Warm-up as you log in

What are these linear shapes called for 1-D, 2-D, 3-D, M-D input?

$$x \in \mathbb{R}$$

$$x \in \mathbb{R}^2$$

$$\boldsymbol{x} \in \mathbb{R}^3$$

$$x \in \mathbb{R}^{M}$$

$$y = \mathbf{w}^T \mathbf{x} + b$$

$$\mathbf{w}^T \mathbf{x} + b = 0$$

$$\boldsymbol{w}^T\boldsymbol{x}+b\geq 0$$

Announcements

Assignments

- HW2
 - Due Mon, 9/21, 11:59 pm
- HW3
 - Out tomorrow, due Mon, 9/28, 11:59 pm
 - Written, but in Gradescope

Midterm 1

- Mon, 10/5
- In lecture; Gradescope exam (like HW1 written); proctored via Zoom
- Content up to and including linear regression and optimization
- Stay tuned to Piazza for details and a few forms to fill out

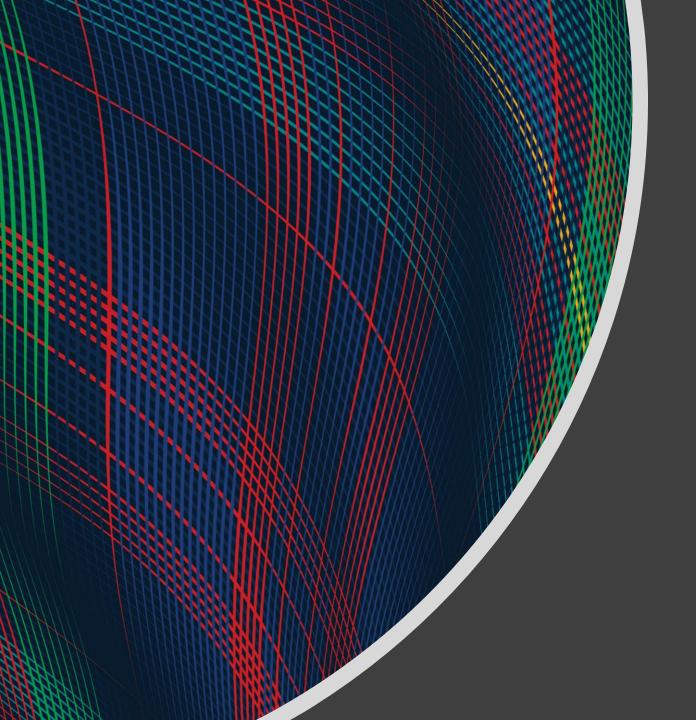
Plan

Last time

- Model selection
 - Parameters, Hyperparameters
 - Train, Test, and Validation sets

Today

- A few more things on model selection
- Regression
- Linear regression
- Optimization for linear regression



Introduction to Machine Learning

Linear Regression and Optimization

Instructor: Pat Virtue

Model Selection

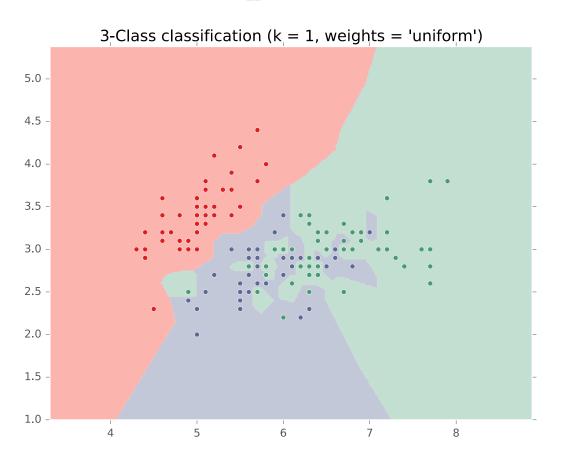
- Two very similar definitions:
 - Def: model selection is the process by which we choose the "best" model from among a set of candidates
- Both assume access to a function capable of measuring the quality of a model
- **Both** are typically done "outside" the main training algorithm --- typically training is treated as a black box

