Warm-up as You Log In

In-Class Exercise:

Debug the following program which is (incorrectly) attempting to run SGD for multinomial logistic regression

```
Buggy Program:

while not converged:

for i in shuffle([1,...,N]):

for k in [1,...,K]:

theta[k] = theta[k] - gamma * grad(x[i], y[i], theta, k)

qrad[k]
```

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative log-likelihood of the training example (x[i],y[i]) with respect to vector theta[k]. gamma is the learning rate. N = # of examples. K = # of output classes. M = # of features. theta is a K by M matrix.

Announcements

Assignments

- HW4
 - Wed, 10/14, 11:59 pm

Midterm

- Almost finished, grades will hopefully be out later today
- Come talk to us if you're not happy with how you are doing in the course

Plan

Today

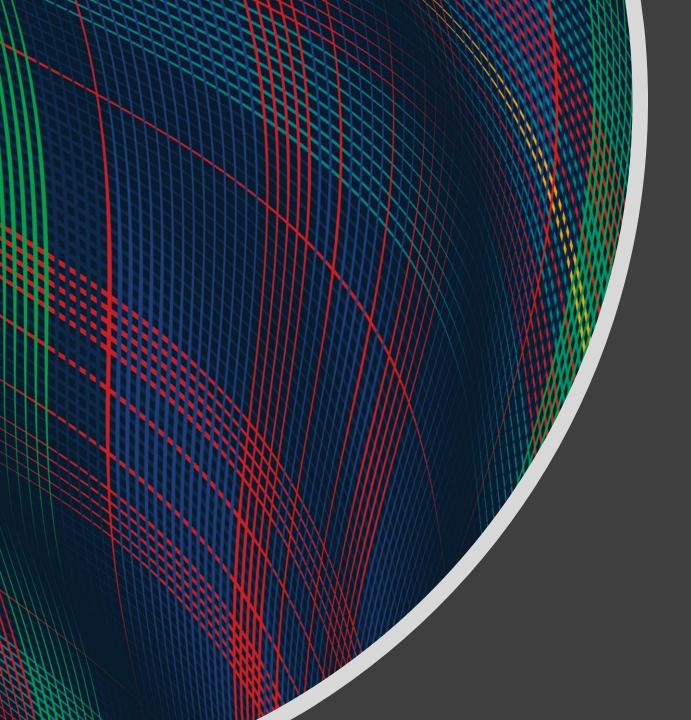
- Wrap-up multi-class logistic regression
- Feature engineering
 - Make our linear methods more powerful!!
- Regularization
 - Make sure they aren't too powerful ©

