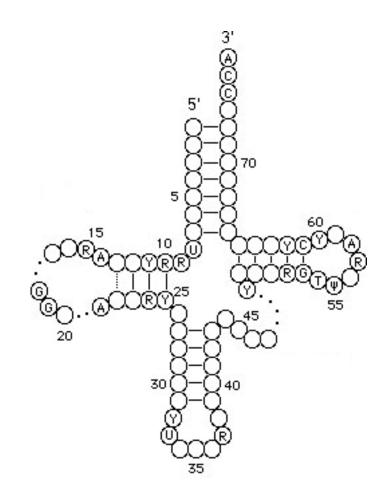
RNA secondary structure prediction and analysis

Resources

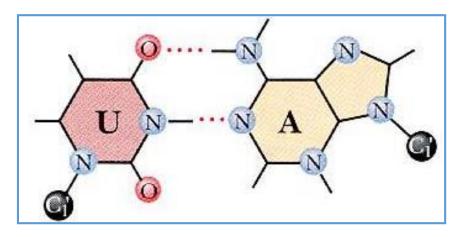

- Lecture Notes from previous years: Takis Benos
- Covariance algorithm: Eddy and Durbin, Nucleic Acids Research, v22: 11, 2079
- Useful lecture slides from Larry Ruzzo, U of Washington and Phillip Compeau, UCSD

Outline

- RNA Folding
- Dynamic Programming for RNA secondary structure prediction
 - Nussinov et al and Zucker et al algorithms
- Covariance Model
 - Eddy and Durbin

Various types of RNA

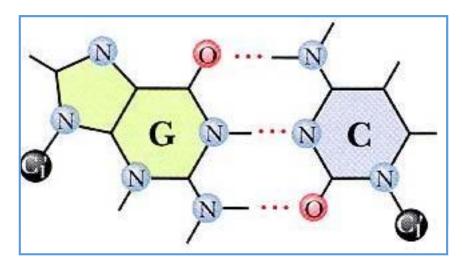
- messenger RNA (mRNA)
- transfer RNA (tRNA)
- Ribosomal RNA (rRNA)
- small interfering RNA (siRNA)
- micro RNA (miRNA)
- small nuclear RNA (snRNA)
- small nucleolar RNA (snoRNA)
- guide RNA (gRNA)
- efference RNA(eRNA)


Non coding RNA (ncRNA)

- RNA that isn't translated into protein
- Includes:
 - tRNA, rRNA, snRNA, snoRNA, miRNA, gRNA, eRNA, pRNA, tmRNA
- What about mRNA?
 - 5' methylated cap
 - 5'-UTR (un-translated regions)
 - CDS (coding sequence)
 - 3'-UTR
 - Poly-A tail
- mRNA contrains untranslated regions (5'UTR, 3'UTR), but UTRs are not considered ncRNA

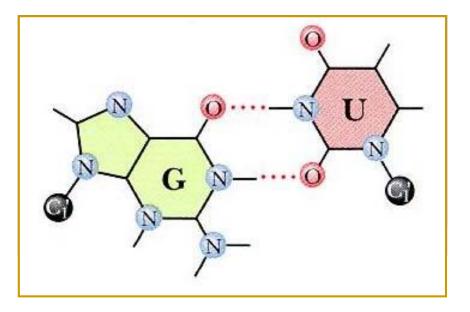
RNA Basics

- RNA bases: A, C, G, U
- Watson-Crick Pair
 - A-U (~ 2 kcal/mol)
 - G-C (~ 3 kcal/mol)
- Wobble pair
 - G-U (~ 1 kcal/mol)
- Non-Canonical pairs (modified suitably)
- Bases can only pair with one other base

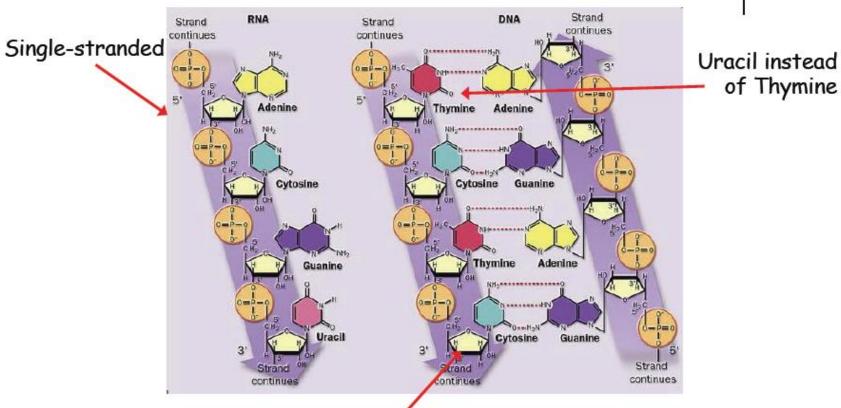

Two hydrogen bonds

RNA Basics

- RNA bases: A, C, G, U
- Canonical Base Pairs
 - A-U
 - G-C
 - G-U
- Bases can only pair with one other base


Three hydrogen bonds => more stable

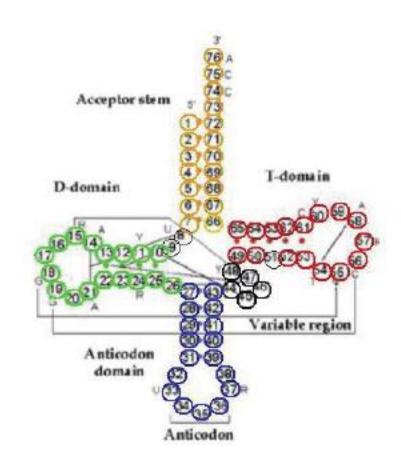
RNA Basics


- RNA bases: A, C, G, U
- Canonical Base Pairs
 - A-U
 - G-C
 - G-U
- Bases can only pair with one other base

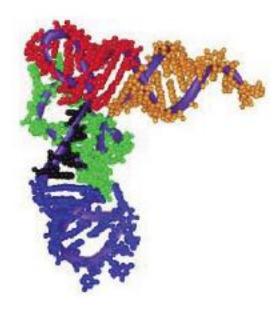
'wobble pairing'

How is RNA different from DNA?

