Announcements

Assignments

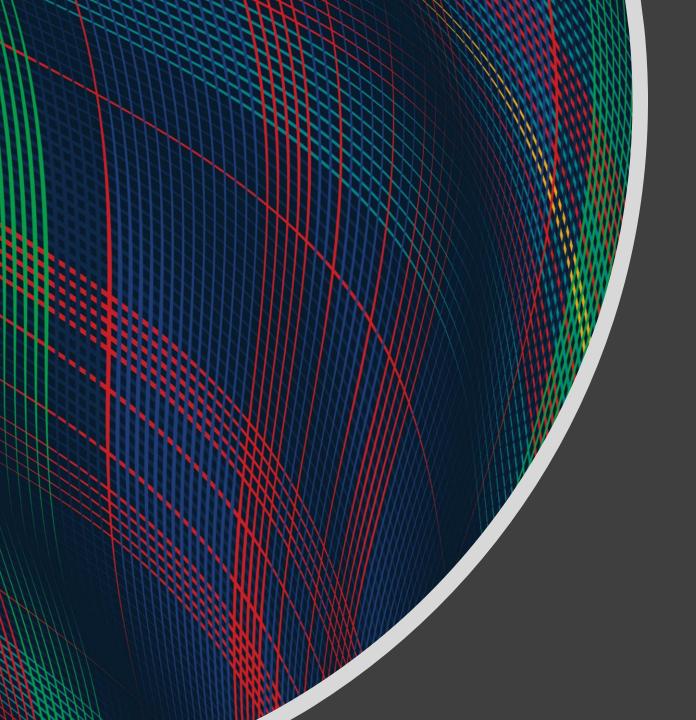
- HW8: due Thu, 12/3, 11:59 pm
- HW9
 - Out Friday
 - Due Wed, 12/9, 11:59 pm
 - The two slip days are free (last possible submission Fri, 12/11, 11:59 pm)

