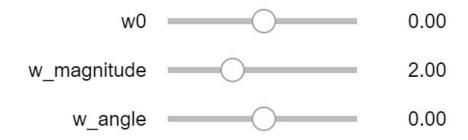
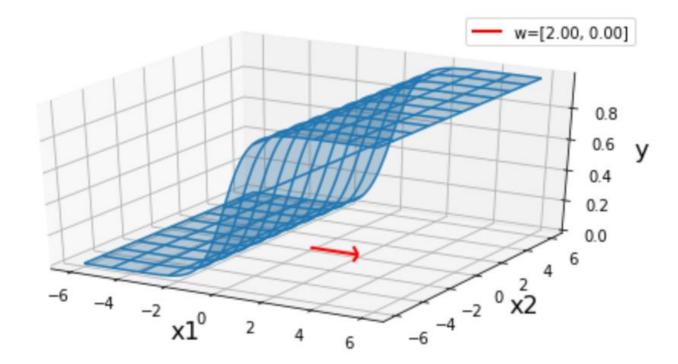
Warm-up as You Log In

Interact with the lec8.ipynb posted on the course website schedule





Announcements

Midterm 1

- Monday
- Lots of info on Piazza
- Stay tuned for one more post regarding day-of details

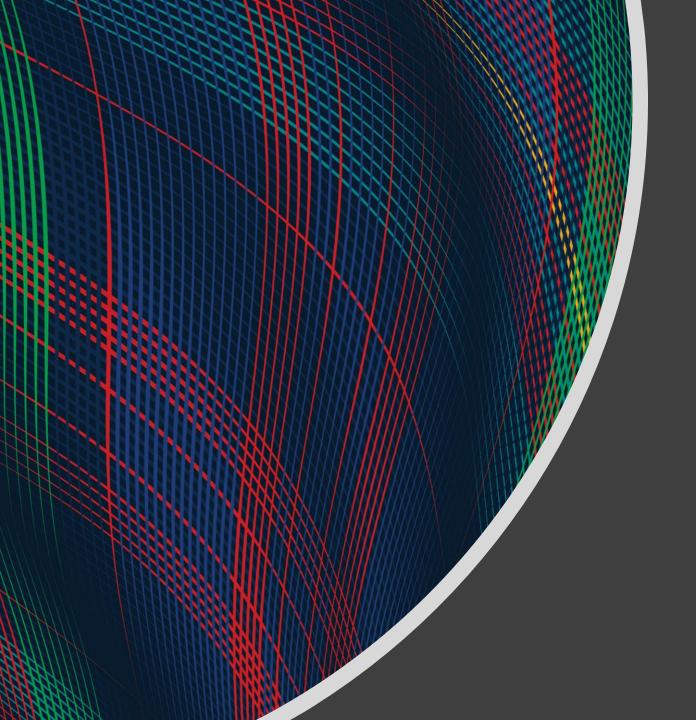
Plan

Last time

Likelihood, MLE, conditional likelihood and M(C)LE

Today

- Logistic regression
 - Solving logistic regression
 - Decision boundaries
 - Multiclass logistic regression
- Feature engineering



Introduction to Machine Learning

Logistic Regression and Feature Engineering

Instructor: Pat Virtue

BINARY LOGISTIC REGRESSION

Binary Logistic Regression

1) Model:
$$Y \sim Bern(\mu)$$
 $\mu = \sigma(\theta^T x)$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$P(Y=y\mid \vec{x}, \vec{0}) = \sum_{l-m} if_{y=0}$$

2) Objective function: negative log likelihood
$$l(\vec{Q}) = \sum_{i=1}^{N} log p(Y=y^{(i)}|\vec{x},\vec{\theta}) = log likelihood$$

$$J(\vec{\theta}) = -\frac{1}{N} J(\vec{\theta})$$

Binary Logistic Regression

Gradient

Solve Logistic Regression

$$Y \sim Bern(\mu)$$
 $\mu = \sigma(\boldsymbol{\theta}^T \boldsymbol{x})$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$J(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{n} (y^{(n)} \log \mu^{(n)} + (1 - y^{(n)}) \log(1 - \mu^{(n)}))$$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{n} (y^{(n)} - \mu^{(n)}) \boldsymbol{x}^{(n)}$$

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = 0$$
?