Wrap-up Logistic Regression

Logistic regression slides

Feedback Survey

See Piazza for link



Introduction to Machine Learning

Feature Engineering and Regularization

Instructor: Pat Virtue

SPAM Classification

Predicting Rating from Written Movie Review

$$x = \frac{3}{5} + ex \frac{3}{5}$$

$$\phi(x) \in \mathbb{R}^{m}$$

$$(\phi_{1}(x)) \leftarrow \# + imes \quad fantastic$$

$$\phi_{2}(x)$$

$$\vdots$$

$$\phi_{m}(x)$$

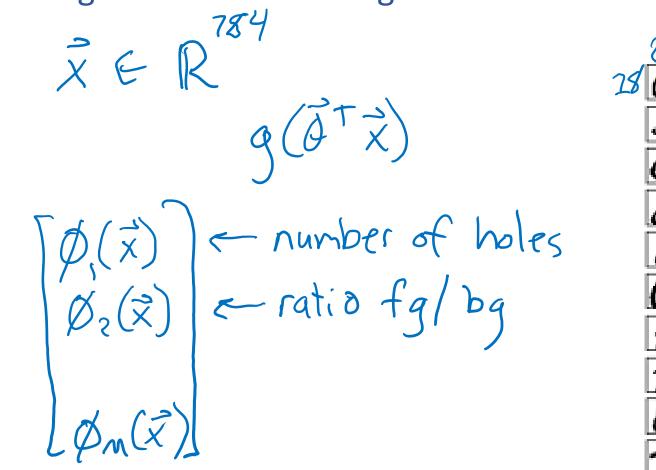
$$y = h(x)$$

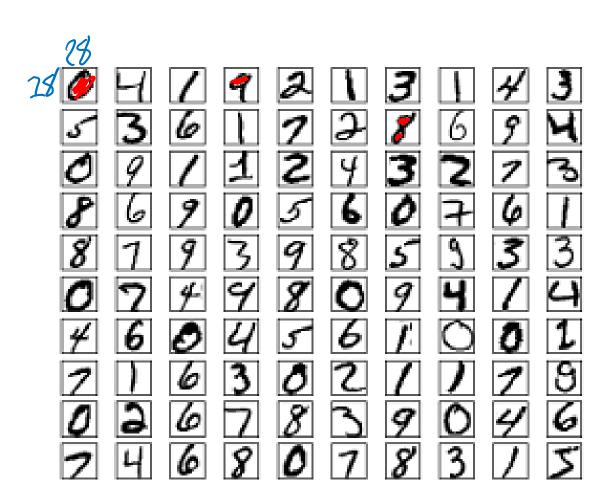
$$= g(\vec{\partial} \vec{x})$$

$$= g(\vec{\partial} \vec{x})$$

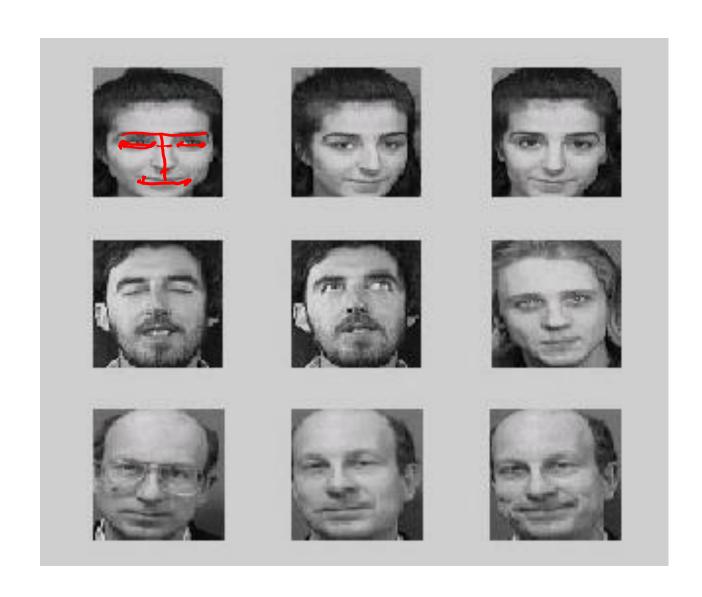
$$= g(\vec{\partial} \vec{x})$$

Images: Handwritten Digits





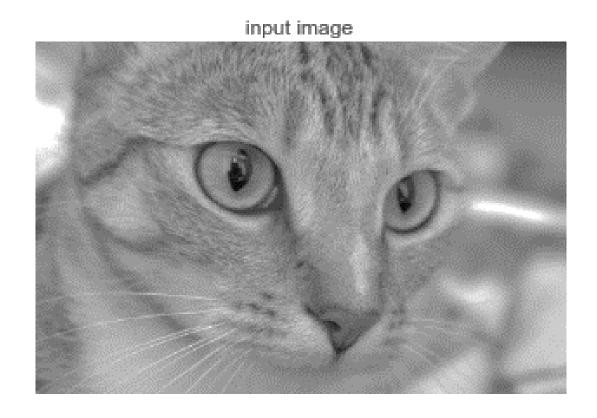
Images: Face Recognition

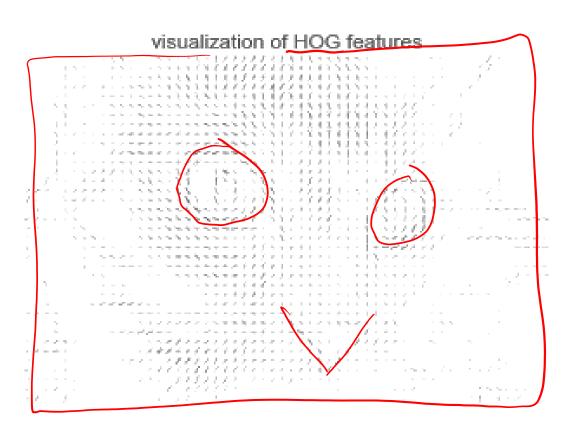


Images: Animal Classification

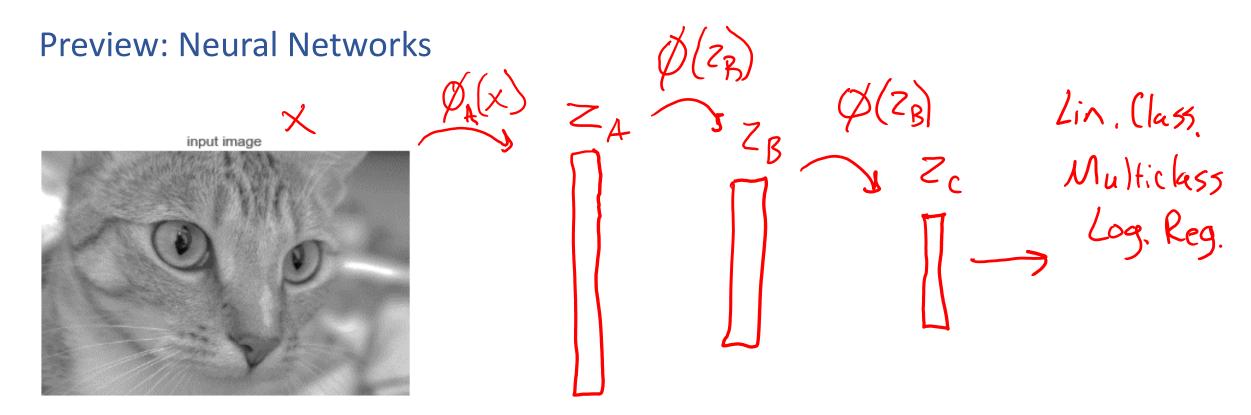
Image: ImageNet

Images: Animal Classification



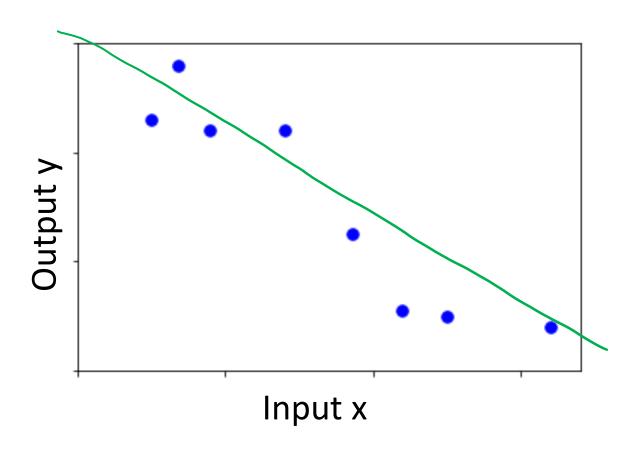


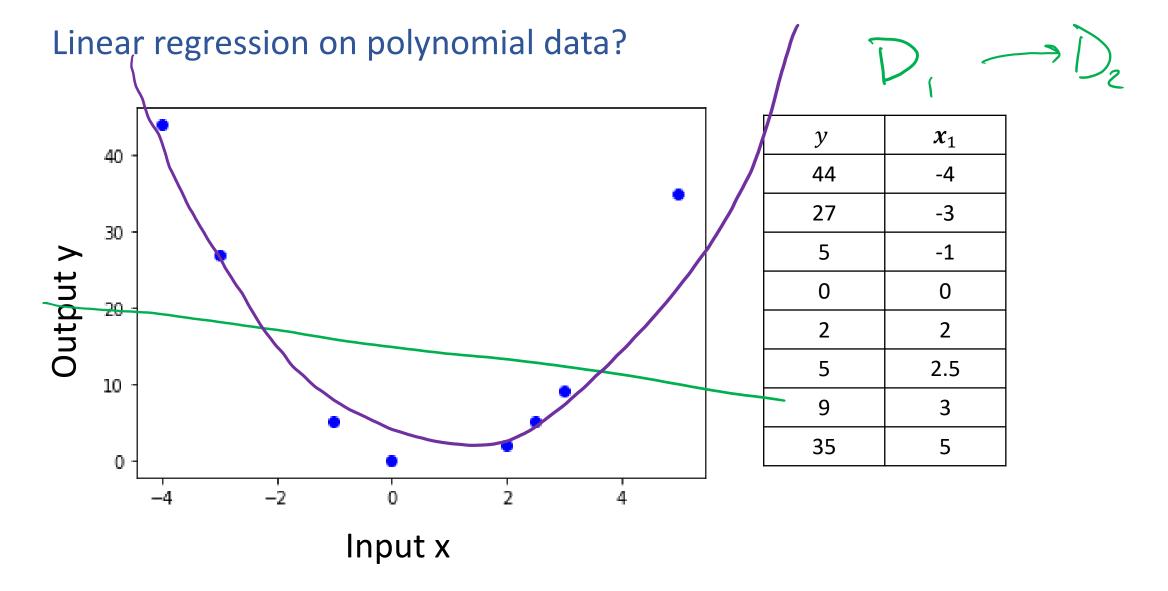
Preview: Neural Networks · linear Classification input image visualization of HOG features