Final Exam

- Mon, 12/14
- Stay tuned to Piazza for more details

Wrap-up MDP/RL

RL slides

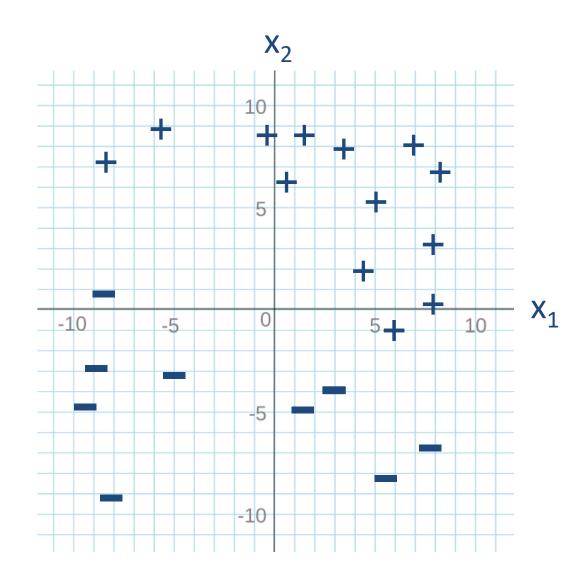


Introduction to Machine Learning

Support Vector Machines

Instructor: Pat Virtue

Linear Classification

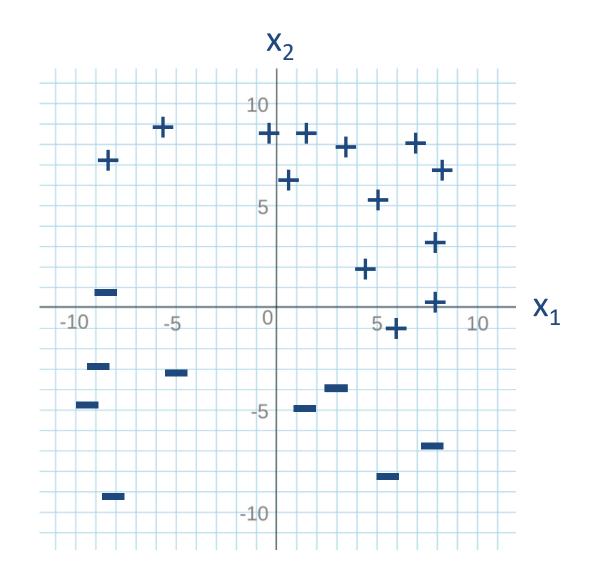


Margin

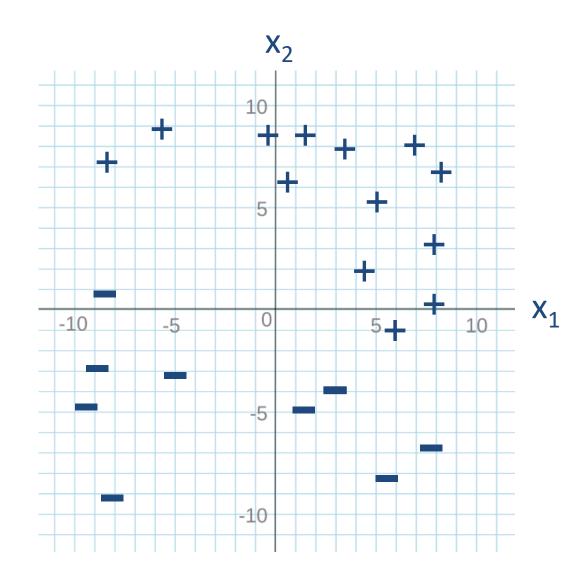
Given a linearly separable dataset and a linear separator defined by the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$,

the margin, γ , is the distance from this hyperplane to the closest point, $x^{(i)}$, in a dataset.

The closest point may be on either side of the hyperplane.



Max Margin



SVM were super popular right before the current deep learning craze

Important concepts withing SVMs

- Max-margin classification
- Optimization
 - Constrained optimization
 - Quadratic program
 - Primal → dual
 - Lagrange Multipliers
- Support non-linear classification
 - Feature maps
 - Kernel trick

Piazza Poll 1

Which is the correct vector w?

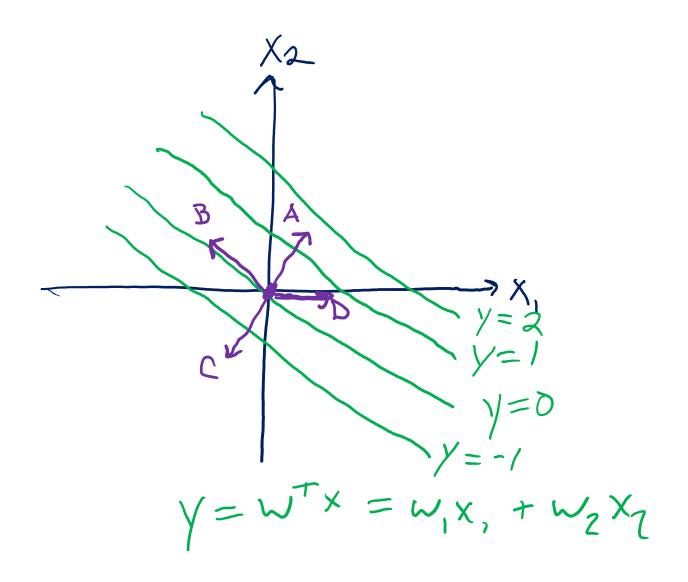
A.

B.

C.

D.

E. I don't know



Linear Program

```
\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}<br/>s.t. \mathbf{A}\mathbf{x} \leq \mathbf{b}
```

Linear Program

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

Solvers

- Simplex
- Interior point methods

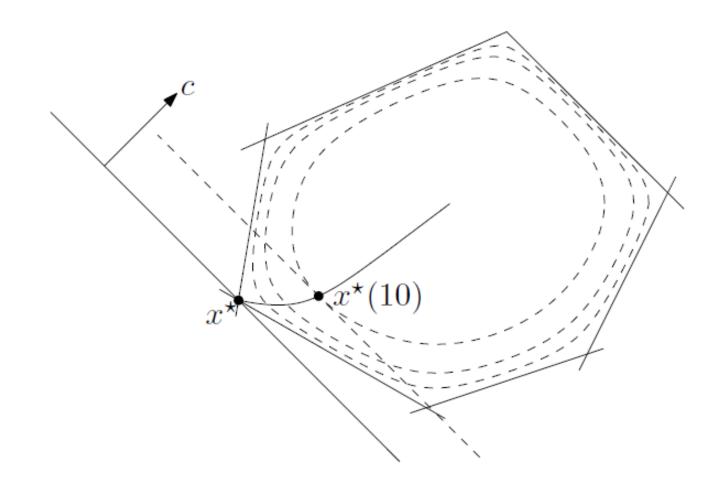


Figure: Fig 11.2 from Boyd and Vandenberghe, Convex Optimization

Linear Program

$$\min_{x} \quad c^{T}x$$
s.t.
$$Ax \leq b$$

Solvers

- Simplex
- Interior point methods

$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

Linear Program

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

Solvers

- Simplex
- Interior point methods

Quadratic Program

$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

Solvers

- Conjugate gradient
- Ellipsoid method
- Interior point methods

Linear Program

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

Solvers

- Simplex
- Interior point methods

Quadratic Program

$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$

s.t.
$$A \mathbf{x} \leq \mathbf{b}$$

Special Case

- If Q is positive-definite, the problem is convex
- \mathbf{Q} is positive-definite if: $\mathbf{v}^T \mathbf{Q} \mathbf{v} > 0 \quad \forall \ \mathbf{v} \in \mathbb{R}^M \setminus \mathbf{0}$
- A symmetric Q is positivedefinite if all of its eigenvalues are positive

