

Computational Genomics

<http://www.cs.cmu.edu/~02710>

Ziv Bar-Joseph
zivbj@cs.cmu.edu
GHC 8006

Chakra Chennubhotla
chakracs@pitt.edu
Suite 3064, BST3

Topics

- Introduction (1 Week)
- Sequence analysis(4 weeks)
- Gene expression (3 weeks)
- RNA and epigenetics (3 weeks)
- Systems biology (3 weeks)

Class overview

- 4 problem sets
- Midterm
- Project (and poster)
- Class attendance and participation

Class grades

- Problem sets (40%)
- Midterm (30%)
- Project (25%)
- Class participation (5%)

High level and brief intro to molecular
biology and genomics

Organism, Organ, Cell

Organ

Types of Cells

- Eukaryots:
 - Plants, animals, humans
 - DNA resides in the nucleus
 - Contain also other compartments
- Prokaryots:
 - Bacteria
 - Do not contain compartments

Figure 1-17 Cell and Molecular Biology, 4/e (© 2005 John Wiley & Sons)

Cell signaling

- Cells communication is based on chemical *signals* & *receptors*
 - If you have the correct receptor, respond to signal; no receptor = no response
 - Single-celled organisms receive cues about the environment, status of other individuals
- Process termed the **signal transduction pathway**
 - From signal interacting with receptor to cellular response

Types of Signals

- Local signaling: short-distance
 - affect the cells that produce them
 - affect nearby cells (diffuse)
- Hormonal signaling: long-distance
 - Typically found in multicellular organisms & use circulatory system for distribution

(A)

(B)

Cell Signaling Stages

- 1. Reception:** signal molecule interacts with receptor
- 2. Transduction** typically several steps that involve changes to **responder** molecules and downstream targets
- 3. Outcome:** often triggers a cellular response (*effect*)

Central dogma

Genome

- A genome is an organism's complete set of DNA (including its genes).
- In humans, less than 3% of the genome actually encodes for genes.
- However, a much larger % of the genome is transcribed (miRNAs, lincRNAs, ...)
- And a large part of the rest of the genome serves as a control regions.

Comparison of Different Organisms

	Genome size	Num. of genes
E. coli	.05*10 ⁸	4,200
Yeast	.15*10 ⁸	6,000
Worm	1*10 ⁸	18,400
Fly	1.8*10 ⁸	13,600
Human	30*10 ⁸	25,000
Plant	1.3*10 ⁸	25,000

Genes

What is a gene?

Example of a Gene: Gal4 DNA

ATGAAGCTACTGTCTTCTATCGAACAAAGCATGCGATATTGCCGACTAAAAAGCTCAAG
TGCTCCAAAGAAAAACCGAACGTGCGCCAAGTGTCTGAAGAACAACTGGGAGTGTGCTAC
TCTCCCAAAACCAAAAGGTCTCCGCTGACTAGGGCACATCTGACAGAAGTGGAATCAAGG
CTAGAAAGACTGGAACAGCTATTCTACTGATTTCTCGAGAACGACCTGACATGATT
TTGAAAATGGATTCTTACAGGATATAAAAGCATTGTTAACAGGATTATTGTACAAGAT
AATGTGAATAAAGATGCCGTACAGATAGATTGGCTTCAGTGGAGACTGATATGCCTCTA
ACATTGAGACAGCATAGAATAAGTGCACATCATCATCGGAAGAGAGTAGAACAAAGGT
CAAAGACAGTTGACTGTATCGATTGACTCGGCAGCTCATCATGATAACTCCACAATTCCG
TTGGATTTATGCCAGGGATGCTCTCATGGATTGATTGGTCTGAAGAGGGATGACATG
TCGGATGGCTTGCCTCTGAAAACGGACCCAAACAATAATGGTTCTTGGCGACGGT
TCTCTTTATGTATTCTCGATCTTGGCTTAAACCGGAAAATTACACGAACCTAAC
GTTAACAGGCTCCGACCATGATTACGGATAGATAACGTTGGCTCTAGATCCACAACA
TCCCGTTACTTCAAAGTTATCTAATAATTTCACCCCTACTGCCCTATCGTCACTCA
CCGACGCTAATGATGTTGTATAATAACCAGATTGAAATCGCGTCAAGGGATCAATGGCAA
ATCCTTTAACTGCATATTGCCATTGGAGCCTGGTGTAGAGGGGGAACTACTGAT
ATAGATGTTTTACTATCAAAATGCTAAATCTCATTGACGAGCAAGGTCTCGAGTCA