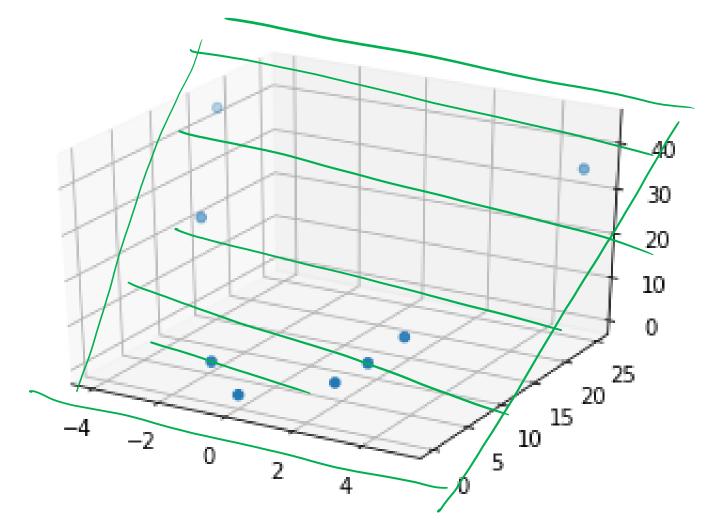
Linear Data

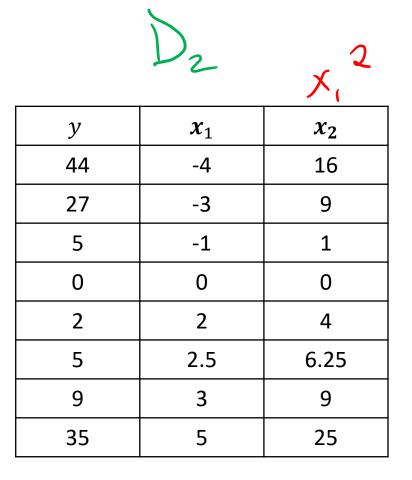
Regression on simple linear dataset





Regression on simple linear dataset

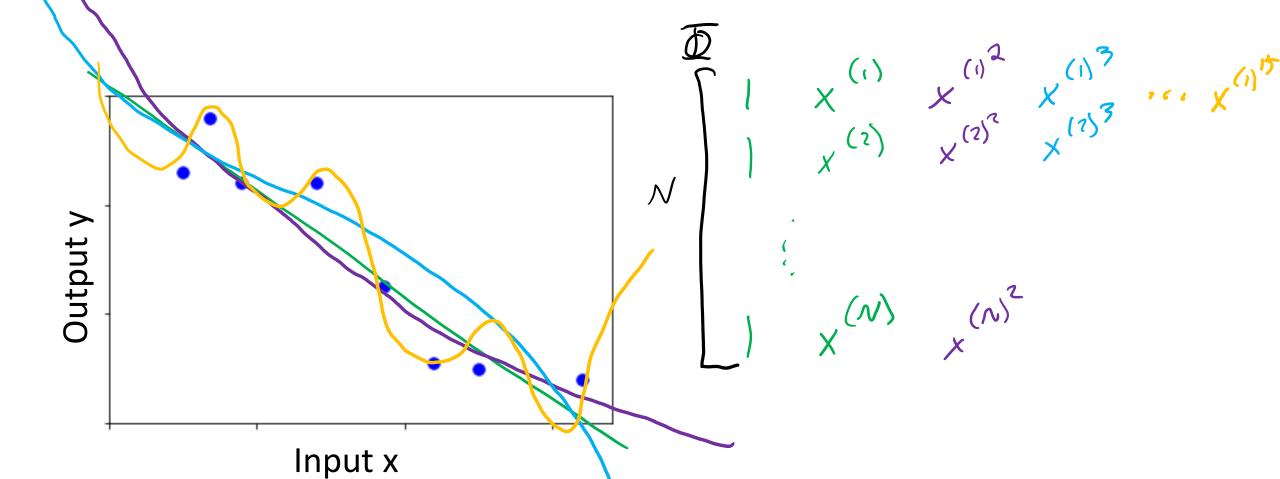




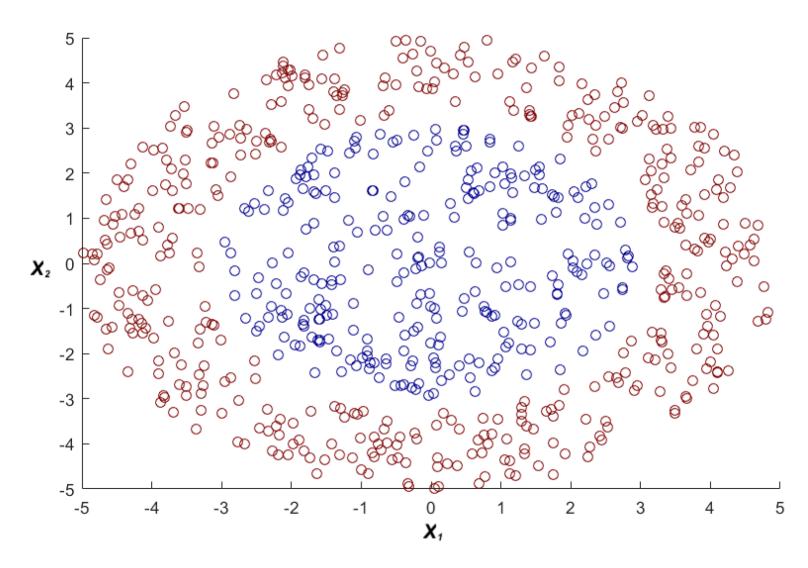
$$y = W_1 x_1 + W_2 x_2$$
 x_1^2

 $\times \longrightarrow \emptyset(\times)$

Polynomial feature map for linear regression

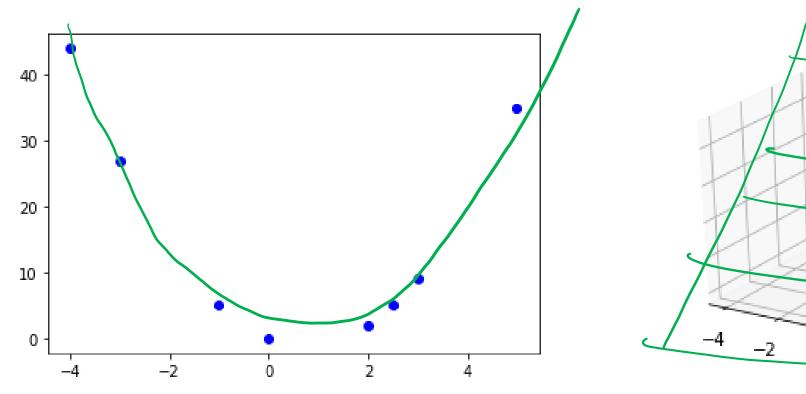


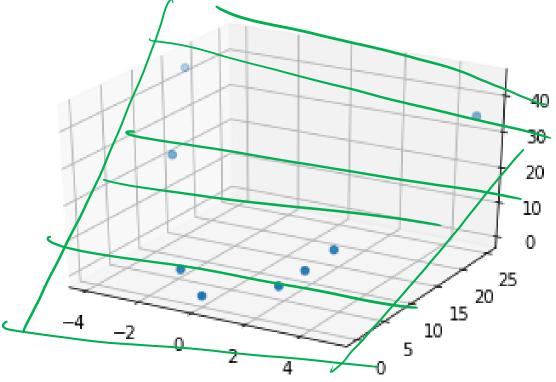
Polynomial feature map for linear classification



Feature Maps

Two ways to think about it

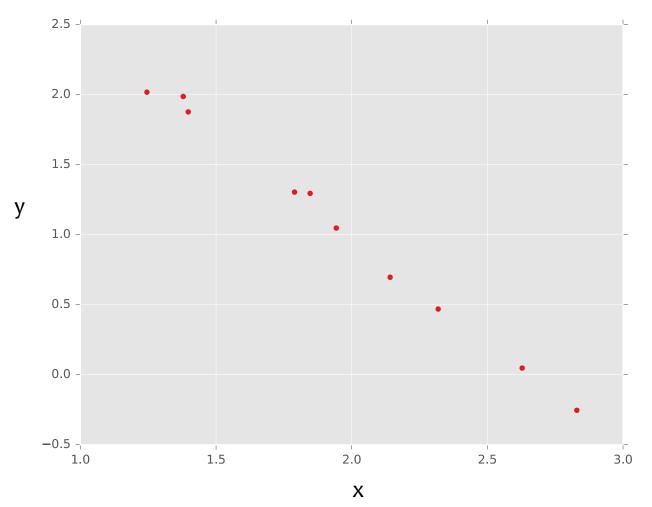




Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + \mathbf{b}$ where f(.) is a polynomial

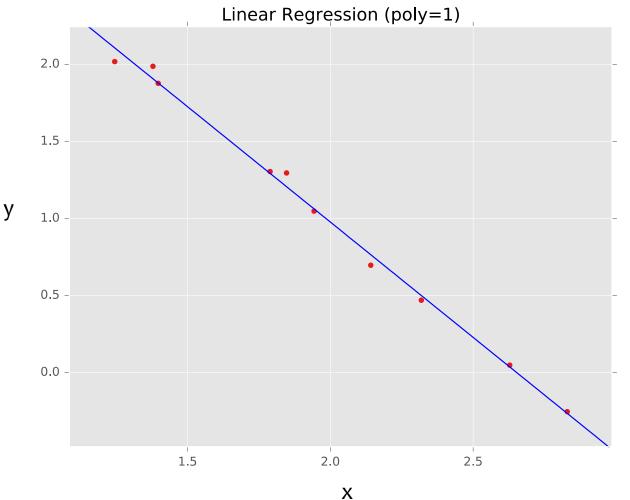
basis function

у	х
2.0	1.2
1.3	1.7
0.1	2.7
1.1	1.9



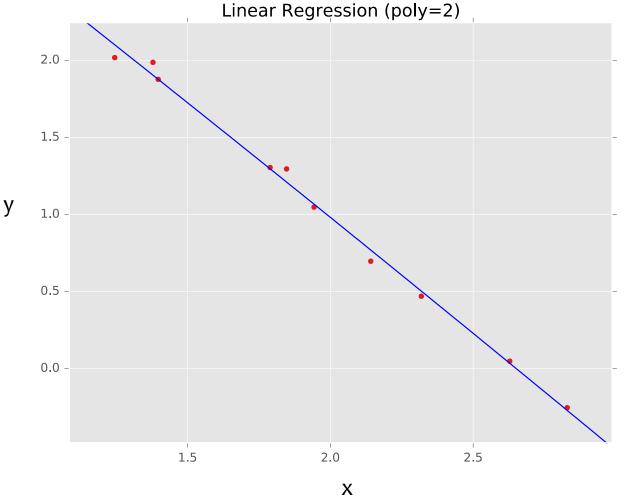
Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