Experimental Design

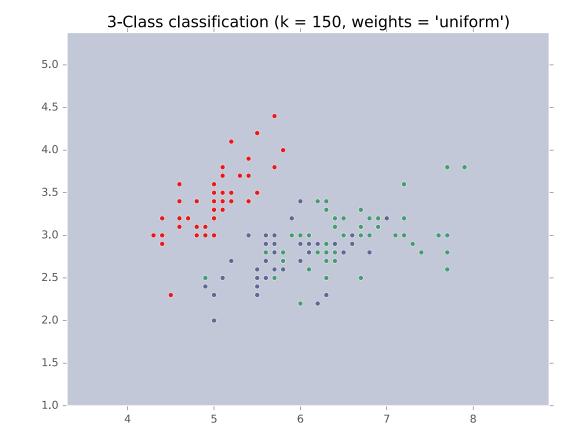
	Input	Output	Notes
Training	training datasethyperparameters	best model parameters	We pick the best model parameters by learning on the training dataset for a fixed set of hyperparameters
Hyperparameter Optimization	training dataset validation dataset	• best hyperparameters	We pick the best hyperparameters by learning on the training data and evaluating error on the validation error
	2		
Testing	 test dataset hypothesis (i.e. fixed model parameters) 	• test error	We evaluate a hypothesis corresponding to a decision rule with fixed model parameters on a test dataset to obtain test error