No closed form solution 🕾

Back to iterative methods. Solve with (stochastic) gradient descent, Newton's method, or Iteratively Reweighted Least Squares (IRLS)

Piazza Poll 1

Which of the following is a correct description of SGD for Logistic Regression?

- A. (1) compute the gradient of the log-likelihood for all examples (2) update all the parameters using the gradient
- B. (1) compute the gradient of the log-likelihood for all examples (2) randomly pick an example (3) update only the parameters for that example
- C. (1) randomly pick a parameter, (2) compute the partial derivative of the log-likelihood with respect to that parameter, (3) update that parameter for all examples
- D. (1) randomly pick an example, (2) compute the gradient of the log-likelihood for that example, (3) update all the parameters using that gradient
- E. (1) randomly pick a parameter and an example, (2) compute the gradient of the log-likelihood for that example with respect to that parameter, (3) update that parameter using that gradient

Piazza Poll 1

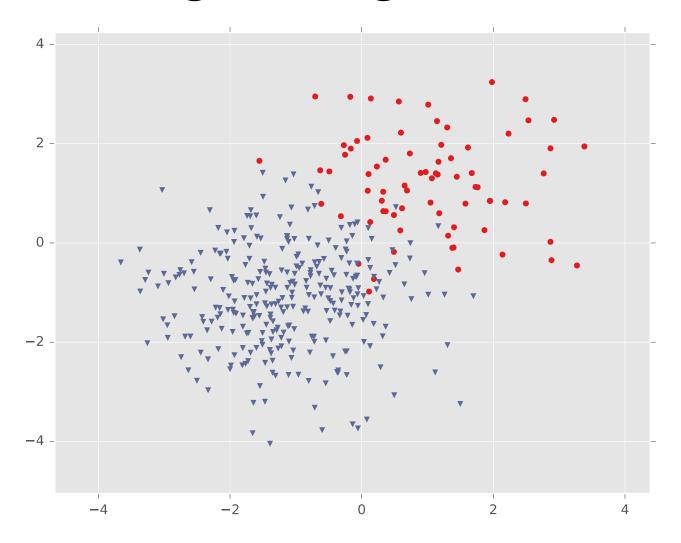
Which of the following is a correct description of SGD for Logistic Regression?

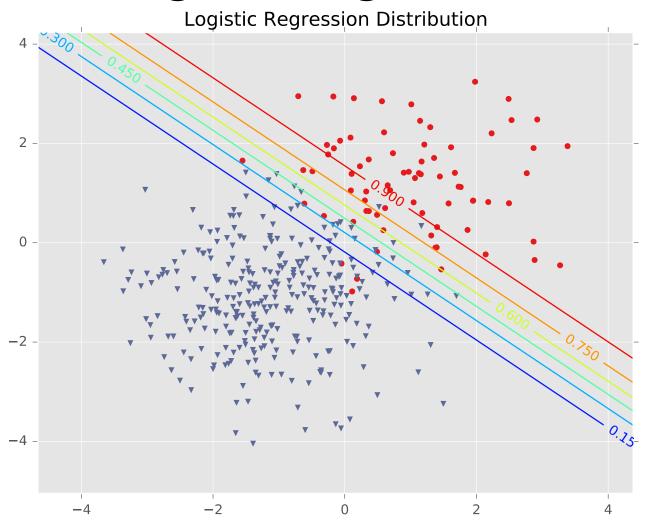
- A. (1) compute the gradient of the log-likelihood for all examples (2) update all the parameters using the gradient
- B. (1) compute the gradient of the log-likelihood for all examples (2) randomly pick an example (3) update only the parameters for that example
- C. (1) randomly pick a parameter, (2) compute the partial derivative of the log-likelihood with respect to that parameter, (3) update that parameter for all examples
- D. (1) randomly pick an example, (2) compute the gradient of the log-likelihood for that example, (3) update all the parameters using that gradient
- E. (1) randomly pick a parameter and an example, (2) compute the gradient of the log-likelihood for that example with respect to that parameter, (3) update that parameter using that gradient