Optimization (from Lecture 7)

Linear function

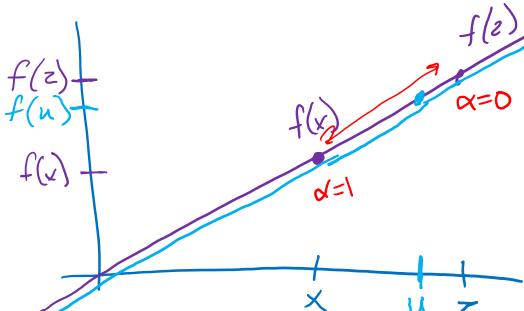
 $\propto = 0.25$

If f(x) is linear, then:

$$f(x+z) = f(x) + f(z)$$

$$f(\alpha x) = \alpha f(x) \quad \forall \alpha$$

$$= f(\alpha x + (1 - \alpha)z) = \alpha f(x) + (1 - \alpha)f(z) \quad \forall \alpha$$



Optimization (from Lecture 7)

Convex function

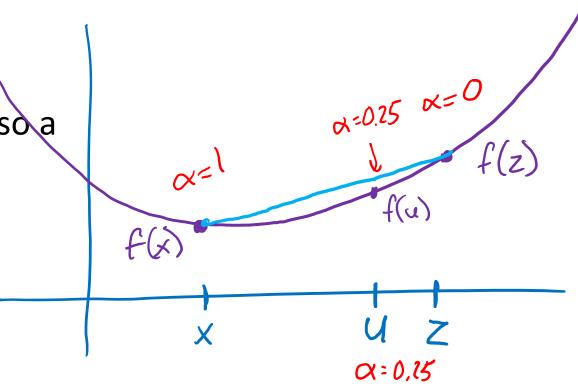
If f(x) is convex, then:

•
$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{z}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{z}) \quad \forall \ 0 \le \alpha \le 1$$

Convex optimization

If f(x) is convex, then:

Every local minimum is also a global minimum ©



Linear Program

$$\min_{\mathbf{x}} \quad \mathbf{c}^T \mathbf{x}$$

s.t.
$$\mathbf{A}\mathbf{x} \leq \mathbf{b}$$

Solvers

- Simplex
- Interior point methods

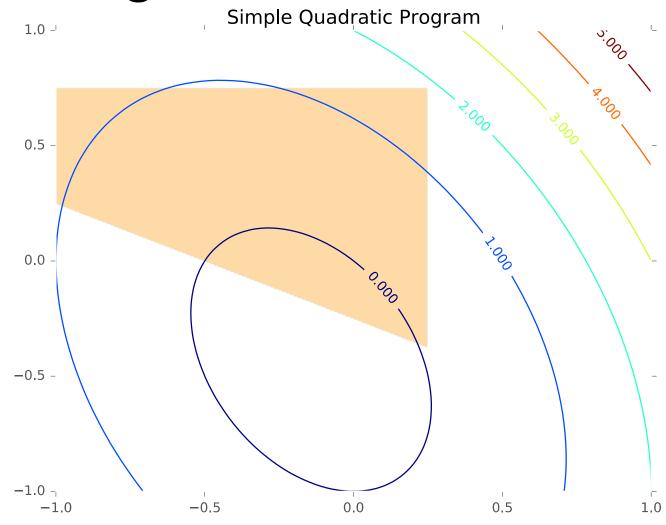
Quadratic Program

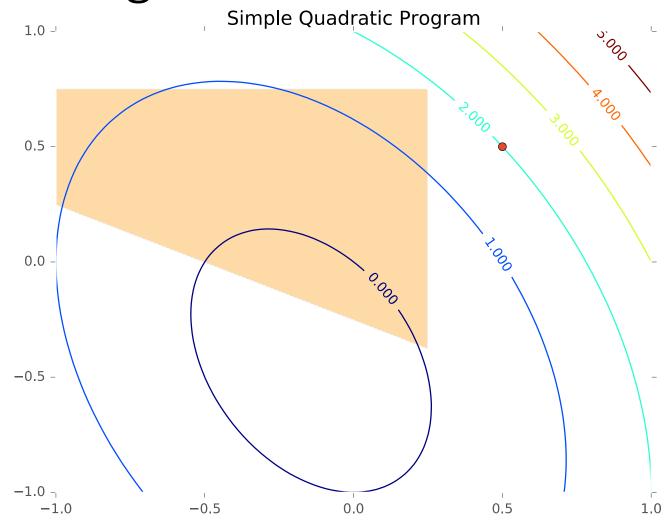
$$\min_{\mathbf{x}} \quad \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$