Sugar is Ribose instead of Deoxyribose

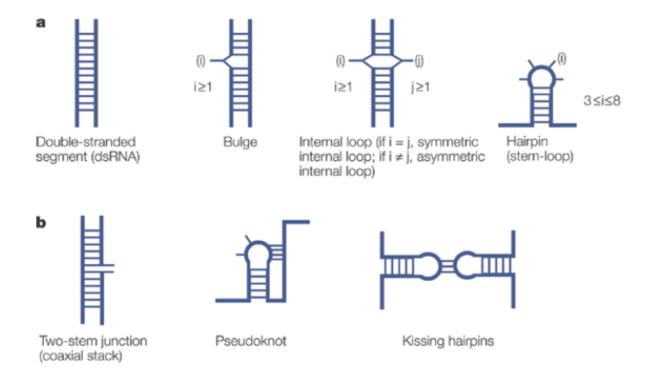

Benos MSCBIO2070 25-27.Mar.2012

Secondary and Tertiary Structure



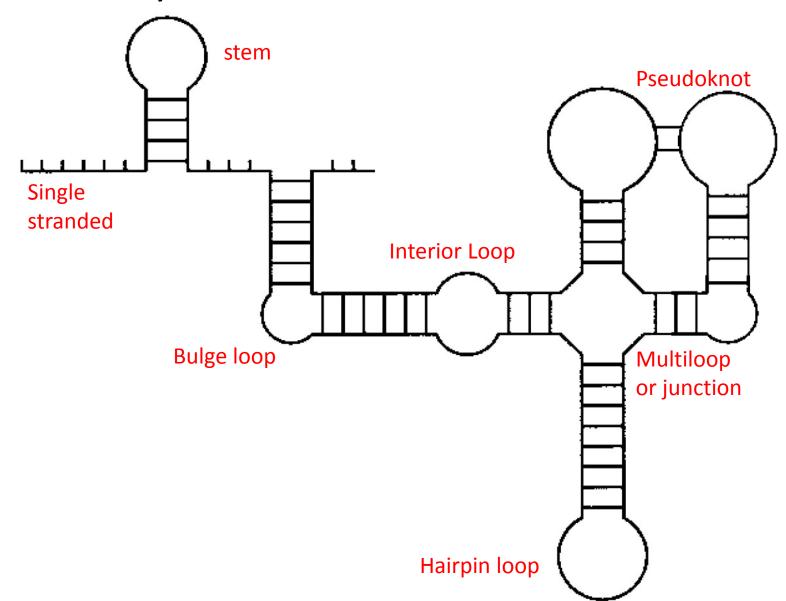
GOGGAUUUAGEUCAGUUGG GAGAGCGCCAGACUGAAGA UCUGGAGGUCCUGUGUUCG AUCCACAGAAUUCGCACCA

Primary Structure

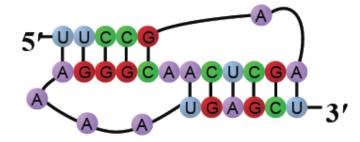

Secondary Structure

Tertiary Structure

Secondary structural elements



Nature Reviews | Molecular Cell Biology


Benos MSCBIO2070 25-27.Mar.2012

RNA Secondary Structure/Motifs

Pseudoknots

bases pairs between a loop and positions outside the enclosing stem

Challenging to deal with them; however, the total number of pseudoknotted base pairs is relatively small

i.e. in E. coli SSU rRNA, 447 base pairs, only 8 are in pseudoknot structures

tRNA - Alt. Representations

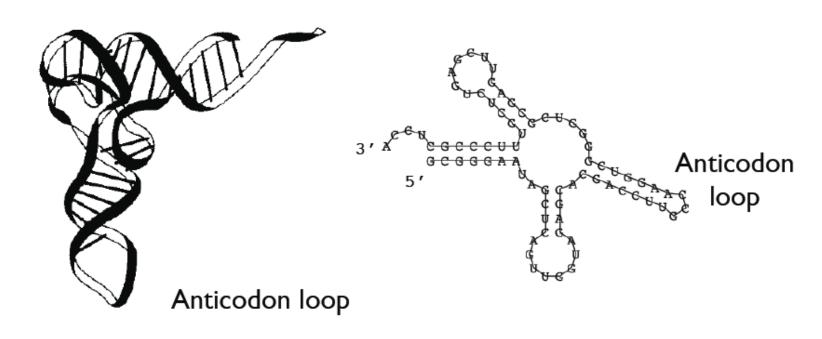
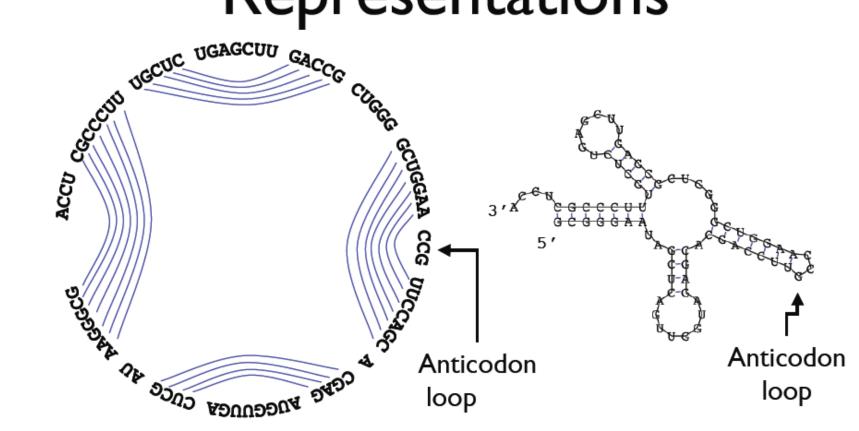



Figure 1: a) The spatial structure of the phenylalanine tRNA form yeast

b) The secondary structure extracts the most important information about the structure, namely the pattern of base pairings.

tRNA - Alt. Representations

RNA importance

- Ribozymes (RNA enzymes)
- Retroviruses
- Effects on transcription, translation, splicing...
- Functional RNAs: rRNA, tRNA, snRNA, snoRNA, microRNA, RNAi, riboswitches, regulatory elements in 3' and 5' UTR

RNA motifs

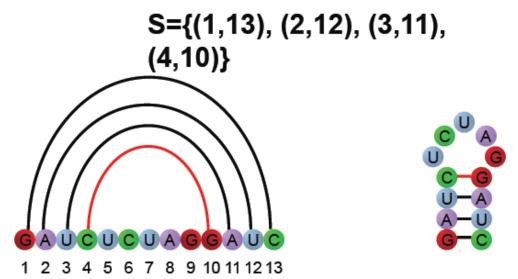
- Function depends on sequence and secondary structure
- Functions include
 - Protein binding
 - Basepairing to another RNA
 - Modifying a nucleic acid bond
- Types:
 - Single-strand regions
 - Helices (or stems)
 - Bulges
 - Hairpin loops
 - Internal loops
 - Junctions

RNA Motifs Regulatory Effects

- Regulations of translations
- Processing of RNA
- Catalytic modification of other RNAs
- Transport and position in the cell
- Stability of RNA-transcript
- Expression of encoded proteins

Why predict structures?