у	х
2.0	1.2
1.3	1.7
0.1	2.7
1.1	1.9



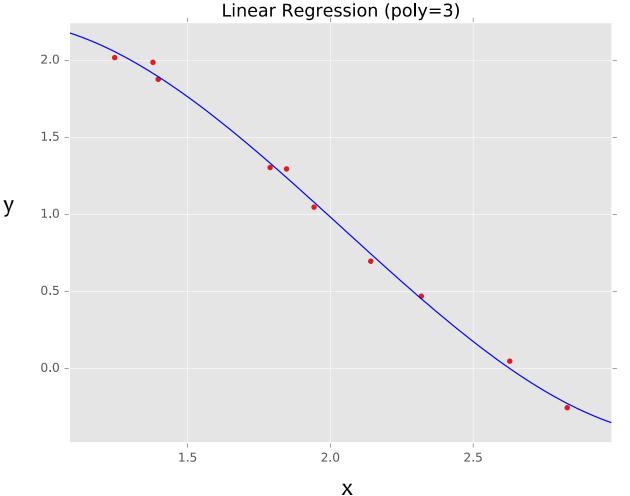
Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

у	х	X ²
2.0	1.2	(1.2)2
1.3	1.7	(1.7)2
0.1	2.7	(2.7)2
1.1	1.9	(1.9)2



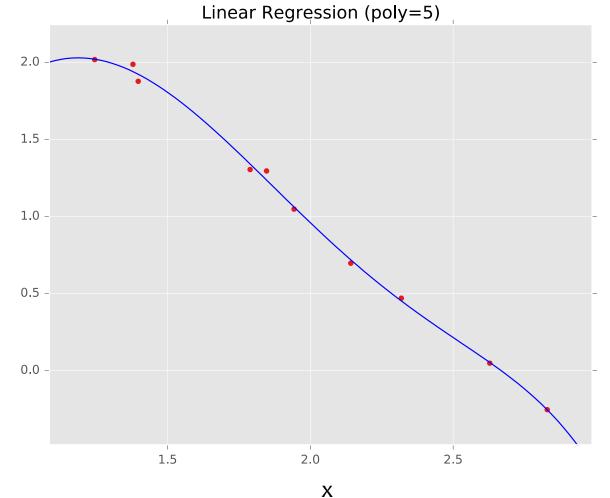
Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

у	x	X ²	x ³
2.0	1.2	(1.2)2	(1.2)3
1.3	1.7	(1.7)2	(1.7) ³
0.1	2.7	(2.7)2	(2.7) ³
1.1	1.9	(1.9)2	(1.9)3



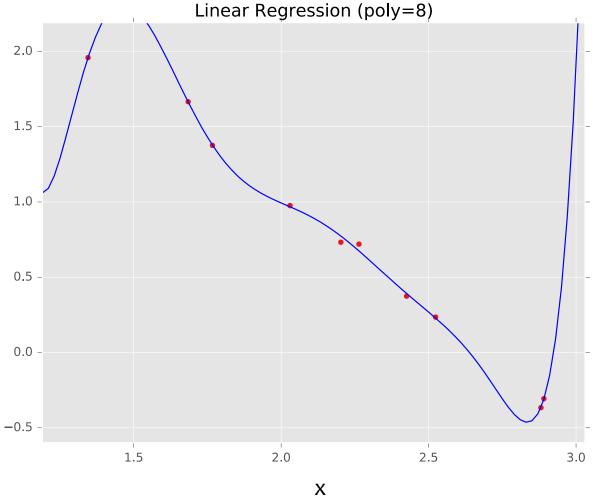
Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

у	x	X ²	•••	x ⁵	
2.0	1.2	(1.2)2	•••	(1.2)5	
1.3	1.7	(1.7)2		(1.7)5	
0.1	2.7	(2.7)2	•••	(2.7)5	y
1.1	1.9	(1.9)2	•••	(1.9)5	-



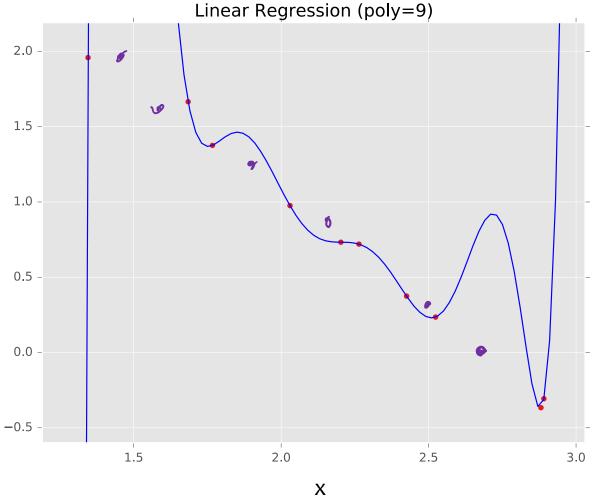
Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + \mathbf{b}$ where f(.) is a polynomial basis function

у	х	X ²	•••	x ⁸	
2.0	1.2	(1.2)2	•••	(1.2)8	
1.3	1.7	(1.7)2	•••	(1.7)8	
0.1	2.7	(2.7)2	•••	(2.7)8	у
1.1	1.9	(1.9)2		(1.9)8	

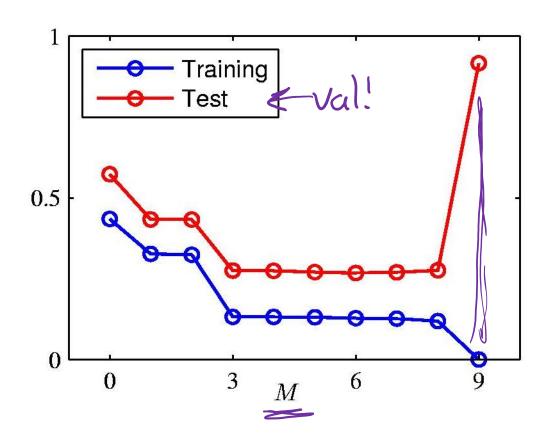


Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + b$ where f(.) is a polynomial basis function

у	x	X ²		x ⁹	
2.0	1.2	(1.2)2	•••	(1.2)9	
1.3	1.7	(1.7)2	•••	(1.7)9	
0.1	2.7	(2.7)2	•••	(2.7)9	y
1.1	1.9	(1.9)2		(1.9)9	



Over-fitting



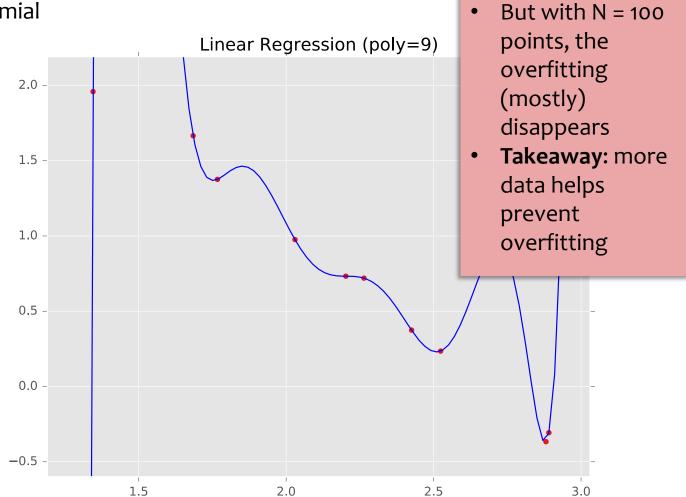
Polynomial Coefficients

	M = 0	M = 1	M = 3	M = 9
θ_0	0.19	0.82	0.31	0.35
$\Big/ \qquad heta_1$		-1.27	7.99	232.37
θ_2			-25.43	-5321.83
θ_3			17.37	48568.31
$ heta_4$				-231639.30
θ_5				640042.26
θ_6				-1061800.52
θ_7				1042400.18
θ_8				-557682.99
θ_9				125201.43

1.5

Goal: Learn $y = \mathbf{w}^T f(\mathbf{x}) + \mathbf{b}$ where f(.) is a polynomial basis function

i	у	х		x ⁹	
1	2.0	1.2	•••	(1.2)9	
2	1.3	1.7	•••	(1.7)9	
	•••	•••		•••	у
10	1.1	1.9	•••	(1.9)9	

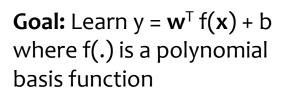


Χ

With just N = 10

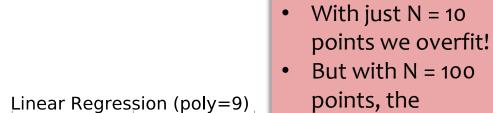
points we overfit!