Special Cases of k-NN

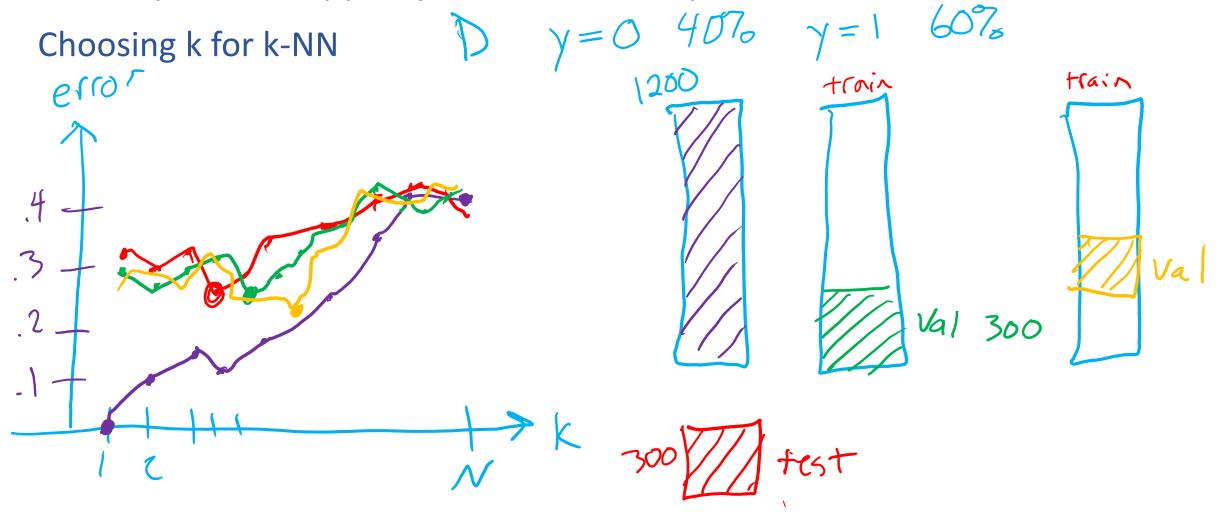
k=1: Nearest Neighbor

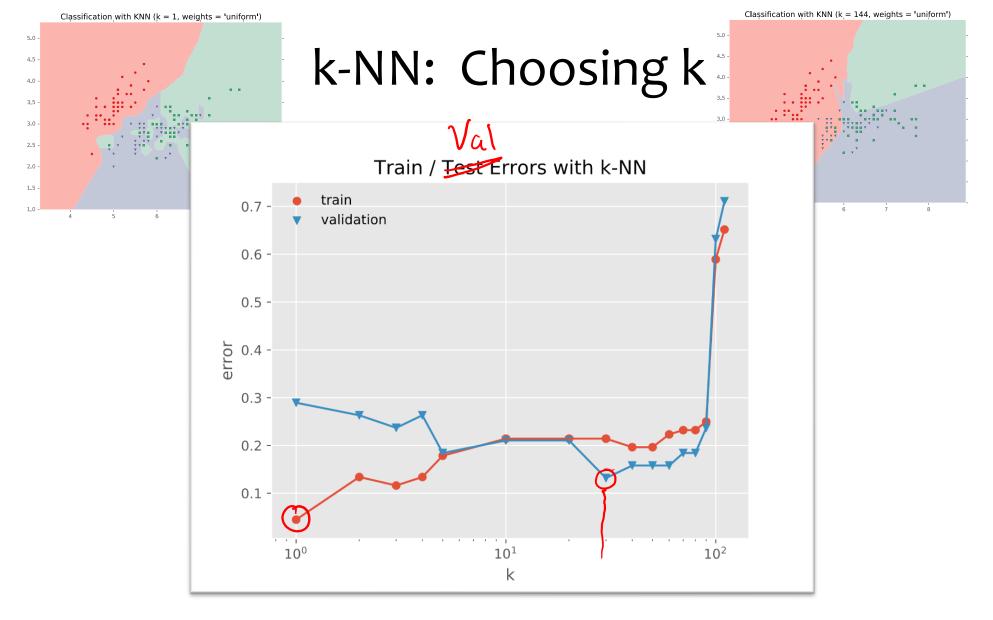


k=N: Majority Vote

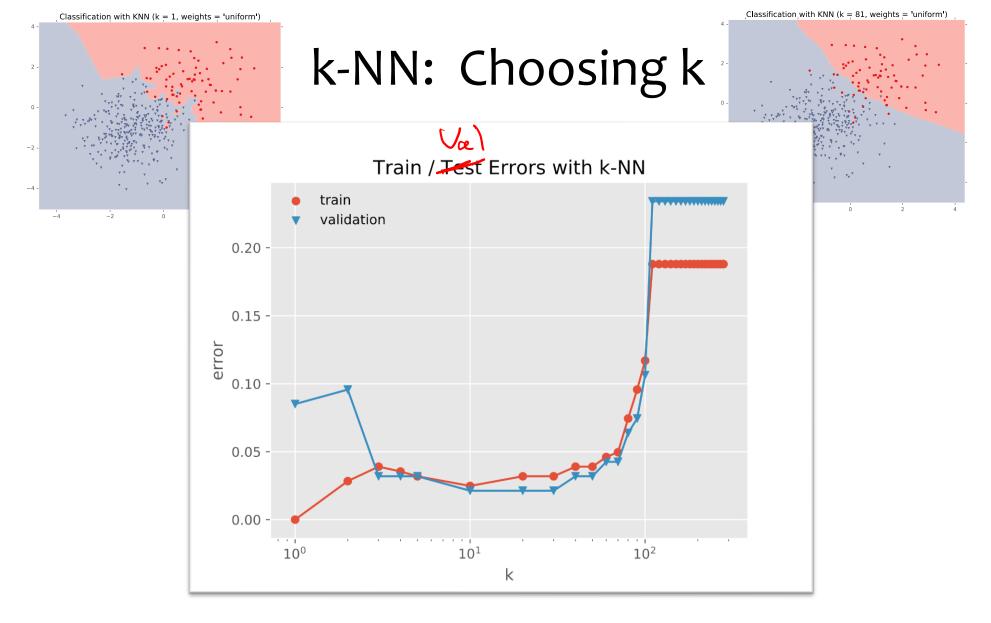


Example of Hyperparameter Optimization





Fisher Iris Data: varying the value of k



Gaussian Data: varying the value of k

Validation

Why do we need validation?

- Choose hyperparameters
- Choose technique
- Help make any choices beyond our parameters

But now, we have another choice to make!

How do we split training and validation?

Trade-offs

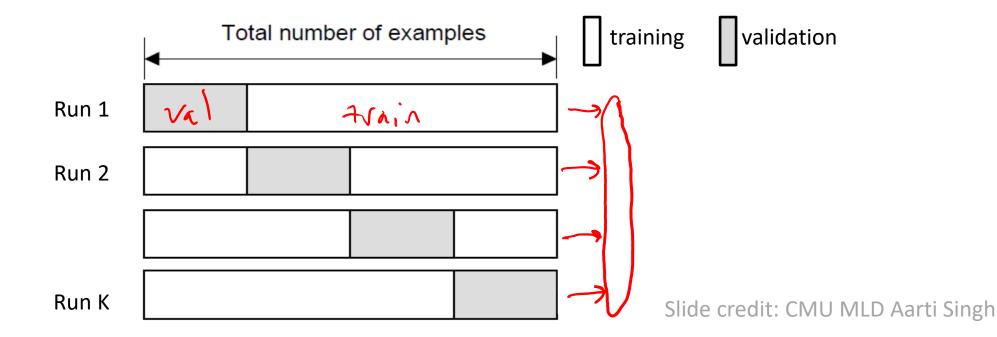
- More held-out data, better meaning behind validation numbers
- More held-out data, less data to train on!

Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Do K runs: train using K-1 partitions and calculate validation error on remaining partition (rotating validation partition on each run). Report average validation error



Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=N partitions Equivalently, train on N-1 samples and validate on only one sample per run for N runs

	Total number of examples	☐ training	validation
Run 1			
Run 2			
	:		
Run K	•	SI	ide credit: CMU MLD Aarti Singh

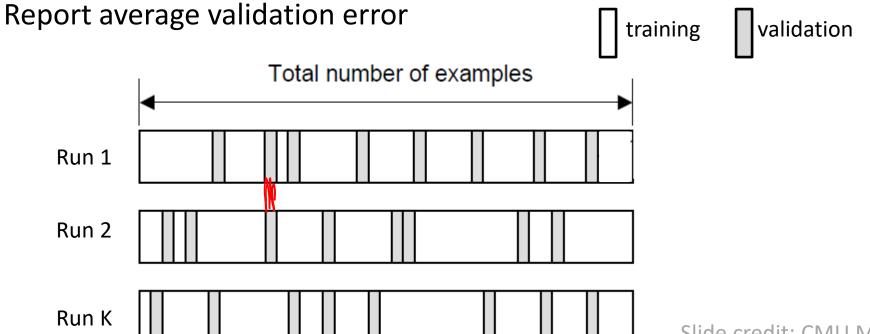
Cross-validation

Random subsampling

Randomly subsample a fixed fraction αN (0< α <1) of the dataset for validation.

Compute validation error with remaining data as training data.

Repeat K times



Practical Issues in Cross-validation

How to decide the values for K and α ?

- Large K
 - + Validation error can approximate test error well
 - Observed validation error will be unstable (few validation pts)
 - The computational time will be very large as well (many experiments)
- Small K
 - + The # experiments and, therefore, computation time are reduced
 - + Observed validation error will be stable (many validation pts)
 - Validation error cannot approximate test error well

Common choice: K = 10, α = 0.1 \odot

Piazza Poll 1

0,0.01,0.02...

Say you are choosing amongst 10 discrete values of a decision tree *mutual information threshold*, and you want to do K=10-fold cross-validation.

How many times do I have to train my model?

- A. 0
- B. 1
- C. 10 30%
- D. 20

E.
$$100 \rightarrow 60\%$$

Piazza Poll 1

Say you are choosing amongst 10 discrete values of a decision tree *mutual information threshold*, and you want to do K=10-fold cross-validation.

How many times do I have to train my model?

A. 0

B. 1

C. 10

D. 20

E. 100

F. 10¹⁰

Model Selection

WARNING (again):

- This section is only scratching the surface!
- Lots of methods for hyperparameter optimization: (to talk about later)
 - Grid search
 - Random search
 - Bayesian optimization
 - Graduate-student descent
 - ...

Main Takeaway:

Model selection / hyperparameter optimization is just another form of learning

Model Selection Learning Objectives

You should be able to...

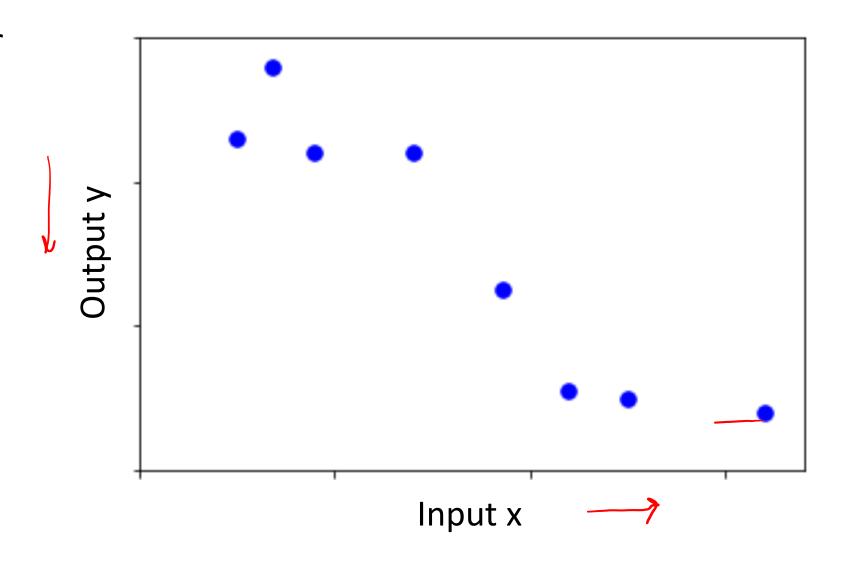
- Plan an experiment that uses training, validation, and test datasets to predict the performance of a classifier on unseen data (without cheating)
- Explain the difference between (1) training error, (2)
 validation error, (3) cross-validation error, (4) test error, and (5) true error
- For a given learning technique, identify the model, learning algorithm, parameters, and hyperparamters

LINEAR REGRESSION AND OPTIMIZATION

Breakout Room

In your breakout room

Come up with a story for this data



Lecture 2: Problem Formulation

Experience
$$D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N} \times \{(x^{(i)}, y^{(i$$