- Knowing the shape of a biomolecule is invaluable in drug design and understanding disease mechanisms
- Current physical methods (X-Ray, NMR) are too expensive and timeconsuming
- Predict shape from sequence of bases
- Four basic structures: helices, loops, bulges and junctions

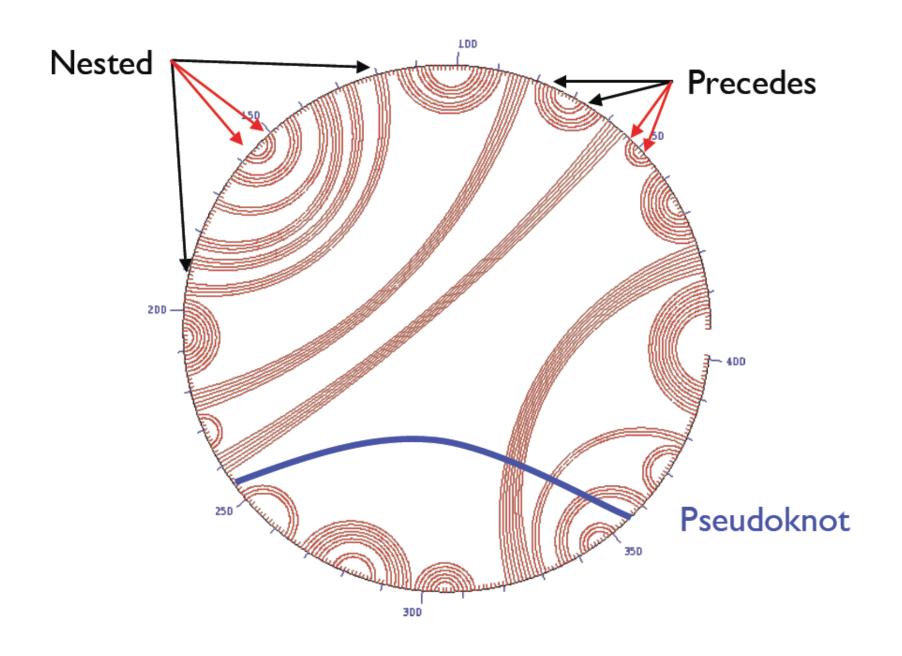

RNA secondary structure

- What makes RNA fold?
- Problem: given an RNA sequence, find the set of base pairs that is "correct" or "optimal"
 - Maximize number of base pairs (Nussinov et al)
 - Minimize energy (Zucker et al)
- Search problem: very high number of possible structures
- Algorithm: dynamic programming
 - Cannot handle pseudoknots

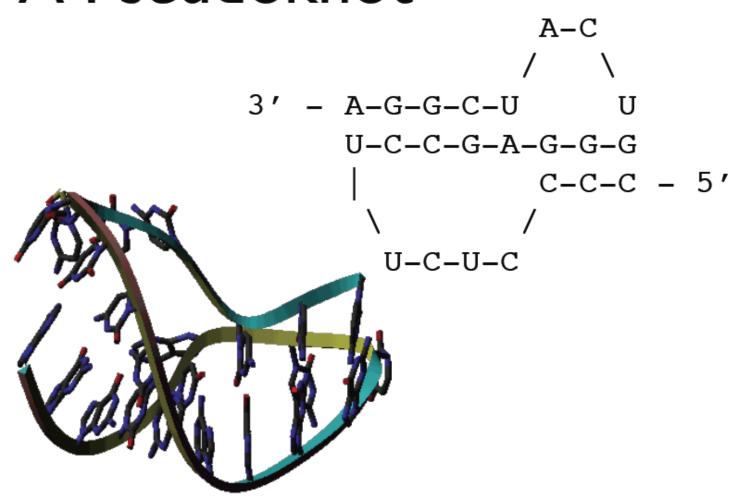
Structure Representation

- secondary structure described as a graph
- base pairs are described via pairs of indices
 (i, j), indicating links between base vertices

Benos MSCBIO2070 25-27.Mar.2012


Definitions

- Sequence $r_1 r_2 r_3 ... r_n^3$ in {A, C, G, T}
- A Secondary Structure is a set of pairs i•j s.t.
 - 1. i < j-4
 - 2. if i•j & i'•j' are two pairs with i ≤ i', then


A.
$$i = i' \& j = j'$$
, or

B.
$$j < i'$$
, or

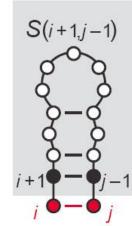
B. j < i', or
 C. i < i' < j' < j
 First pair precedes 2nd, or is nested within it. No "pseudoknots."

A Pseudoknot

Approaches to Structure Prediction

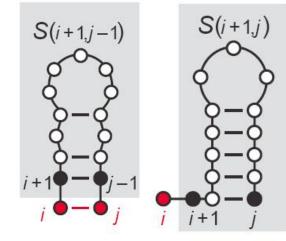
- Maximum Pairing
 - + works on single sequences
 - + simple
 - too inaccurate
- Minimum Energy
 - + works on single sequences
 - ignores pseudoknots
 - only finds "optimal" fold
- Partition Function
 - + finds all folds
 - ignores pseudoknots

Approaches, II


- Comparative sequence analysis
 - + handles all pairings (incl. pseudoknots)
 - requires several (many?) aligned, appropriately diverged sequences
- Stochastic Context-free Grammars
 Roughly combines min energy & comparative, but no pseudoknots
- Physical experiments (x-ray crystalography, NMR)

• *S*(*i*, *j*) is the folding of the RNA subsequence of the strand from index *i* to index *j* which results in the highest number of base pairs.

• *S*(*i*, *j*) is the folding of the RNA subsequence of the strand from index *i* to index *j* which results in the highest number of base pairs.

