Computational Genomics

http://www.cs.cmu.edu/~02710

Introduction to probability, statistics and algorithms
(brief) intro to probability
Basic notations

• Random variable
 - referring to an element / event whose status is unknown:
 A = “gene g is increased 2 folds”

• Domain (usually denoted by \(\Omega \))
 - The set of values a random variable can take:
 - “A = Cancer?”: Binary
 - “A = Protein family”: Discrete
 - “A = Log ratio change in expression”: Continuous
Degree of belief in an event in the absence of any other information

\[P(\text{cancer}) = 0.2 \]
\[P(\text{no cancer}) = 0.8 \]
Conditional probability

- $P(A = 1 \mid B = 1)$: The fraction of cases where A is true if B is true

$$P(A = 0.2) \quad \text{and} \quad P(A \mid B = 0.5)$$
Conditional probability

• In some cases, given knowledge of one or more random variables we can improve upon our prior belief of another random variable

• For example:

\[
\begin{align*}
p(\text{cancer}) &= 0.5 \\
p(\text{cancer} \mid \text{non smoker}) &= 1/4 \\
p(\text{cancer} \mid \text{smoker}) &= 3/4
\end{align*}
\]
Joint distributions

• The probability that a set of random variables will take a specific value is their joint distribution.

• Notation: \(P(A \land B) \) or \(P(A,B) \)

• Example: \(P(\text{cancer, smoking}) \)

If we assume independence then

\[
P(A,B) = P(A)P(B)
\]

However, in many cases such an assumption maybe too strong (more later in the class)
Chain rule

• The joint distribution can be specified in terms of conditional probability:

\[P(A,B) = P(A|B) \times P(B) \]

• Together with Bayes rule (which is actually derived from it) this is one of the most powerful rules in probabilistic reasoning
Bayes rule

• One of the most important rules for this class.
• Derived from the chain rule:

$$P(A, B) = P(A | B)P(B) = P(B | A)P(A)$$

• Thus,

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

Thomas Bayes was an English clergyman who set out his theory of probability in 1764.
Bayes rule (cont)

Often it would be useful to derive the rule a bit further:

\[P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{\sum_A P(B|A)P(A)}{P(B)} \]

This results from:

\[P(B) = \sum_A P(B,A) \]
Probability Density Function

• Discrete distributions

\[\sum_i P(X = x_i) = 1 \]

1 2 3 4 5 6

• Continuous: Cumulative Density Function (CDF): \(F(a) \)

\[P(x \leq a) = \int_{-\infty}^{a} f(\tau) d\tau \]
Cumulative Density Functions

• Total probability

\[P(\Omega) = \int_{-\infty}^{\infty} f(x) \, dx = 1 \]

• Probability Density Function (PDF)

\[\frac{d}{dx} F(x) = f(x) \]

• Properties:

\[P(a \leq x \leq b) = \int_{b}^{a} f(x) \, dx = F(b) - F(a) \]

\[\lim_{x \to -\infty} F(x) = 0 \]

\[\lim_{x \to \infty} F(x) = 1 \]

\[F(a) \geq F(b) \quad \forall a \geq b \]
Expectations

• Mean/Expected Value:

\[E[x] = \bar{x} = \int x f(x) \, dx \]

• Variance:

\[Var(x) = E[(x - \bar{x})^2] = E[x^2] - (\bar{x})^2 \]

• In general:

\[E[x^2] = \int x^2 f(x) \, dx \]

\[E[g(x)] = \int g(x) f(x) \, dx \]
Multivariate

- Joint for \((x,y)\)
 \[
P((x,y) \in A) = \int \int_A f(x,y) \, dx \, dy
 \]

- Marginal:
 \[
f(x) = \int f(x,y) \, dy
 \]

- Conditionals:
 \[
f(x|y) = \frac{f(x,y)}{f(y)}
 \]

- Chain rule:
 \[
f(x,y) = f(x|y)f(y) = f(y|x)f(x)
 \]
Bayes Rule

- Standard form:

\[f(x|y) = \frac{f(y|x)f(x)}{f(y)} \]

- Replacing the bottom:

\[f(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)\,dx} \]
Binomial

• Distribution:

\[x \sim Binomial(p, n) \]

\[P(x = k) = \binom{n}{k} p^k (1 - p)^{n-k} \]

• Mean/Var:

\[E[x] = np \]

\[Var(x) = np(1 - p) \]
Uniform

• Anything is equally likely in the region \([a, b]\)