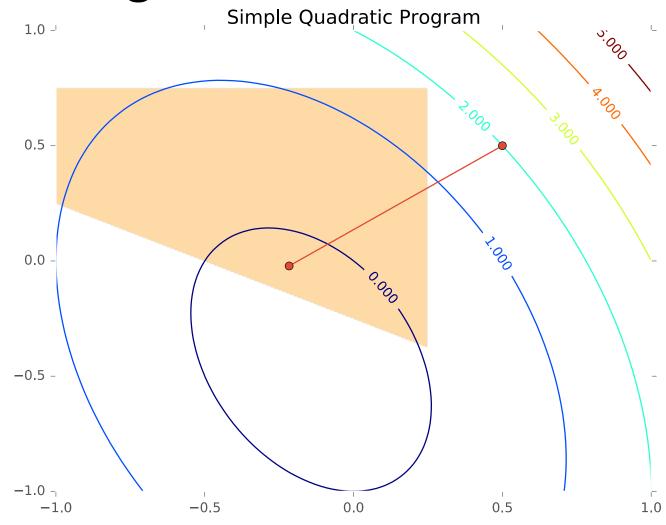
s.t.
$$A \mathbf{x} \leq \mathbf{b}$$

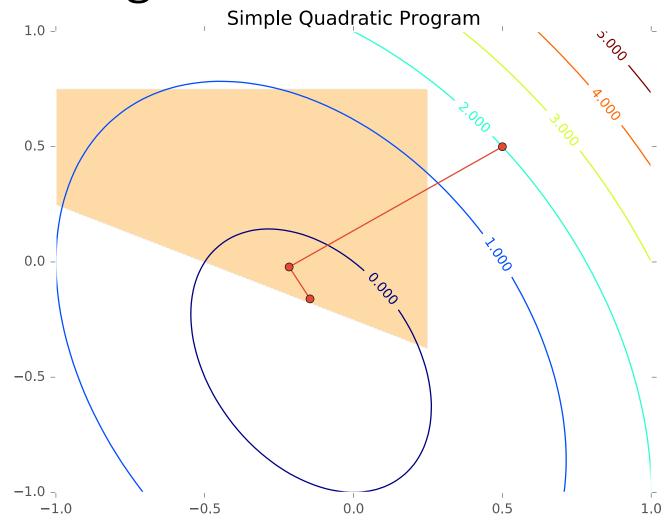
Special Case

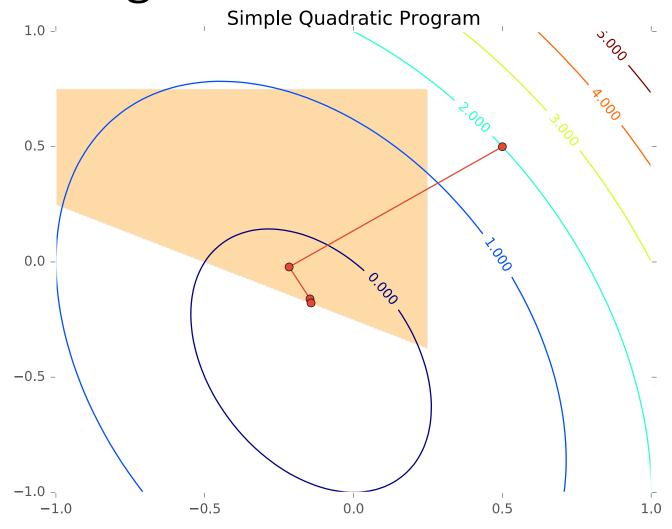
- If Q is positive-definite, the problem is convex
- \mathbf{Q} is positive-definite if: $\mathbf{v}^T \mathbf{Q} \mathbf{v} > 0 \quad \forall \ \mathbf{v} \in \mathbb{R}^M \setminus \mathbf{0}$
- A symmetric Q is positivedefinite if all of its eigenvalues are positive



