t+1}(i) = \max_{q_1 \ldots q_t} p(q_1 \ldots q_t \land q_{t+1} = s_i \land O_1 \ldots O_{t+1}) \]
\[= \max_j \delta_t(j) p(q_{t+1} = s_i | q_t = s_j) p(O_{t+1} | q_{t+1} = s_i) \]
\[= \max_j \delta_t(j) a_{j,t} b_i(O_{t+1}) \]

- Once again we use dynamic programming for solving \(\delta_t(i) \)
- Once we have \(\delta_t(i) \), we can solve for our \(P(Q^* | O) \) by:

\[P(Q^* | O) = \arg\max_Q P(Q | O) = \]

path defined by \(\arg\max_j \delta_t(j) \),
Inference in HMMs

• Computing $P(Q)$ and $P(q_t = s_i)$

• Computing $P(Q \mid O)$ and $P(q_t = s_i \mid O)$

• Computing $\arg\max_Q P(Q)$
What you should know

• Why HMMs? Which applications are suitable?
• Inference in HMMs
 - No observations
 - Probability of next state w. observations
 - Maximum scoring path (Viterbi)