3.0

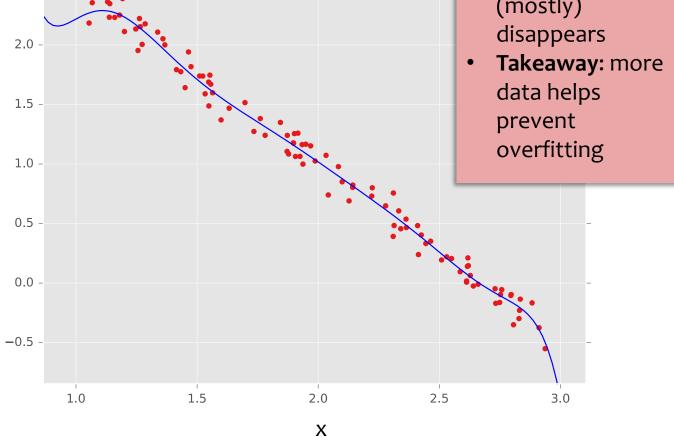


2.5 -

i	у	х		x ⁹	
1	2.0	1.2	•••	(1.2)9	
2	1.3	1.7	•••	(1.7)9	
3	0.1	2.7	•••	(2.7)9	y
4	1.1	1.9	•••	(1.9)9	
	•••	•••			
	•••	•••			
	•••	•••			
98	•••	•••			
99	•••	•••	•••	•••	
100	0.9	1.5	•••	(1.5)9	



points, the overfitting (mostly) disappears



REGULARIZATION

Overfitting

Definition: The problem of **overfitting** is when the model captures the noise in the training data instead of the underlying structure

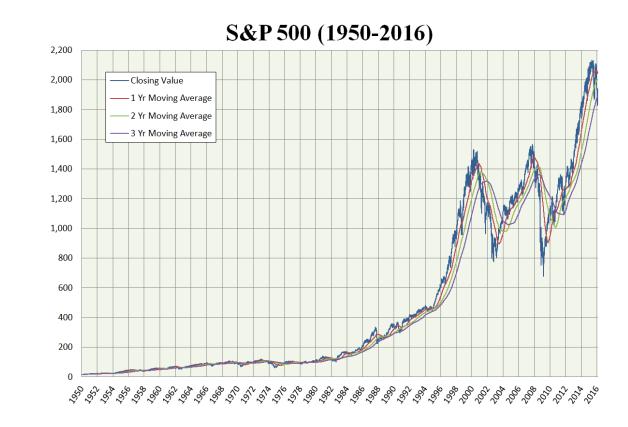
Overfitting can occur in all the models we've seen so far:

- Decision Trees (e.g. when tree is too deep)
- KNN (e.g. when k is small)
- Perceptron (e.g. when sample isn't representative)
- Linear Regression (e.g. with nonlinear features)
- Logistic Regression (e.g. with many rare features)

Motivation: Regularization

Example: Stock Prices

- Suppose we wish to predict Google's stock price at time t+1
- What features should we use? (putting all computational concerns aside)
 - Stock prices of all other stocks at times t, t-1, t-2, ..., t - k
 - Mentions of Google with positive / negative sentiment words in all newspapers and social media outlets
- Do we believe that all of these features are going to be useful?



Motivation: Regularization

Occam's Razor: prefer the simplest hypothesis

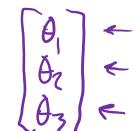
What does it mean for a hypothesis (or model) to be simple?

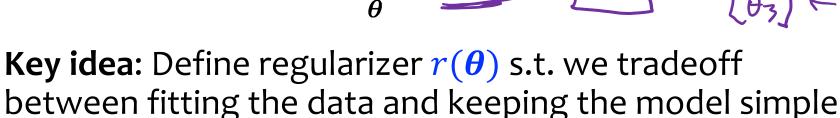
- small number of features (model selection)
- 2. small number of "important" features (shrinkage)

Regularization

Given objective function: $J(\theta)$

Goal is to find:
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

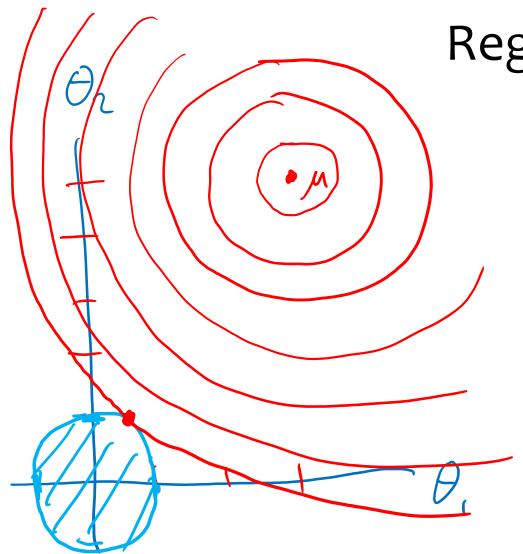




Choose form of $r(\theta)$:

- Example: q-norm (usually p-norm)
$$r(\theta) = ||\theta||_q = \left[\sum_{m=1}^M ||\theta_m||^q\right]^{(\frac{1}{q})}$$

	$q = r(oldsymbol{ heta})$	yields parame- name optimization notes ters that are
1 0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values sparse Lo reg. no good computational solutions
1	$ oldsymbol{ heta} _1 = \sum heta_m \ (oldsymbol{ heta} _2)^2 = \sum heta_m^2$	zero values to L1 reg. subdifferentiable small values L2 reg. differentiable



Regularization

$$J(\theta_1,\theta_2) = ||\vec{\theta} - \vec{\mu}|| \qquad \mu = \begin{bmatrix} 3\\5 \end{bmatrix}$$

min
$$J(\theta, \theta_2)$$

 θ
s.t. $||\theta||_2 \leq 1$

Piazza Poll 1

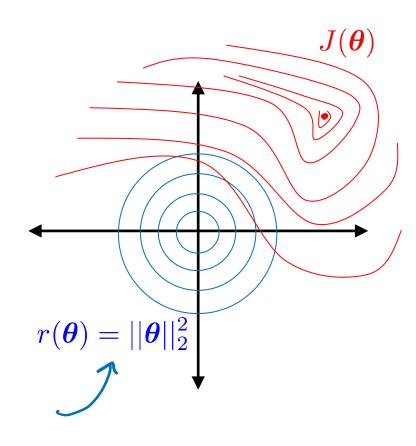
Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

As λ increases, the minimum of J'(θ) will...

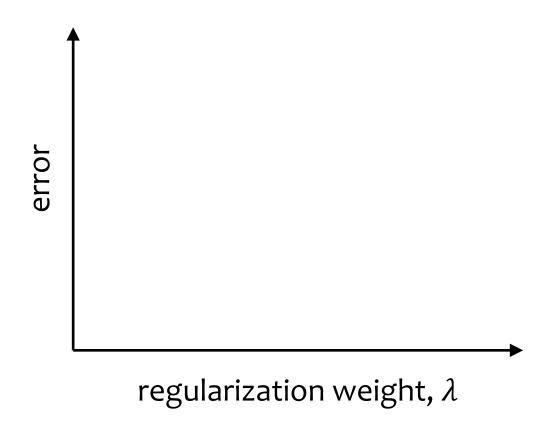
- A. ... move towards the midpoint between $J'(\theta)$ and $r(\theta)$
- B. ... move towards the minimum of $J(\theta)$
- \mathbb{C} ... move towards the minimum of $r(\theta)$
- D. ... move towards a theta vector of positive infinities
- E. ... move towards a theta vector of negative infinities
- F. ... stay the same



Regularization Exercise

In-class Exercise

- 1. Plot train error vs. regularization weight (cartoon)
- 2. Plot test error vs . regularization weight (cartoon)



$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

Piazza Poll 2

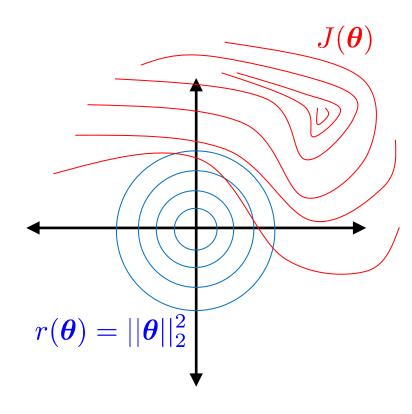
Question:

Suppose we are minimizing $J'(\theta)$ where

$$J'(\boldsymbol{\theta}) = J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

As we increase λ from 0, the the validation error will...