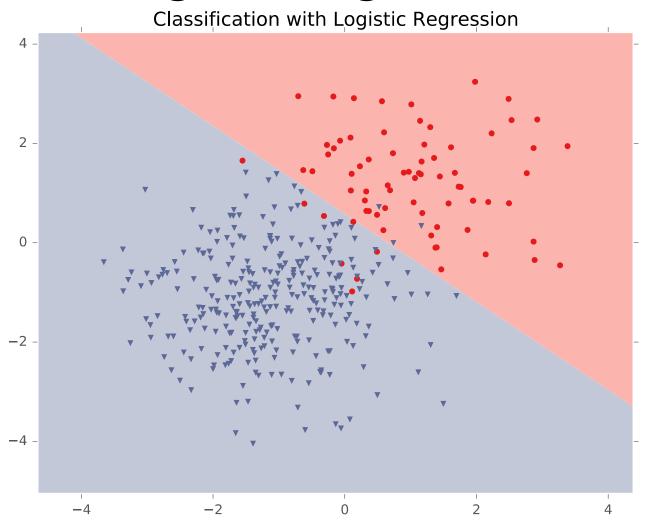
DECISION BOUNDARIES FOR LOGISTIC REGRESSION

Bayes Optimal Classifier

Given an oracle that perfectly knows everything, e.g. $p^*(Y = y \mid x, \theta)$, What is the optimal classifier in this setting?







Linear in Higher Dimensions

1. D $y = W \times Jb$ 2-D $y = V_1 \times_1 + W_2 \times_2 + b$

What are these linear shapes called for 1-D, 2-D, 3-D, M-D input?

$$\rightarrow y = \mathbf{w}^T \mathbf{x} + b$$

$$x \in \mathbb{R}$$

$$x \in \mathbb{R}^2$$

$$x \in \mathbb{R}^3$$

$$x \in \mathbb{R}^{M}$$

$$\mathbf{w}^T \mathbf{x} + b = 0$$

$$\mathbf{w}^T \mathbf{x} + b \ge 0$$

Piazza Poll 2

For a point x on the decision boundary of logistic regression, does $g(\mathbf{w}^T\mathbf{x} + b) = \mathbf{w}^T\mathbf{x} + b$?

$$g(z) = \frac{1}{1 + e^{-z}}$$

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \{0, 1\}$

Model: Logistic function applied to dot product of parameters with input vector.

$$p_{\theta}(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$$

Learning: finds the parameters that minimize some objective function. ${m heta}^* = \mathop{\rm argmin}_{m heta} J({m heta})$

Prediction: Output is the most probable class.

$$\hat{y} = \underset{y \in \{0,1\}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(y|\mathbf{x})$$

MULTI-CLASS LOGISTIC REGRESSION

Prep: Multi-class Logistic Regression

Logistic function

$$g(z) = \frac{e^{z}}{e^{z}+1}$$

$$p(Y = 1 \mid x, \theta) = g(\mu) = \frac{e^{\mu}}{e^{\mu}+1}$$

$$p(Y = 0 \mid x, \theta) = 1 - g(\mu) = 1 - \frac{e^{\mu}}{e^{\mu}+1}$$

Probability distribution sums to 1

$$\sum_{y} p(Y = y \mid x, \theta)$$
= $p(Y = 0 \mid x, \theta) + p(Y = 1 \mid x, \theta)$
= $1 - \frac{e^{\mu}}{e^{\mu} + 1} + \frac{e^{\mu}}{e^{\mu} + 1} = 1$

Prep: Multi-class Logistic Regression

Bernoulli distribution:

$$Y \sim Bern(\phi)$$

$$p(y) = \begin{cases} \phi, & y = 1 \\ 1 - \phi, & y = 0 \end{cases}$$

$$L(\phi) = \prod_{n} p(y^{(n)}) = \prod_{n} \phi^{y^{(n)}} (1 - \phi)^{(1 - y^{(n)})}$$