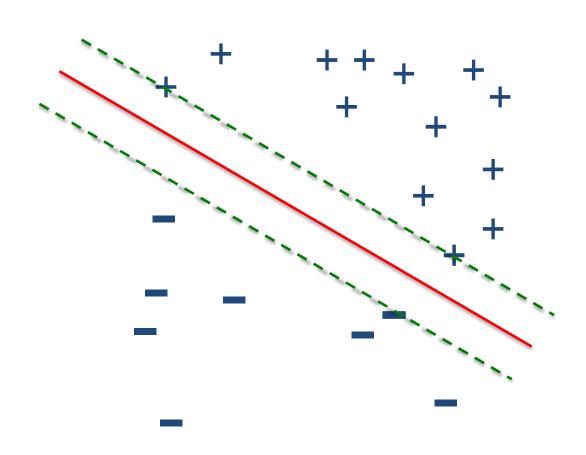






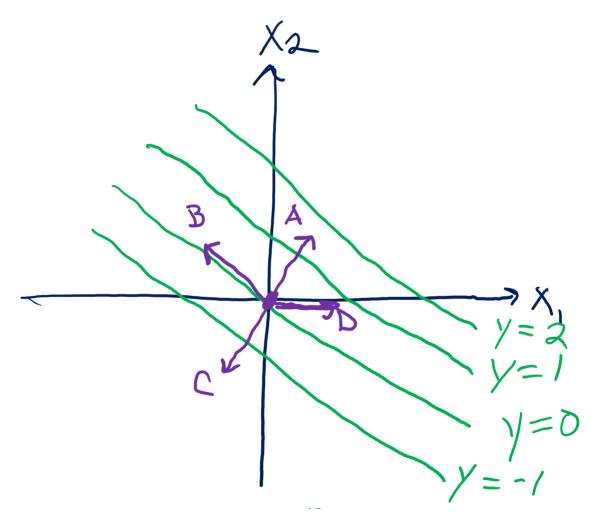


Find linear separator with maximum margin

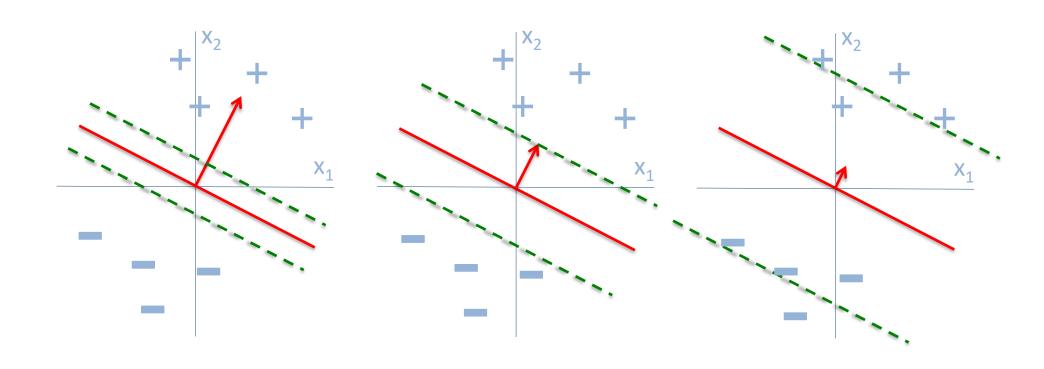


Piazza Poll 2

As the magnitude of w increases, will the distance between the contour lines of $y = \mathbf{w}^T \mathbf{x} + b$ increase or decrease?



Find linear separator with maximum margin



Linear Separability

Data

$$\mathcal{D} = \left\{ x^{(i)}, y^{(i)} \right\}_{i=1}^{N} \quad x \in \mathbb{R}^{M}, \ y \in \{-1, +1\}$$

Linearly separable iff:

$$\exists w, b$$
 s.t. $w^T x^{(i)} + b > 0$ if $y^{(i)} = +1$ and $w^T x^{(i)} + b < 0$ if $y^{(i)} = -1$

Linear Separability

Data

$$\mathcal{D} = \left\{ x^{(i)}, y^{(i)} \right\}_{i=1}^{N} \quad x \in \mathbb{R}^{M}, \ y \in \{-1, +1\}$$

Linearly separable iff:

$$\exists w, b \qquad s.t. \quad w^T x^{(i)} + b > 0 \quad \text{if} \quad y^{(i)} = +1 \quad \text{and}$$

$$w^T x^{(i)} + b < 0 \quad \text{if} \quad y^{(i)} = -1$$

$$\Leftrightarrow \exists w, b \quad s.t. \quad y^{(i)} (w^T x^{(i)} + b) > 0$$

$$\Leftrightarrow \exists w, b, c \quad s.t. \quad y^{(i)} (w^T x^{(i)} + b) \ge c \quad \text{and} \quad c > 0$$