Genes Encode for Proteins

		Second Letter									
		U		C		A		G			
1st letter	U	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U	
	UUC	UUC		UCC		UAC		UGC		C	
	UUA	UUA	Leu	UCA		UAA	Stop	UGA	Stop	A	
	UUG	UUG		UCG		UAG	Stop	UGG	Trp	G	
letter	C	CUU		CCU	Pro	CAU	His	CGU		U	3rd letter
	CUC	CUC	Leu	CCC		CAC		CGC		C	
	CUA	CUA		CCA		CAA	Gln	CGA	Arg	A	
	CUG	CUG		CCG		CAG		CGG		G	
letter	A	AUU		ACU	Thr	AAU	Asn	AGU	Ser	U	letter
	AUC	AUC	Ile	ACC		AAC		AGC		C	
	AUA	AUA		ACA		AAA	Lys	AGA	Arg	A	
	AUG	AUG	Met	ACG		AAG		AGG		G	
G	G	GUU		GCU	Ala	GAU	Asp	GGU		U	
	GUC	GUC	Val	GCC		GAC		GGC		C	
	GUA	GUA		GCA		GAA	Glu	GGA	Gly	A	
	GUG	GUG		GCG		GAG		GGG		G	

Example of a Gene: Gal4 AA

MKLLSSIEQACDICRLKKLKCSKEPKCAKCLKNNWECRYSPTKRSPLTRAHLTEVESR
LERLEQLFLIFPREDLDMILKMDSLQDIKALLTGLVQDNVNKDAVTDRLASVETDMPL
TLRQHRISATSSSEESSNKGQRQLTVSIDSAAHHDNSTIPLDFMPRDALHGFDWSEEDDM
SDGLPFLKTDPPNNNGFFGDGSLLCILRSIGFKPENYTNSNVNRLPTMITDRYTLASRSTT
SRLLQSYLNNFHPYCPIVHSPTLMMIYNNQIEIASKDQWQILFNCILAIGAWCIEGESTD
IDVFYYQNAKSHLTSKFESGSIIVTALHLLSRYTQWRQKTNTSYNFHSFSIRMAISLG
LNRDLPSSFSDSSILEQRRRIWWSVYSWEIQLSLLYGRSIQLSQNTISFPSSVDDVQRTT
TGPTIYHGIETARLLQVFTKIYELDKTVTAEKSPICAKKCLMICNEIEEVSRQAPKFLQ
MDISTTALTNLLKEHPWLSFTRFELKWQLSIIYVLRDFFTNTQKKSQLEQDQNDHQ
YEVKRCSIMLSAAQRTVMSVSSYMDNHNVTYFAWNCSYYLFNAVLVPIKTLNSNSKS
AENNETAQLLQQINTVLMLLKKLATFKIQTCEKYIQVLEEVCAFLLSQCAIPLPHISYN
NSNGSAIKNIVGSATIAQYPTLPEENVNNISVKYVSPGSVGSPVPLKSGASFSDLVKLL
SNRPPSRNSPVTIPRSTPSHRSVTPFLGQQQLQSLVPLTPSALFGGANFNQSGNIADSS

Number of Genes in Public Databases

Growth of GenBank
(1982 - 2008)

Structure of Genes in Mammalian Cells

- Within coding DNA genes there can be un-translated regions (Introns)
- Exons are segments of DNA that contain the gene's information coding for a protein
- Need to cut Introns out of RNA and splice together Exons before protein can be made
- Alternative splicing increases the potential number of different proteins, allowing the generation of millions of proteins from a small number of genes.