Performance measure

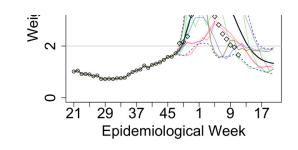
Regression

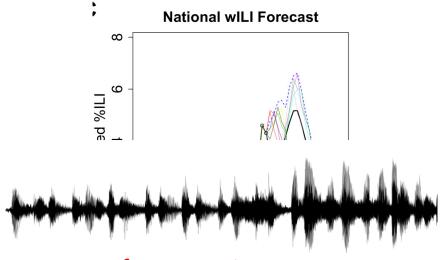
Goal:

- Given a training dataset of pairs (x,y)
 where
- y is a continuous, rather than a label
- Learn a function (aka. curve or line) $\hat{y} = h(x)$ that best fits the training data

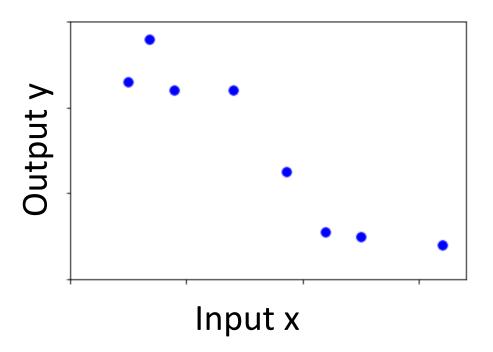
Example Applications:

- Stock price prediction
- Forecasting epidemics
- Speech synthesis
- Generation of images (e.g. Deep Fake)