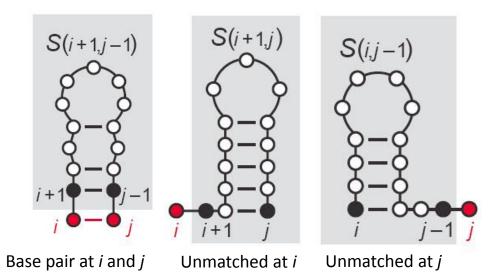

$$S(i, j) = \max \left\{ \right.$$

• *S*(*i*, *j*) is the folding of the RNA subsequence of the strand from index *i* to index *j* which results in the highest number of base pairs.

Base pair at *i* and *j*

• *S*(*i*, *j*) is the folding of the RNA subsequence of the strand from index *i* to index *j* which results in the highest number of base pairs.

Base pair at *i* and *j*


Unmatched at i

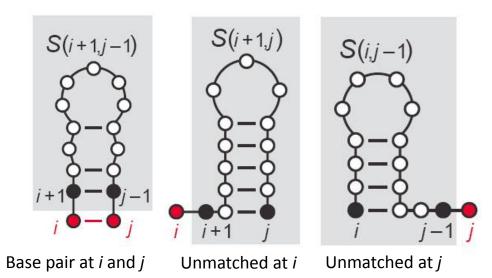
$$S(i, j) = \max \begin{cases} S(i + 1, j - 1) + 1 & \text{(if} \quad (i, j) \text{ base pair)} \\ S(i, j) = \max \end{cases}$$

Base Pair Maximization: Dynamic

Programming

• *S*(*i*, *j*) is the folding of the RNA subsequence of the strand from index *i* to index *j* which results in the highest number of base pairs.

• Recurrence:

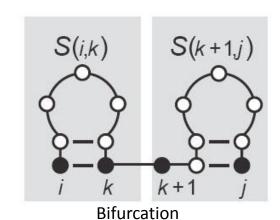

$$\begin{cases} S\left(i+1,\ j-1\right)+1 & \text{(if} \qquad \left(i,\ j\right) \text{ base pair)} \\ \mid S\left(i+1,\ j\right) \\ S\left(i,\ j\right) = \max \end{cases}$$

$$\begin{cases} S\left(i,\ j-1\right) \\ \mid S\left(i,\ j-1\right) \\ \mid S\left(i,\ j-1\right) \end{cases}$$

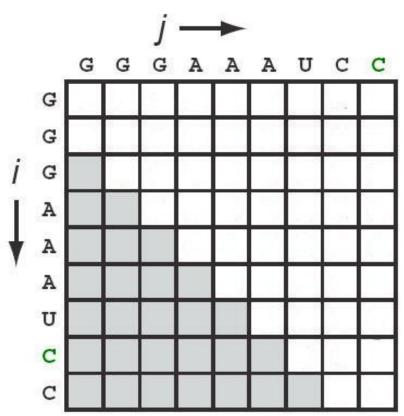
Images – Sean Eddy

Base Pair Maximization: Dynamic

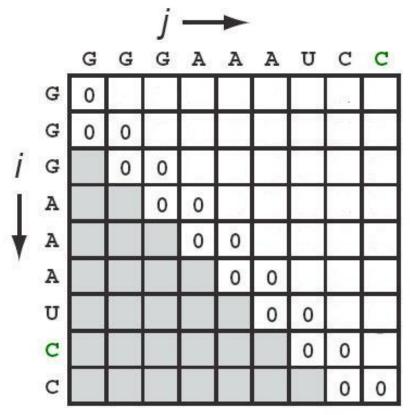
Programming


• *S*(*i*, *j*) is the folding of the RNA subsequence of the strand from index *i* to index *j* which results in the highest number of base pairs.

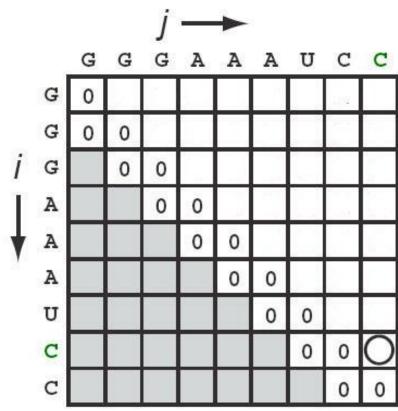
• Recurrence:


$$\begin{cases} S(i+1, j-1)+1 & \text{(if} \quad (i, j) \text{ base pair)} \\ \mid S(i+1, j) \end{cases}$$

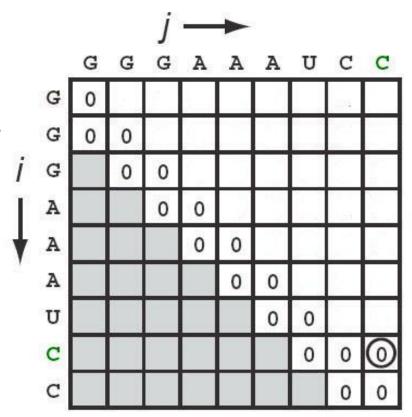
$$S(i, j) = \max \begin{cases} \begin{cases} S(i, j-1) \\ \mid S(i, j-1) \end{cases} \\ \mid \max_{1 < k < j} S(i, k) + S(k+1, j) \end{cases}$$


Images – Sean Eddy

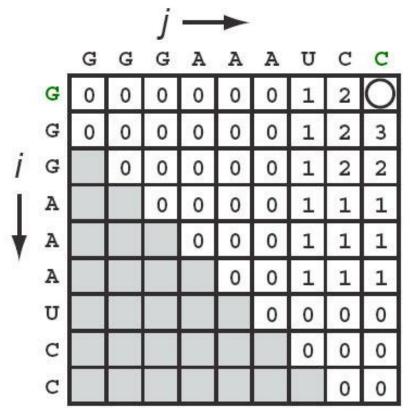
- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