Comparative genomics

Mouse and Human Genetic Similarities

Courtesy Lisa Stubbs
Oak Ridge National Laboratory

Regulatory Regions

Promoter

The promoter is the place where RNA polymerase binds to start transcription. This is what determines which strand is the coding strand.

DNA Binding Motifs

- In order to recruit the transcriptional machinery, a transcription factor (TF) needs to bind the DNA in front of the gene.
- TFs bind in to short segments which are known as DNA binding motifs.
- Usually consists 6 – 8 letters, and in many cases these letters generate palindromes.
- Note however that TF binding requires an open chromatin (a set of proteins that pack the DNA). Several factors are general chromatin modifiers. ‘Chicken and egg’ problem.

Epigenetics

Messenger RNAs (mRNAs)

RNA

Four major types (one recently discovered regulatory RNA).

- mRNA – messenger RNA
- tRNA – Transfer RNA
- rRNA – ribosomal RNA
- shRNA, microRNA – RNA interference

Messenger RNA

- Basically, an intermediate product
- Transcribed from the genome and translated into protein
- Number of copies correlates well with number of proteins for the gene.
- Unlike DNA, the amount of messenger RNA (as well as the number of proteins) differs between different cell types and under different conditions.

Complementary base-pairing

- mRNA is transcribed from the DNA
- mRNA (like DNA, but unlike proteins) binds to its complement

Hybridization and Scanning— Microarrays

Copyright © 1998-9 by Jeremy Buhler

RNASeq using next generation sequencing methods

Perturbation

- In many cases we would like to perturb the systems to study the impacts of individual components (genes).
- This can be done in the sequence level by removing (knocking out) the gene of interest.
- Not always possible:
 - higher organisms
 - genes that are required during development but not later
 - genes that are required in certain cell types but not in others

Perturbations: RNAi

Proteins

From RNA to proteins: The Ribosome

- Decoding machine.
- Input: mRNA, output: protein
- Built from a large number of proteins and a number of RNAs.
- Several ribosomes can work on one mRNA

The Ribosome

Proteins

- Proteins are polypeptide chains of amino acids.
- Four levels of structure:
 - Primary Structure: The sequence of the protein
 - Secondary structure: Local structure in regions of the chain
 - Tertiary Structure: Three dimensional structure
 - Quaternary Structure: multiple subunits

Secondary Structure: Alpha Helix

Secondary Structure: Beta Sheet

Protein Structure

Domains of a Protein

- While predicting the structure from the sequence is still an open problem, we can identify several domains within the protein.
- Domains are compactly folded structures.
- In many cases these domains are associated with specific biological function.

Protein Interaction

In order to fulfill their function, proteins interact with other proteins in a number of ways including:

- Regulation
- Pathways, for example A -> B -> C
- Post translational modifications
- Forming protein complexes

Putting it all together: Systems biology

High throughput data

Time-series measurements

gene expression

epigenetics

sequence

motif

CHIP-Seq

PPI

RNA-Seq

High throughput data

- We now have many sources of data, each providing a different view on the activity in the cell
 - Sequence (genes)

How to combine these different data types together to obtain a unified view of the activity in the cell is one of the major challenges of systems biology

Reverse engineering of regulatory networks

Segal et al *Nature Genetics* 2003

- Gene expression
- Protein-DNA and gene expression

Workman et al *Science* 2006

Figure 1: Rich media gene modules network

Bar-Joseph et al *Nature Biotechnology* 2003

Dynamic regulatory networks

Protein-DNA, motif
and time series gene
expression data

Ernst et al *Nature-EMBO Mol. & Systems Bio.* 2007,
PNAS 2013