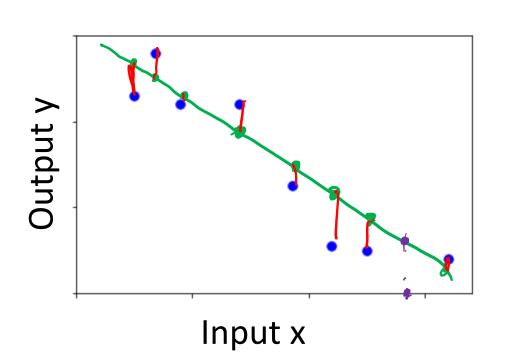




Lecture 2: Problem Formulation



Lecture 2: Problem Formulation



Regression

$$X \in \mathbb{R}$$

 $Y \in \mathbb{R}$
 $Y = h(x) = mx$

egression
$$x \in \mathbb{R}$$

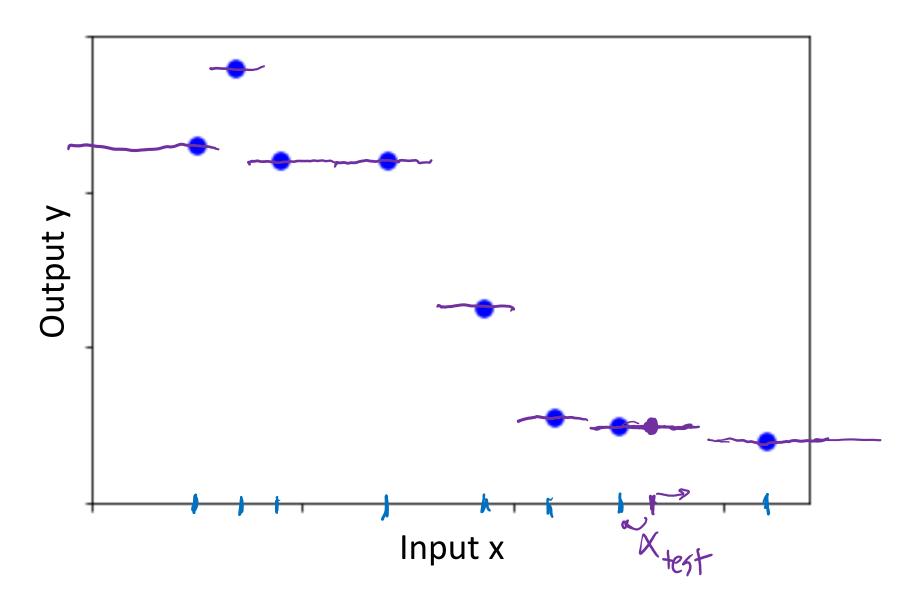
$$y \in \mathbb{R}$$

$$y' = h(x) = m \times + b$$

$$y' = h(x^{(i)})$$

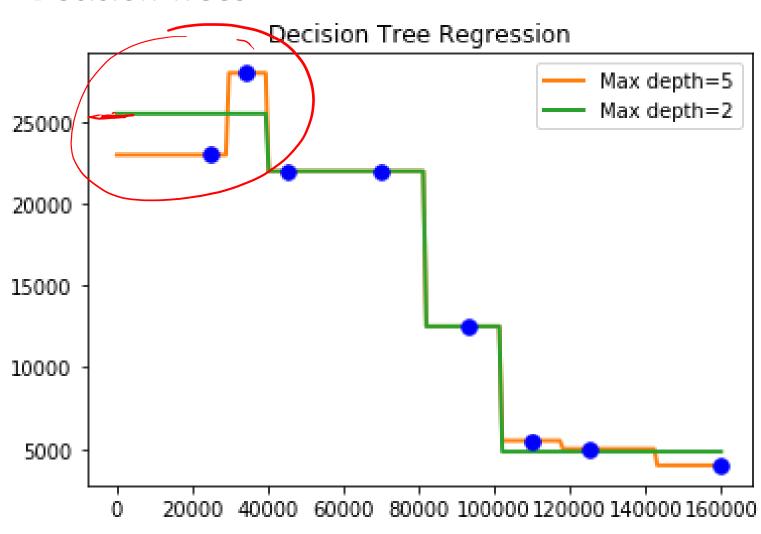
Sum sq error
$$\frac{1}{\sqrt{2}} \sum_{i=1}^{\infty} (y^{i} - y^{i})^{2}$$
Mean sq error