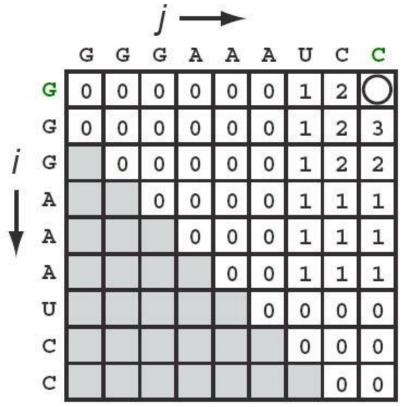
Initialize first two diagonals to 0


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

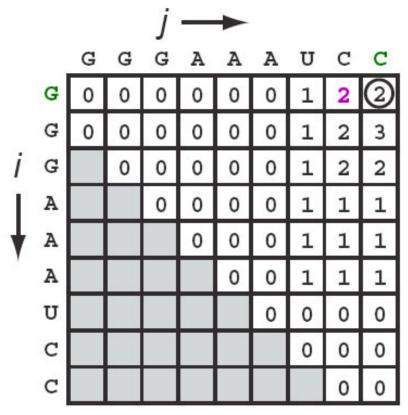
Fill in squares sweeping diagonally


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

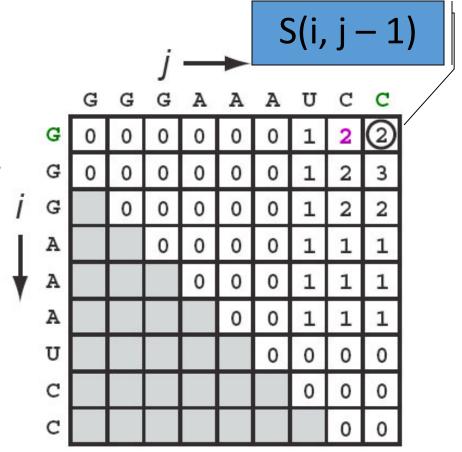
Fill in squares sweeping diagonally


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

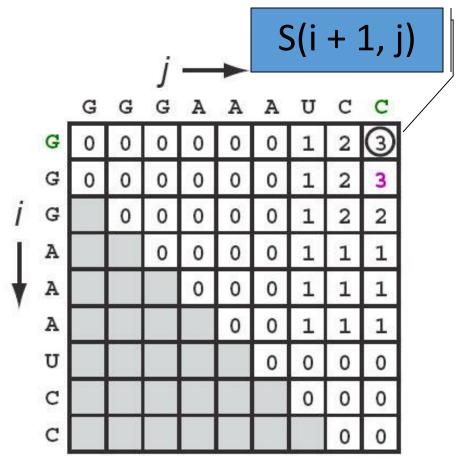
Bases cannot pair


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Bases can pair, similar to matched alignment

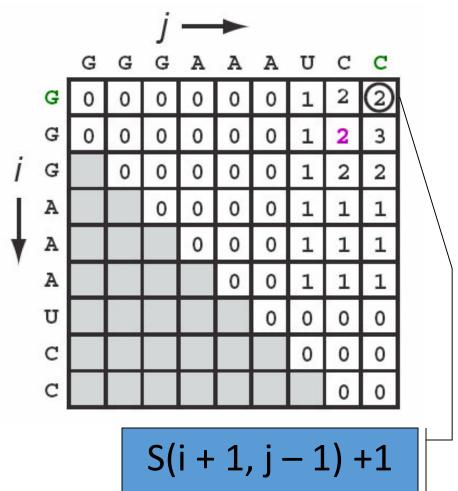

- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

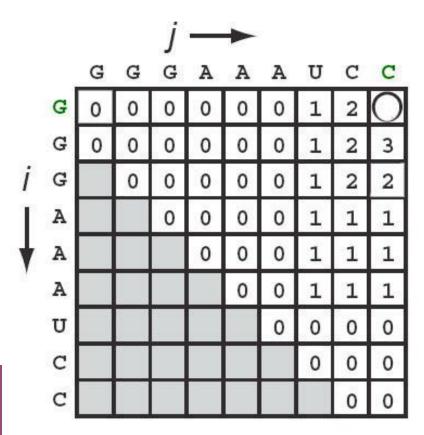
Dynamic Programming—
possible paths


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

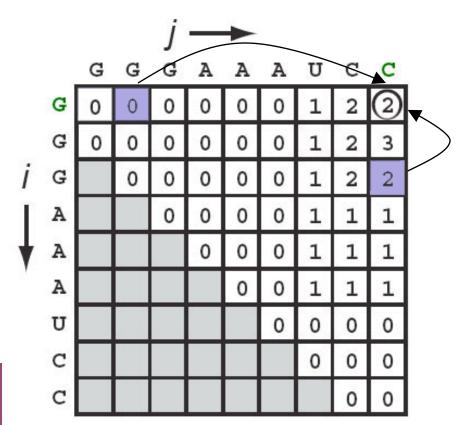
Dynamic Programming—possible paths

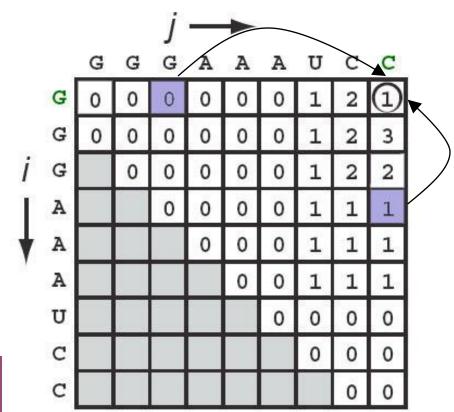
- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

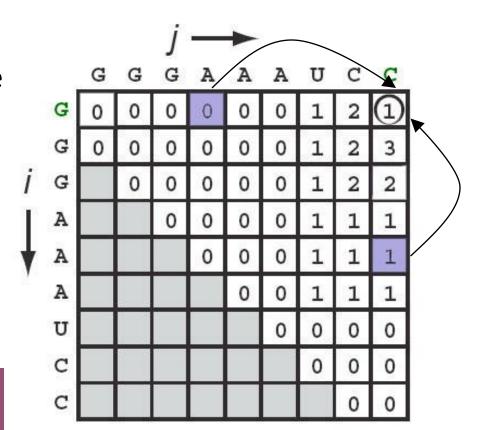

Dynamic Programming—possible paths


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

Dynamic Programming—possible paths

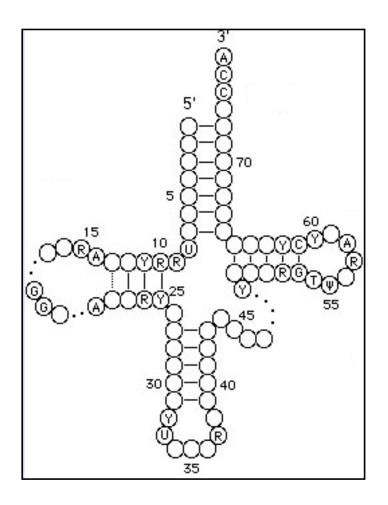

Images—Sean Eddy


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension


- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

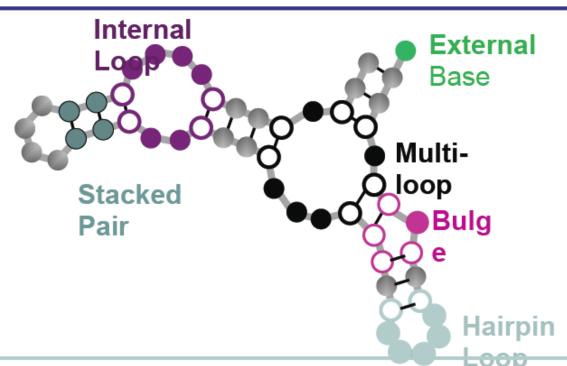
- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension

- Alignment Method:
 - Align RNA strand to itself
 - Score increases for feasible base pairs
- Each score independent of overall structure
- Bifurcation adds extra dimension



Base Pair Maximization: Drawbacks

- Base pair maximization will not necessarily lead to the most stable structure.
 - It may create structure with many interior loops or hairpins which are energetically unfavorable.
- Results comparable to aligning sequences with scattered matches—not biologically reasonable.


Energy Minimization

- Thermodynamic Stability
 - Estimated using experimental techniques.
 - Theory : Most Stable = Most likely
- No pseudoknots due to algorithm limitations.
- Attempts to maximize the score, taking thermodynamics into account.
- MFOLD and ViennaRNA

Energy minimization for RNA prediction

Every element is a "loop" of the 5 categories. and the total energy is the sum of all loop energies

energy is assigned to substructures เของ to ซอง pairs

34

How to find the minimum energy secondary structure? (Zucker Algo)

Similar to Nussinov, we use DP

W(j): energy of the optimal secondary structure for S[1..j]

V(i, j): optimal energy for S[i...j] with (i, j) forming base pair

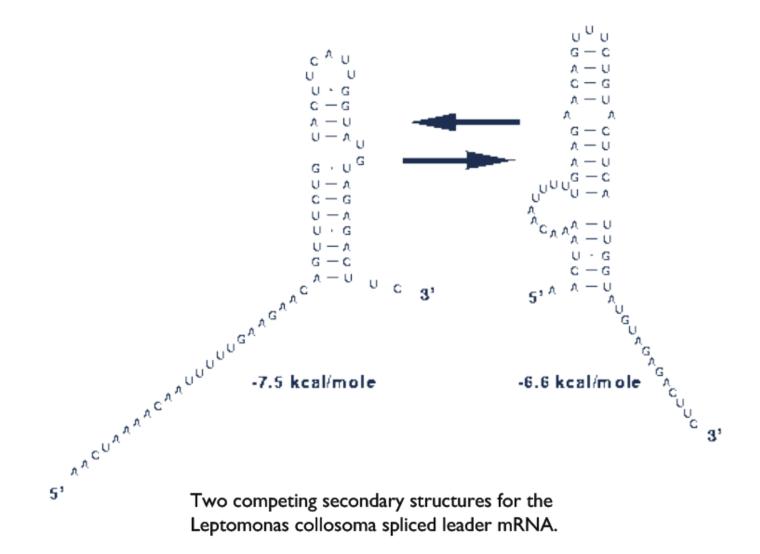
VBI(i, j): optimal energy for S[i..j] with (i, j) closing an internal loop

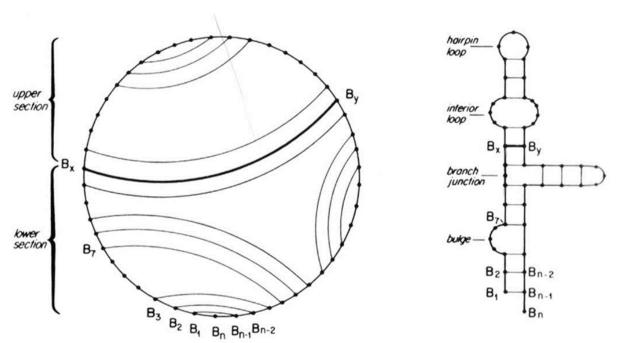
VM(i, j): optimal energy for S[i..j] with (i, j) closing a multi-loop

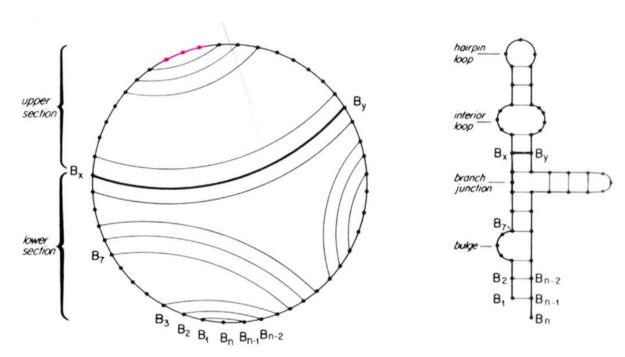
Stacked Pair

Loop energy

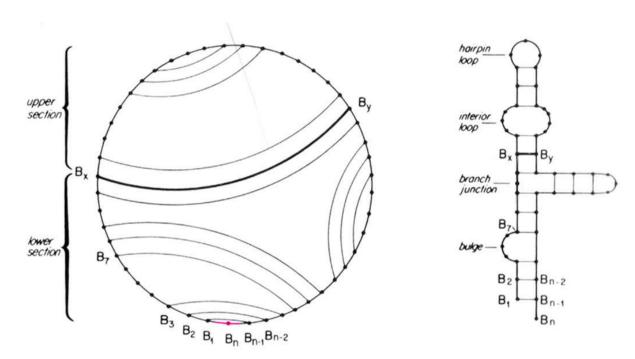
- e5(i, j): free energy of the stacking pair consists of base pairs (i, j) and (i+1,j-1). Stacking pair stabilizes the structure and has a negative energy
- e5 depends on all the four bases involved in the stack
- eH(i, j): free energy of the hairpin closed by base pair i, j
- Depends on loopsize; the unpaired bases adjacent to i,j in loop
- eL(i,j,i',j'): free energy of an internal loop or bulge enclosed by , j)
 and consists of 2 base pairs.
- Similar to eH; depends on four paired bases (I,j,i',j'); loopsize;
- Unpaired bases next to the paired bases
- eM(i,j,i₁,j₁,...,i_k,j_k): free energy of a multi-loop enclosed by (i, j) and consists of k+1 base pairs.
- Similar to eL, but many approximations used.