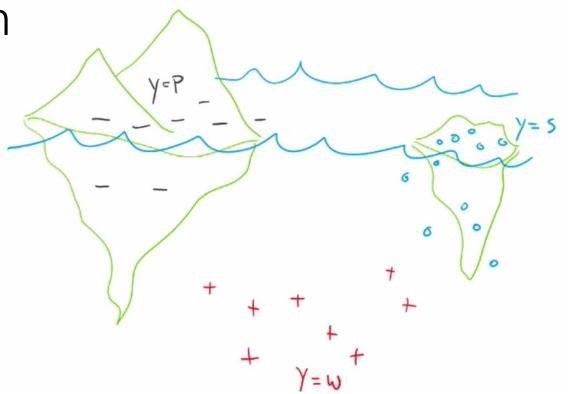
Categorical distribution:

$$Y \sim Categorical(\phi_1, \phi_2, ..., \phi_K)$$

$$p(y) = \begin{cases} \phi_1, & y = 1 \\ \vdots & \end{cases}$$

$$L(\phi_1, \phi_2, ..., \phi_K) = \prod_n p(y^{(n)}) = \prod_n \prod_k \phi_k^{\mathbb{I}(y^{(n)} = k)}$$

Multi-class Logistic Regression



Multi-class Logistic Regression

Multi-class Logistic Regression

Gradient

Summary: Logistic Function

Logistic (sigmoid) function converts value from $(-\infty, \infty) \to (0, 1)$ $g(z) = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}$

g(z) and 1 - g(z) sum to one

Example
$$2 \rightarrow g(2) = 0.88$$
, $1-g(2) = 0.12$

Summary: Softmax Function

Softmax function convert each value in a vector of values from $(-\infty, \infty) \to (0, 1)$, such that they all sum to one.

$$g(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

$$\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_K \end{bmatrix} \rightarrow \begin{bmatrix} e^{z_1} \\ e^{z_2} \\ \vdots \\ e^{z_K} \end{bmatrix} \cdot \frac{1}{\sum_{k=1}^K e^{z_k}} \quad \text{Example} \begin{bmatrix} -1 \\ 4 \\ 1 \\ -2 \\ 3 \end{bmatrix} \rightarrow \begin{bmatrix} 0.0047 \\ 0.7008 \\ 0.0349 \\ 0.0017 \\ 0.2578 \end{bmatrix}$$

Summary: Multiclass Predicted Probability

Multiclass logistic regression uses the parameters learned across all K classes to predict the discrete conditional probability distribution of the output Y given a specific input vector x

$$\begin{bmatrix} p(Y=1 \mid \boldsymbol{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3) \\ p(Y=2 \mid \boldsymbol{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3) \\ p(Y=3 \mid \boldsymbol{x}, \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \boldsymbol{\theta}_3) \end{bmatrix} = \begin{bmatrix} e^{\boldsymbol{\theta}_1^T \boldsymbol{x}} \\ e^{\boldsymbol{\theta}_2^T \boldsymbol{x}} \\ e^{\boldsymbol{\theta}_3^T \boldsymbol{x}} \end{bmatrix} \cdot \frac{1}{\sum_{k=1}^K e^{\boldsymbol{\theta}_k^T \boldsymbol{x}}}$$

Debug that Program!

In-Class Exercise:

Debug the following program which is (incorrectly) attempting to run SGD for multinomial logistic regression

Buggy Program:

```
while not converged:
  for i in shuffle([1,...,N]):
    for k in [1,...,K]:
      theta[k] = theta[k] - gamma * grad(x[i], y[i], theta, k)
```

Assume: grad(x[i], y[i], theta, k) returns the gradient of the negative log-likelihood of the training example (x[i],y[i]) with respect to vector theta[k]. gamma is the learning rate. N = # of examples. K = # of output classes. M = # of features. theta is a K by M matrix.

FEATURE ENGINEERING

How Do We Deal with Real-world Problems

Politician Voting Classification

How Do We Deal with Real-world Problems

SPAM Classification