• Distribution:

\[x \sim U(a, b) \]

• Mean/Var

\[
f(x) = \begin{cases}
 \frac{1}{b-a} & a \leq x \leq b \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[x] = \frac{a + b}{2}
\]

\[
Var(x) = \frac{a^2 + ab + b^2}{3}
\]
Poisson Distribution

\[p(x = k) = \frac{\lambda^k e^{-\lambda}}{k!} \]

- Discrete distribution
- Widely used in sequence analysis (read counts are discrete).
- \(\lambda \) is the expected value of \(x \) (the number of observations) and is also the variance:
 \[E(x) = Var(x) = \lambda \]
Gaussian (Normal)

- If I look at the height of women in country xx, it will look approximately Gaussian
- Small random noise errors, look Gaussian/Normal

- Distribution:
 \[x \sim N(\mu, \sigma^2) \]
 \[f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

- Mean/var
 \[E[x] = \mu \]
 \[Var(x) = \sigma^2 \]
Why Do People Use Gaussians

• Central Limit Theorem: (loosely)
 - Sum of a large number of IID random variables is approximately Gaussian
Multivariate Gaussians

- Distribution for vector x

$$x = (x_1, \ldots, x_N)^T, \quad x \sim N(\mu, \Sigma)$$

- PDF:

$$f(x) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)}$$

$$E[x] = \mu = (E[x_1], \ldots, E[x_N])^T$$

$$\text{Var}(x) \rightarrow \Sigma = \begin{pmatrix}
\text{Var}(x_1) & \text{Cov}(x_1, x_2) & \cdots & \text{Cov}(x_1, x_N) \\
\text{Cov}(x_2, x_1) & \text{Var}(x_2) & \cdots & \text{Cov}(x_2, x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cov}(x_N, x_1) & \text{Cov}(x_N, x_2) & \cdots & \text{Var}(x_N)
\end{pmatrix}$$
Multivariate Gaussians

\[f(x) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} e^{-\frac{1}{2} (x-\mu)^T \Sigma^{-1} (x-\mu)} \]

\[E[x] = \mu = (E[x_1], \ldots, E[x_N])^T \]

\[\text{Var}(x) \rightarrow \Sigma = \begin{pmatrix}
\text{Var}(x_1) & \text{Cov}(x_1, x_2) & \ldots & \text{Cov}(x_1, x_N) \\
\text{Cov}(x_2, x_1) & \text{Var}(x_2) & \ldots & \text{Cov}(x_2, x_N) \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cov}(x_N, x_1) & \text{Cov}(x_N, x_2) & \ldots & \text{Var}(x_N)
\end{pmatrix} \]

\[\text{cov}(x_1, x_2) = \frac{1}{n} \sum_{i=1}^{n} (x_{1,i} - \mu_1)(x_{2,i} - \mu_2) \]
Covariance examples

Anticorrelated

Covariance: -9.2

Correlated

Covariance: 18.33

Independent (almost)

Covariance: 0.6
(A few) key computational methods
Regression

- Given an input x we would like to compute an output y.
- In linear regression, we assume that y and x are related with the following equation:

$$y = wx + \varepsilon$$

where w is a parameter and ε represents measurement or other noise.

What we are trying to predict:

Observed values:

$X \rightarrow Y$
Supervised learning

- Classification is one of the key components of ‘supervised learning’
- In supervised learning the teacher (us) provides the algorithm with the solutions to some of the instances and the goal is to generalize so that a model / method can be used to determine the labels of the unobserved samples
Types of classifiers

• We can divide the large variety of classification approaches into roughly two main types

1. Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

2. Generative:
 - build a generative statistical model
 - e.g., Naïve Bayes

3. Discriminative
 - directly estimate a decision rule/boundary
 - e.g., decision tree, SVM
Unsupervised learning

We do not have a teacher that provides examples with their labels

- Goal: Organize data into *clusters* such that there is
 - high intra-cluster similarity
 - low inter-cluster similarity
- Informally, finding natural groupings among objects
Graphical models: Sparse methods for representing joint distributions

• Nodes represent random variables
• Edges represent conditional dependence
• Can be either directed (Bayesian networks, HMMs) or undirected (Markov Random Fields, Gaussian Random Fields)
Bayesian networks

Bayesian networks are directed acyclic graphs.

P(Lo) = 0.5

P(Li | Lo) = 0.4
P(Li | ¬Lo) = 0.7

P(S | Lo) = 0.6
P(S | ¬Lo) = 0.2