Benos MSCBIO2070 25-27.Mar.2012


Hairpin loop


Energy Minimization Results

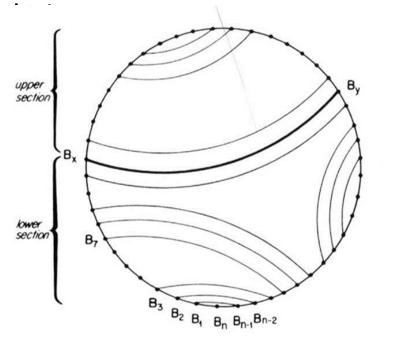
- Linear RNA strand folded back on itself to create secondary structure
- Circularized representation uses this requirement
 - Arcs represent base pairing

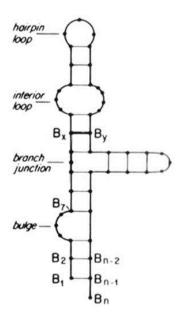

Energy Minimization Results

- All loops must have exactly three bases in them.
 - Equivalent to having at least three base pairs between arc endpoints.

Energy Minimization Results

- All loops must have exactly three bases in them.
 - Exception: Location where beginning and end of RNA come together in circularized representation.

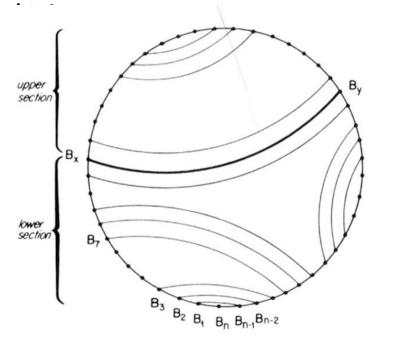


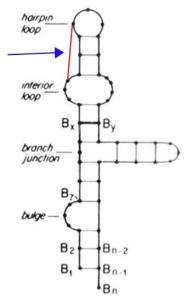

Trouble with Pseudoknots

• Pseudoknots cause a breakdown in the dynamic programming algorithm.

• In order to form a pseudoknot, checks must be made to ensure base is not already paired—this breaks down the

recurrence

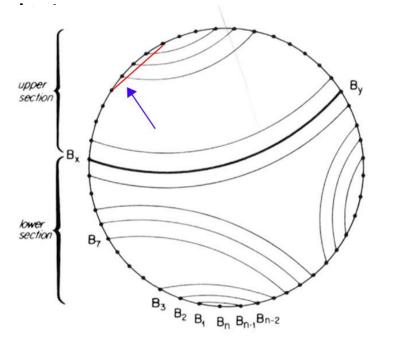


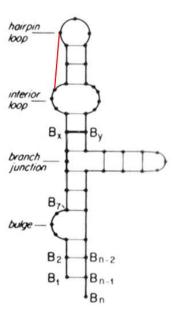

Trouble with Pseudoknots

• Pseudoknots cause a breakdown in the dynamic programming algorithm.

• In order to form a pseudoknot, checks must be made to ensure base is not already paired—this breaks down the

recurrence

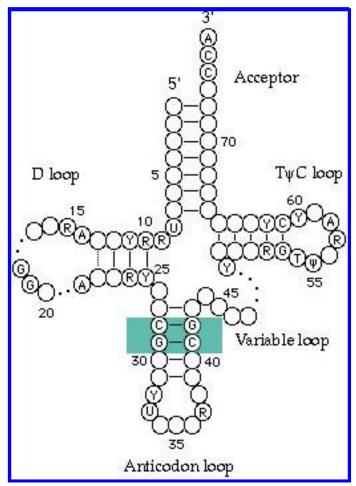



Trouble with Pseudoknots

• Pseudoknots cause a breakdown in the dynamic programming algorithm.

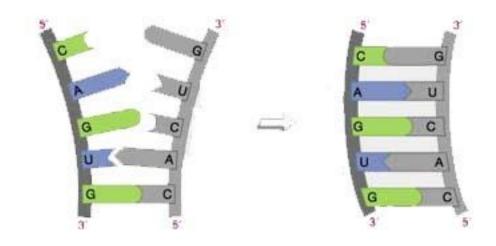
• In order to form a pseudoknot, checks must be made to ensure base is not already paired—this breaks down the

recurrence


Energy Minimization: Drawbacks

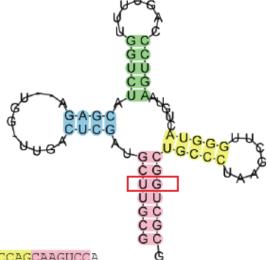
Computes only one optimal structure.

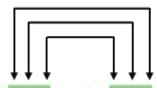
Optimal solution may not represent the biologically correct solution.


Alternative Algorithms - Covariaton

- Expect areas of base pairing in tRNA to be covarying between various species. Find this by sequence alignment.
- Base pairing creates same stable tRNA structure in organisms.

Sequence Alignment to Determine Structure


- Bases pair in order to form backbones and determine the secondary structure.
- Aligning bases based on their ability to pair with each other gives an algorithmic approach to determining the optimal structure.



Mutual Information in RNA structure prediction

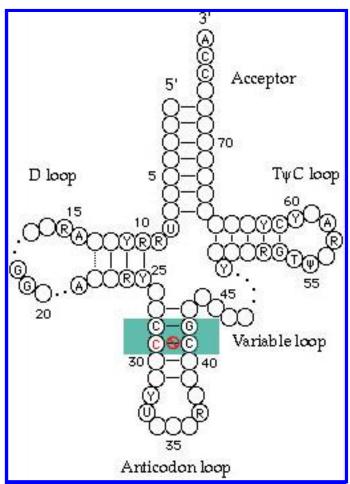
$$I(X,Y) = \sum_{i} \sum_{j} f_{X,Y}(x_i, y_j) \cdot \log \frac{f_{X,Y}(x_i, y_j)}{f_X(x_i) \cdot f_Y(y_j)}$$