- A. ...increase
- B. ... decrease
- C. ... first increase, then decrease
- D. ... first decrease, then increase
- E. ... stay the same



Regularization

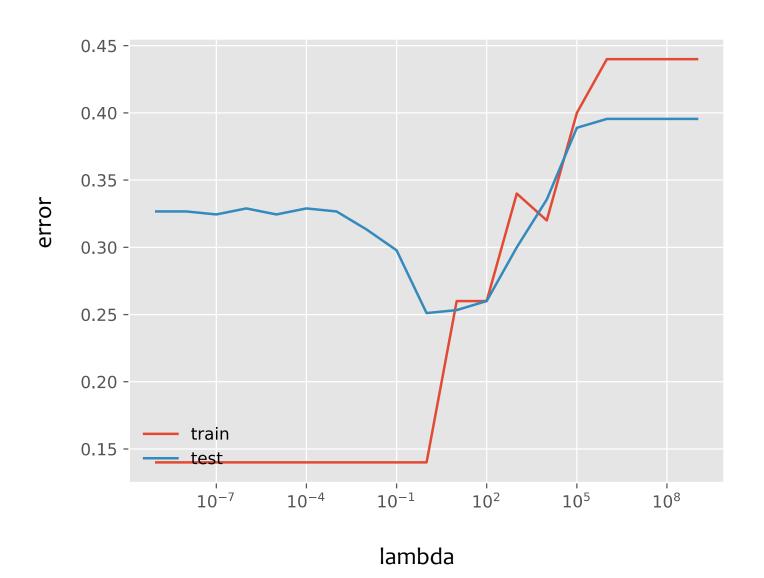
Don't Regularize the Bias (Intercept) Parameter!

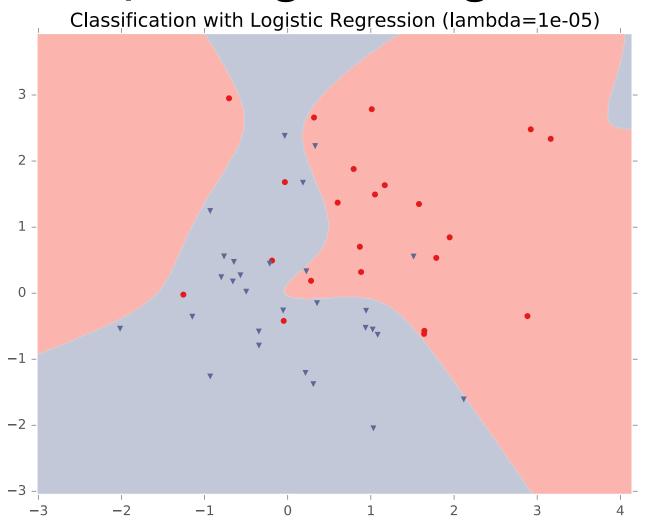
- In our models so far, the bias / intercept parameter is usually denoted by θ_0 that is, the parameter for which we fixed $x_0=1$
- Regularizers always avoid penalizing this bias / intercept parameter
- Why? Because otherwise the learning algorithms wouldn't be invariant to a shift in the y-values

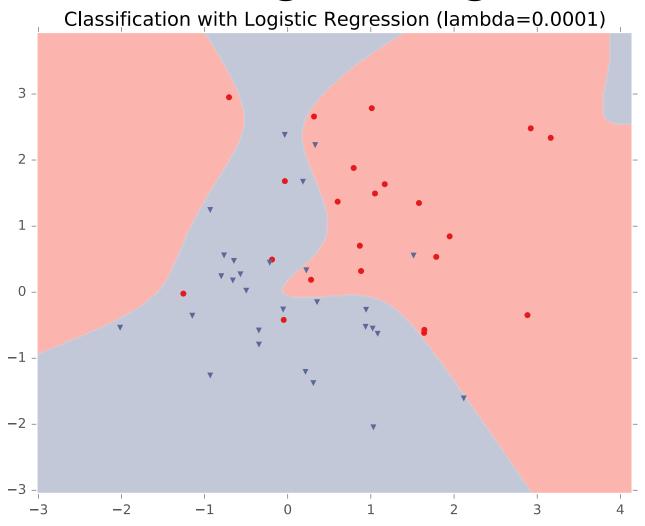
Whitening Data

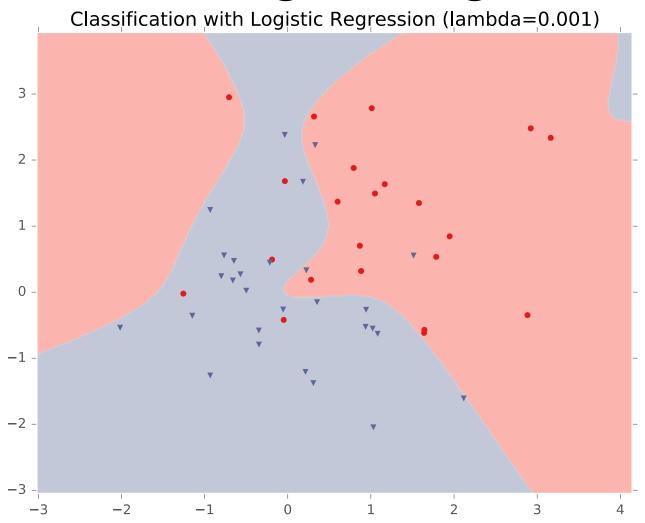
- It's common to whiten each feature by subtracting its mean and dividing by its variance
- For regularization, this helps all the features be penalized in the same units (e.g. convert both centimeters and kilometers to z-scores)

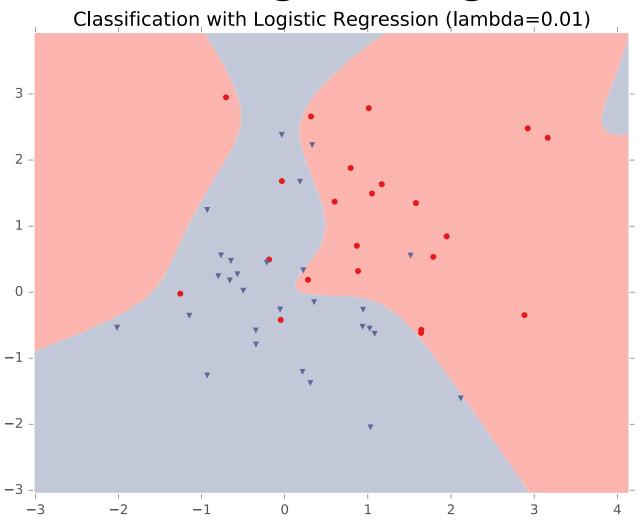
- For this example, we construct nonlinear features
 (i.e. feature engineering)
- Specifically, we add
 polynomials up to order 9 of
 the two original features x₁
 and x₂
- Thus our classifier is linear in the high-dimensional feature space, but the decision boundary is nonlinear when visualized in low-dimensions (i.e. the original two dimensions)