Regression: Nearest Neighbor

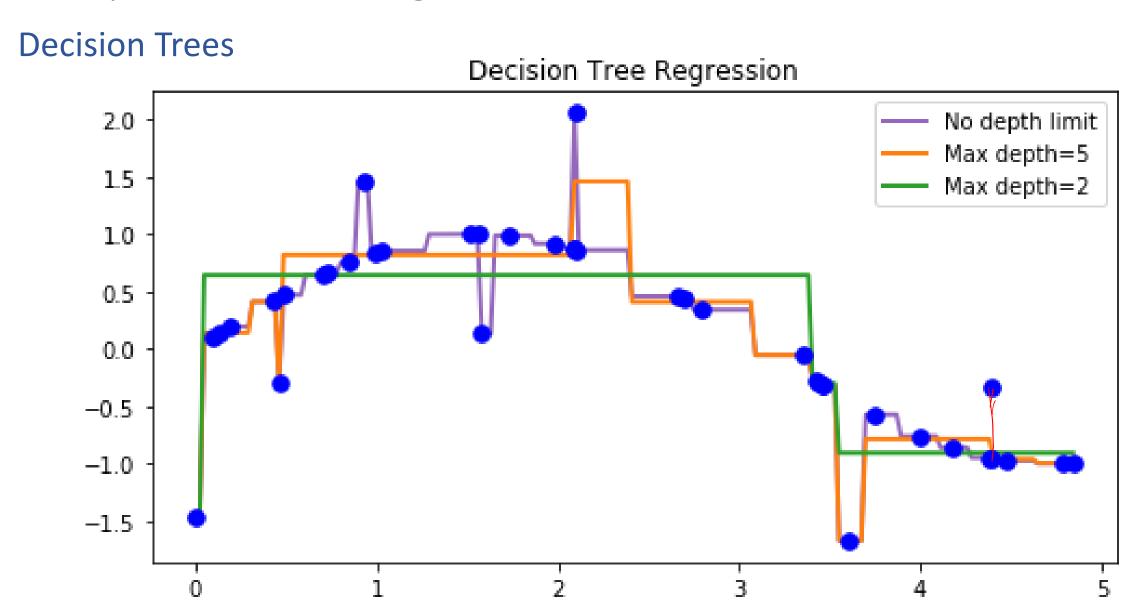


Regression

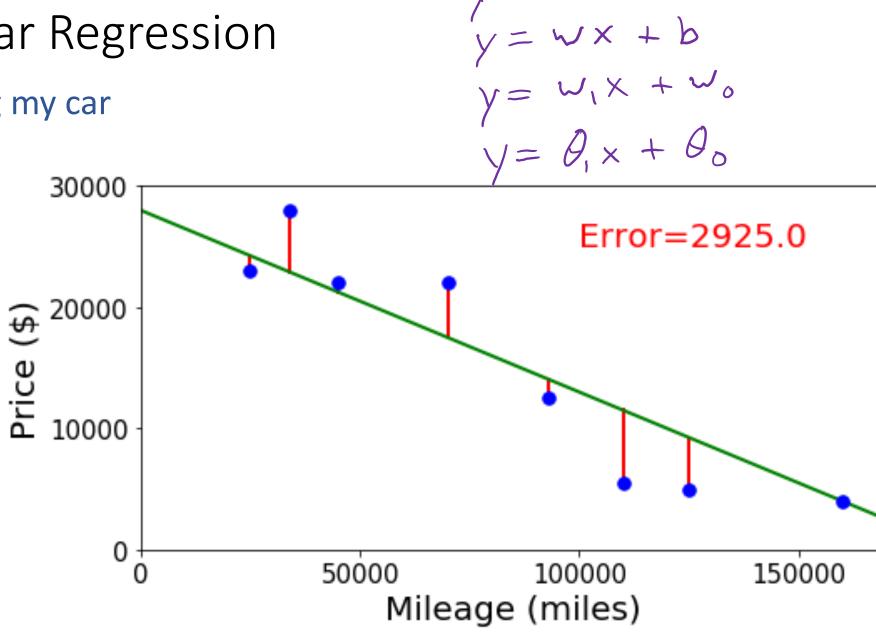
Decision Trees



Nonparametric Regression



Selling my car



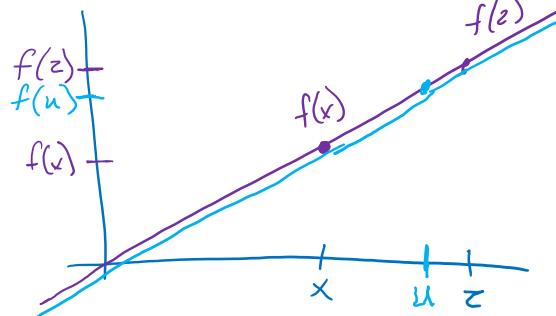
Linear Function

Linear function

If f(x) is linear, then:

$$f(x+z) = f(x) + f(z)$$

•
$$f(\alpha x) = \alpha f(x) \quad \forall \alpha$$



Linear in Higher Dimensions

1. D $y = W \times Jb$ 2-D $y = V_1 \times_1 + W_2 \times_2 + b$

What are these linear shapes called for 1-D, 2-D, 3-D, M-D input?

$$\rightarrow y = \mathbf{w}^T \mathbf{x} + b$$

$$x \in \mathbb{R}$$

$$x \in \mathbb{R}^2$$

$$x \in \mathbb{R}^3$$

$$x \in \mathbb{R}^{M}$$

$$\mathbf{w}^T \mathbf{x} + b = 0$$

$$\mathbf{w}^T \mathbf{x} + b \ge 0$$

Linear algebra formulation

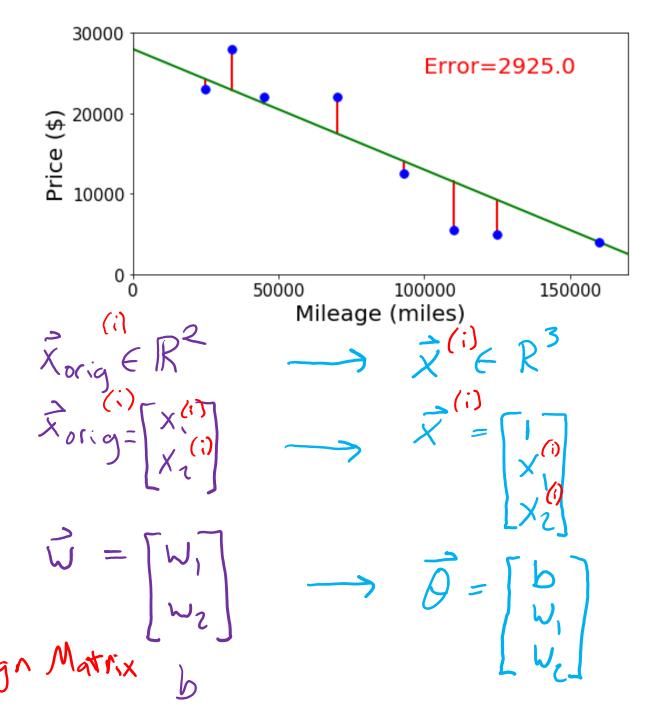
$$y = \overrightarrow{w}^{T} \times_{orig} b$$

$$y^{(i)} = \overrightarrow{w}^{T} \times_{orig} + b$$

$$y^{(i)} = \overrightarrow{\theta}^{T} \overrightarrow{x} = \overrightarrow{x}^{T} \overrightarrow{\theta}$$

$$y^{(i)} = \overrightarrow{\theta}^{T} \overrightarrow{x} = \overrightarrow{x}^{T} \overrightarrow{\theta}$$