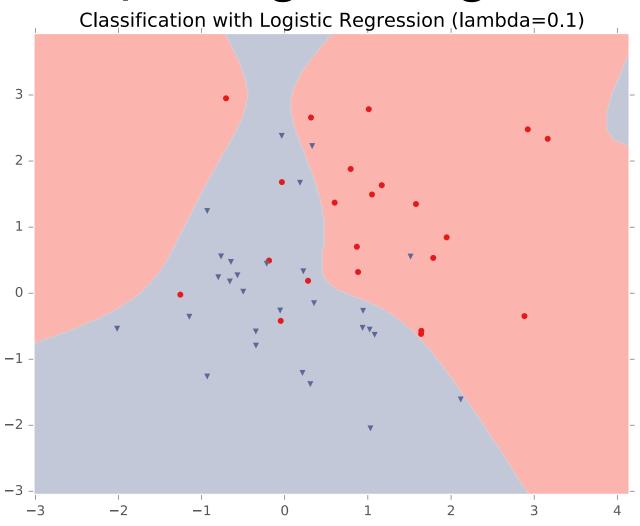


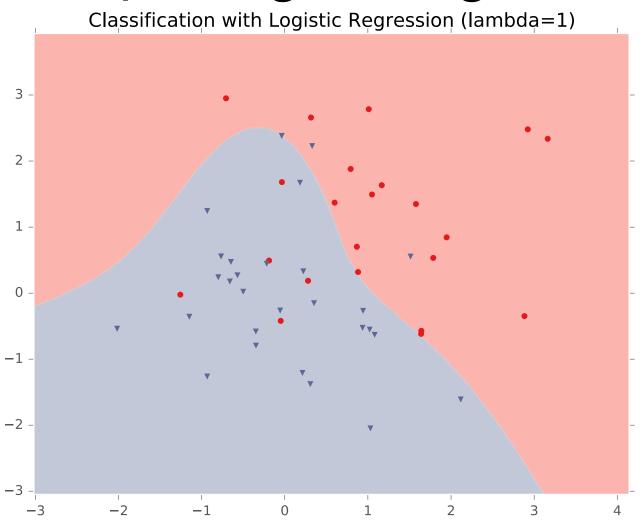


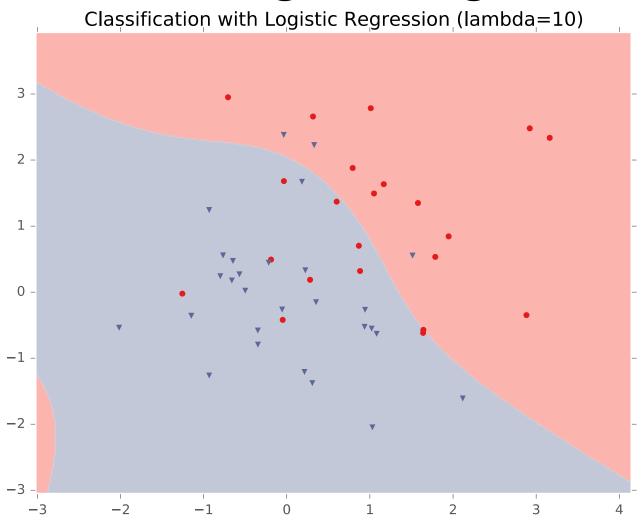


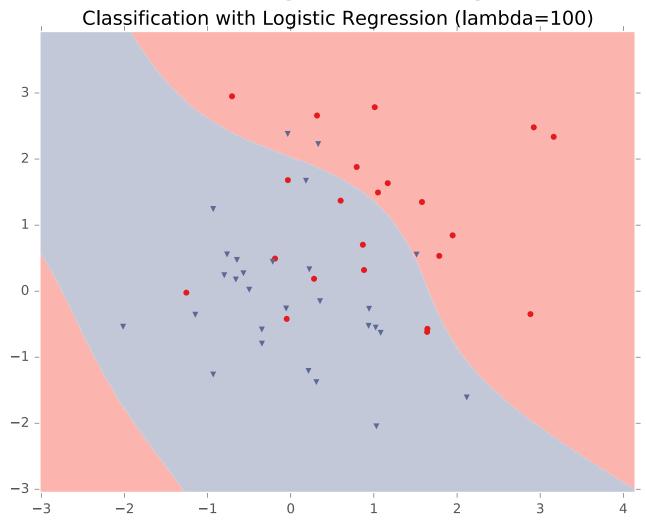


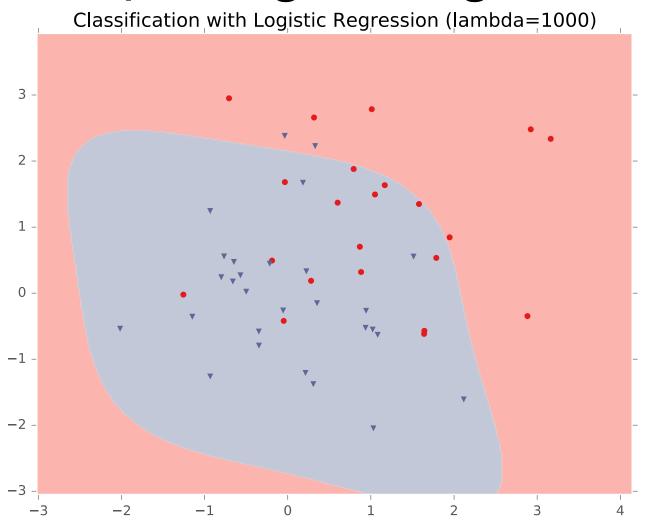


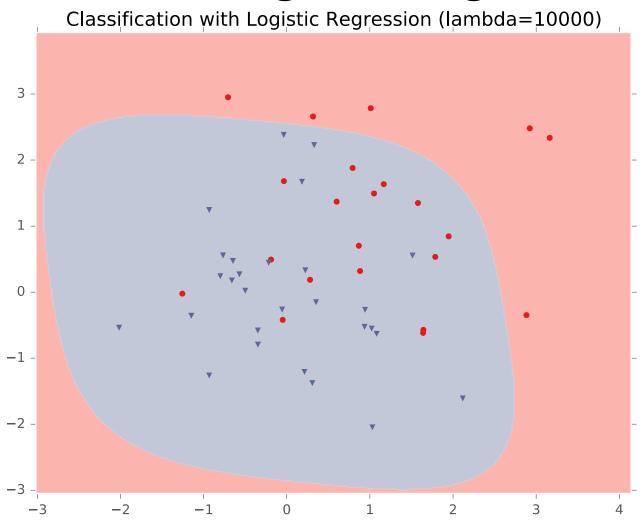


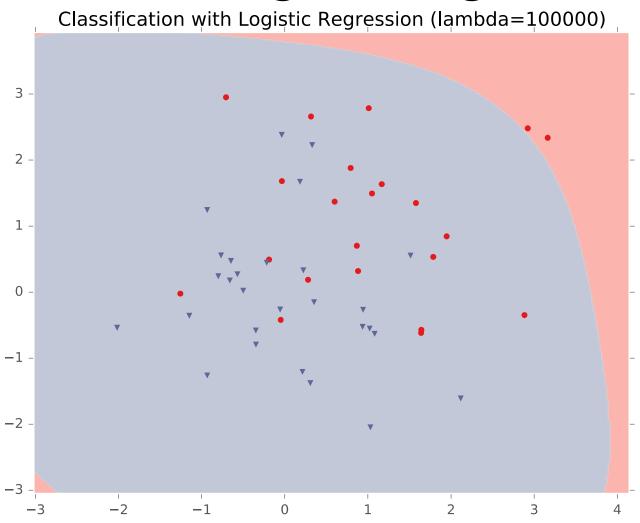


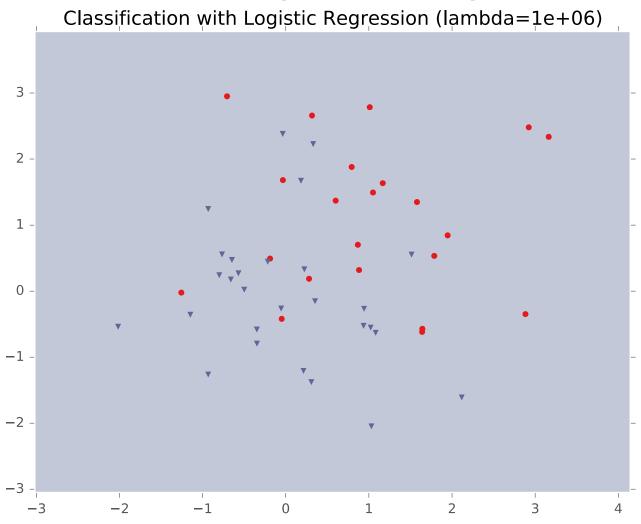


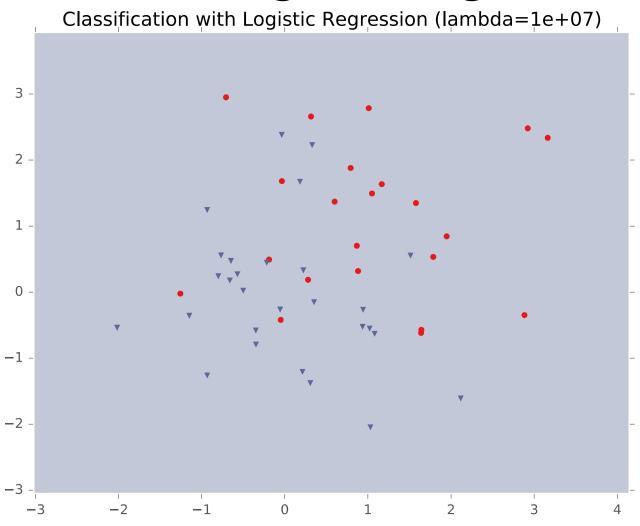


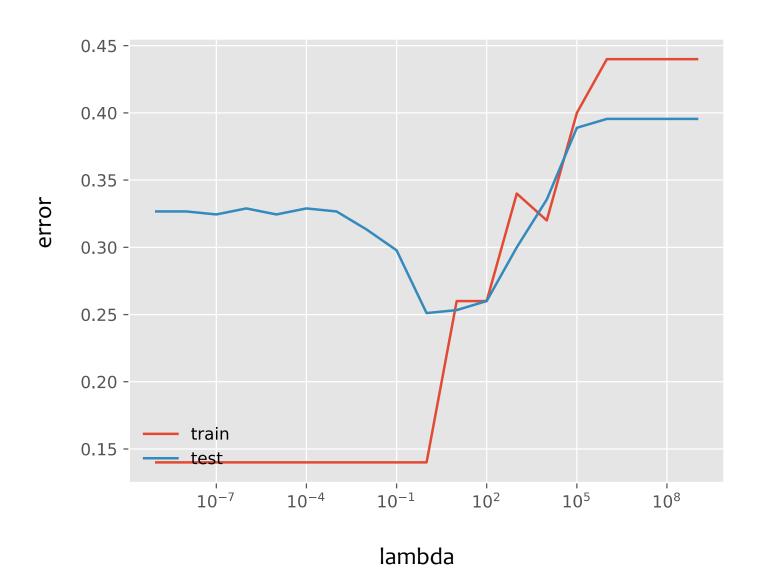












Regularization

Given objective function: $J(\theta)$

Goal is to find:
$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

Key idea: Define regularizer $r(\theta)$ s.t. we tradeoff between fitting the data and keeping the model simple

Choose form of $r(\theta)$:

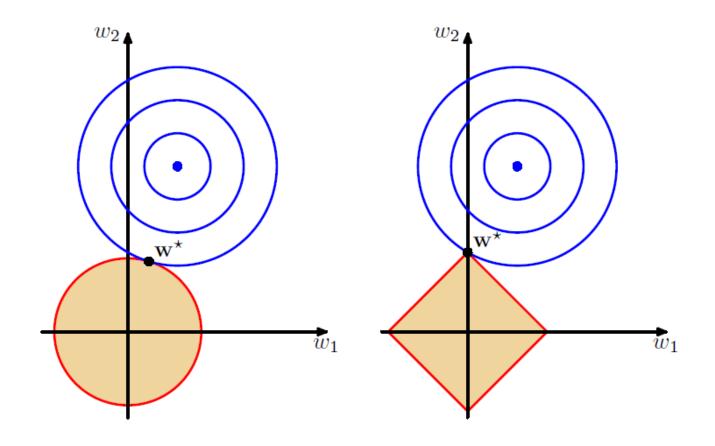
– Example: q-norm (usually p-norm)
$$r(\theta) = ||\theta||_q = \left[\sum_{m=1}^M ||\theta_m||^q\right]^{(\frac{\pi}{q})}$$

\overline{q}	$r(oldsymbol{ heta})$	yields parame- ters that are	name	optimization notes
0	$ \boldsymbol{\theta} _0 = \sum \mathbb{1}(\theta_m \neq 0)$	zero values	Lo reg.	no good computa- tional solutions
$\begin{array}{c} 1 \\ 2 \end{array}$	$ oldsymbol{ heta} _1 = \sum heta_m \ (oldsymbol{ heta} _2)^2 = \sum heta_m^2$	zero values small values	L1 reg. L2 reg.	subdifferentiable differentiable

Regularization

L2 vs L1 Regularization

Combine original objective with penalty on parameters