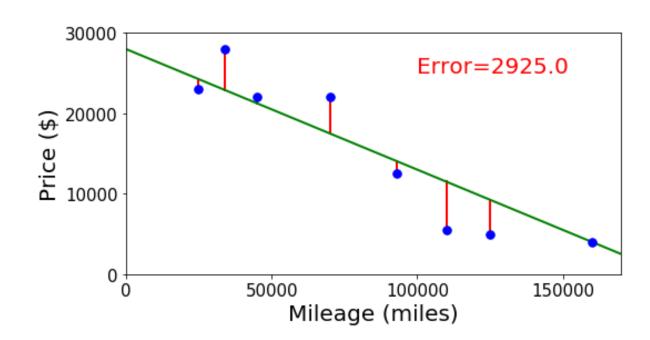
$$y^{(i)} = (-x)^{(i)} - (x)^{(i)} - (x)^{$$



Error and objectives

$$J(w,b) = \frac{1}{N} \sum_{i=1}^{N} (\gamma^{(i)} - \hat{\gamma}^{(i)})^{2}$$

$$\hat{\gamma}^{(i)} = w \times^{(i)} + b$$

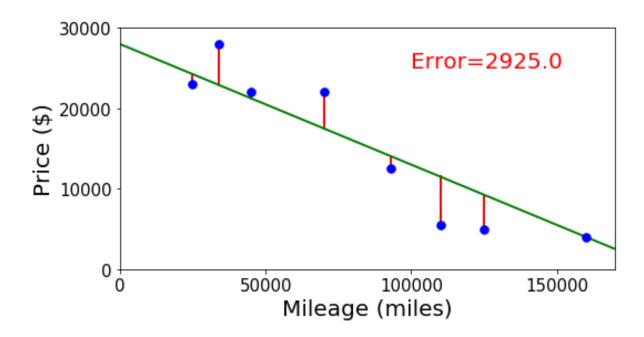


$$J(W_{1} W_{2} b) = \frac{1}{N} \leq (y^{(i)} - y^{(i)})^{2}$$

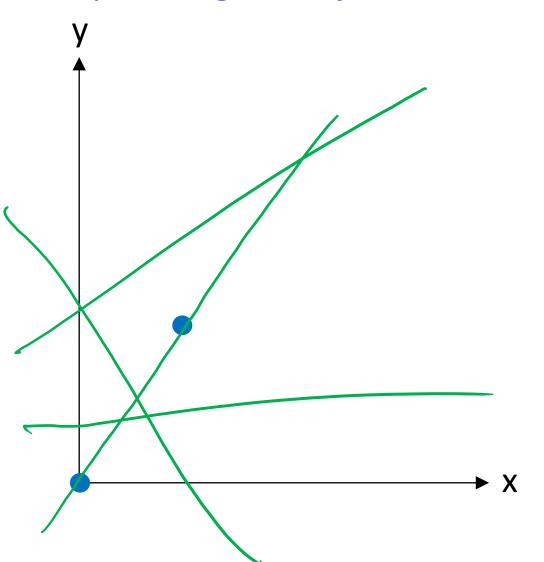
$$\hat{y}^{(i)} = w_{1} x_{1}^{(i)} + w_{2} x_{2}^{(i)} + b$$

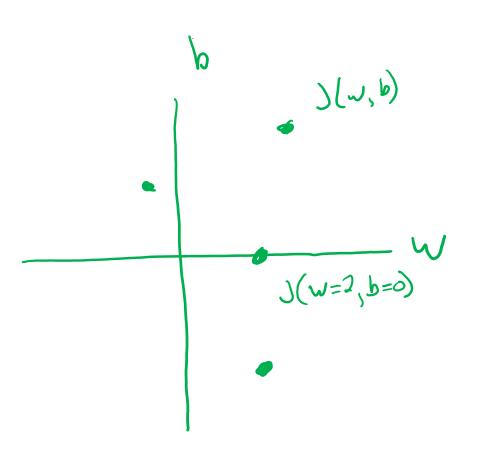
$$J(w_{i},...,w_{M},b) = M_{i}(i) = M_{i}(i) + b$$

Linear algebra formulation



Optimizing the objective





Piazza Poll 2

For fixed data and fixed slope, w, what shape do we get by plotting MSE objective vs intercept, b?

- B. Plane
- C. Half-plane
- D. Convex Parabola (U-shape) 30% → 60%
 - E. Concave parabola (up-side-down U)
 - F. None of the above

$$J(w,b) = \frac{1}{2} \left[\left(y^{(1)} - \left(w x^{(1)} + b \right) \right)^2 + \left(y^{(2)} - \left(w x^{(2)} + b \right) \right)^2 \right]$$