Figures: Bishop, Ch 3.1.4

L2 vs L1: Housing Price Example

Predict housing price from several features

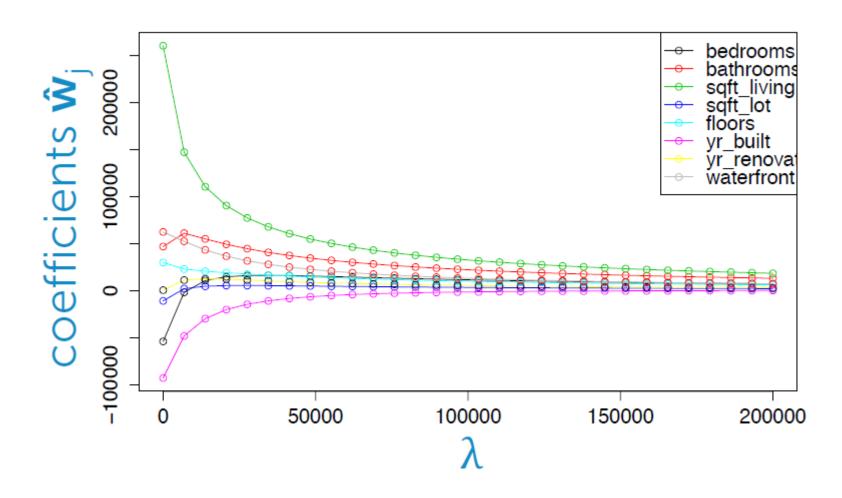


Figure: Emily Fox, University of Washington

L2 vs L1: Housing Price Example

Predict housing price from several features

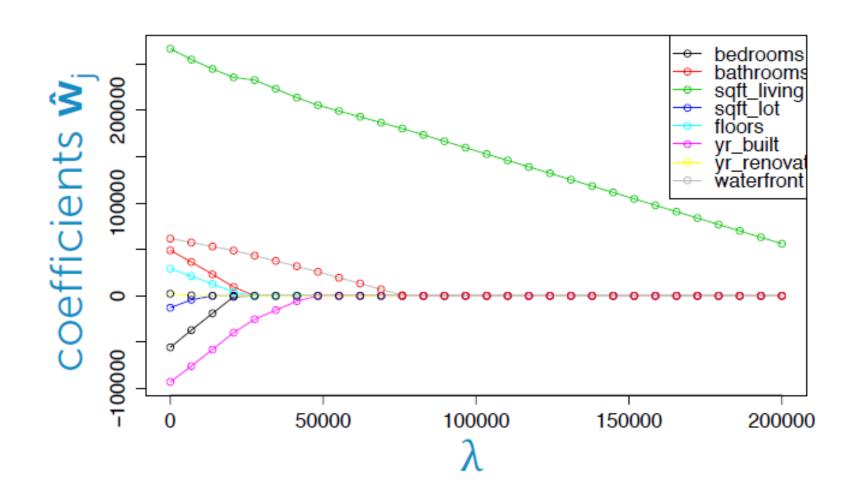


Figure: Emily Fox, University of Washington

Regularization as MAP

- L1 and L2 regularization can be interpreted as maximum aposteriori (MAP) estimation of the parameters
- To be discussed later in the course...

Takeaways

- 1. Nonlinear basis functions allow linear models (e.g. Linear Regression, Logistic Regression) to capture nonlinear aspects of the original input
- Nonlinear features are require no changes to the model (i.e. just preprocessing)
- 3. Regularization helps to avoid overfitting
- **4. Regularization** and **MAP estimation** are equivalent for appropriately chosen priors

Feature Engineering / Regularization Objectives

You should be able to...

- Engineer appropriate features for a new task
- Use feature selection techniques to identify and remove irrelevant features
- Identify when a model is overfitting
- Add a regularizer to an existing objective in order to combat overfitting
- Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions
- Describe feature engineering in common application areas