GGGCUUGUAGCUCAGCU-GGU-AGAGCGCCGCCUUUGCAAGGCGCAGGCCCUGGGUCCGAAUCCCAGCAAGUCCA
GCGGUUGUGGCGAAGU-GGUU-AACGCACCAGAUUGUGGCUCUGGCAUUCGUGGGUUCGAUUCCCAUCAAUCGCC
GCCCCAUCGUCUAGA-GGCCUAGGACACCUCCCUUUCACGGAGAAAA-CGCGGAUUCGAAUUCCGCUGGGGGUA
GGUUUCGUGGUCUAGUC-GGUU-AUGGCAUCUGGUUAACACGCAGAACGUCCCCAGUUCGAUCCUGGGCGAAAUCG
CGGUGAUUAGCGCAGCCCGGU-AGCGCAUCUGGUUUGGGACCAGAGGGUCAAAGGUUCGAAUCCUUUAUCACCGA
AAGAGUAUAGUUUAAA-GGU-AAAACAGAAAGCUUCAACCUUUAAUU-UCUUAGUUCGAGUCUAAGUGCUCUUG
UCCUCCGUAGCUCAAUU-GGC-AGAGCAGCCGGCUGUUAACCGGCAGGUUACUGGUUCGAGUCCAGUCGGGGGAG
UGGGGCGUAGCCAAGC-GGU-AAGGCAACGGGUUUUGGUCCGCUAUUCGGAGGUUCAAAUCCUUCCCCAG
GCUAGCGUGGCAGAGCUCGGCA-AAUGCAAAAGGCUUAAGCCCUUUAUC-CAGAGGUUCAAAUCCUUCCCUAGCU
UCCUUGUUAGCUCAGUU-GGU-AGAGCGUUCGGCUUUAACCGAAAUGUCAGGGGUUCAAAUCCUCCCCUAGCU

M.I. Example

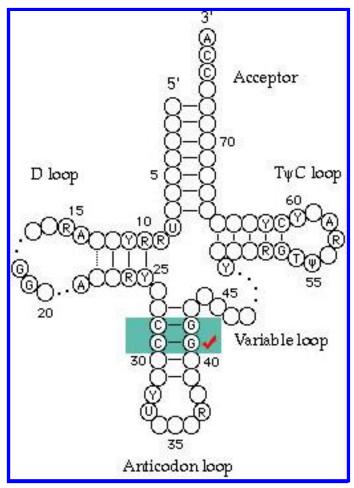
	,		_							
	¥ ¥ ¥					10 1 V				
*	1	2	3	4	5	6	7	8	9	*
Ì	Α	G	Α	U	Α	Α	U	С	U	
	Α	G	Α	U	С	Α	U	С	U	
	Α	G	Α	С	G	U	U	С	U	
	Α	G	Α	U	U	U	U	С	U	
	Α	G	С	С	Α	G	G	С	U	
	Α	G	С	G	С	G	G	С	U	
	Α	G	С	U	G	С	G	С	U	
	Α	G	С	Α	U	С	G	С	U	
	Α	G	G	U	Α	G	С	С	U	
	Α	G	Gi	G	С	G	C	C	U	
	A	G	Gi	U	Gi	U	C	C	U	
	A	G	u	, ,	٨	٨	<u>ر</u>	0	U	
	۸	G	U	A	A	٨	٨	0	U	
	٨	G	U II		G	A	٨	0	H	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	666666666666666666	A A A A O O O O O O O O O O O O	CUCGUAUGUCACUU	$ \begin{smallmatrix} C & G & U & A & C & G & U & A & C & G & U \\ \end{smallmatrix} $	A A U U G G C C G G U U A A C C	U U U G G G G C C C C A A A A	000000000000000000		
l		ч	_		-					ŀ
Α	16 0 0	0	4	2	4	4	4	0	0	
A C G	0	0 0	4 4	2 4 2 8	4 4	4	4 4	16	0 0 0	
G	0	16	4	2	4	4	4	0		
U	0	0	4	8	4	4	4	0 16 0 0	16	

MI:	1	2	3	4	5	6	7	8	9
9	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0		
7	0	0	2	0.30	0	1			
6	0	0	1	0.55	1				
5	0	0	0	0.42					
4	0	0	0.30						
3	0	0							
2	0								
1									


Cols 1 & 9, 2 & 8: perfect conservation and *might* be base-paired, but unclear whether they are. M.I. = 0

Cols 3 & 7: completely unconserved, but always W-C pairs, so seems likely that they do base-pair. M.I. = 2 bits.

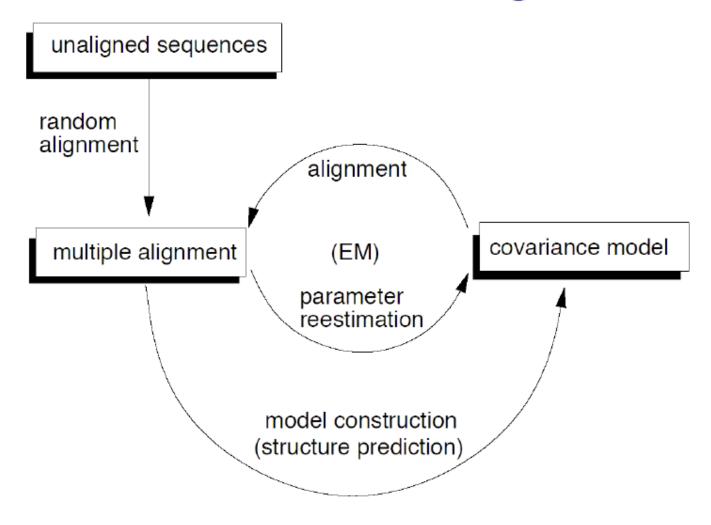
Cols 7->6: unconserved, but each letter in 7 has only 2 possible mates in 6. M.I. = 1 bit.


Alternative Algorithms - Covariaton

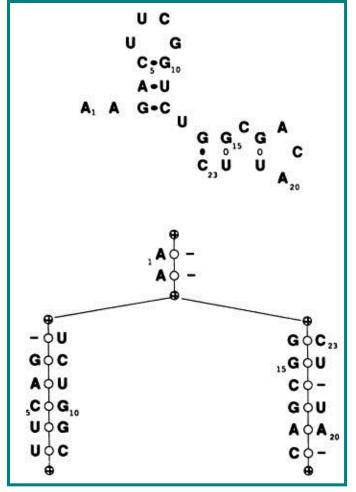
- Expect areas of base pairing in tRNA to be covarying between various species.
- Base pairing creates same stable tRNA structure in organisms.
- Mutation in one base yields pairing impossible and breaks down structure.

Alternative Algorithms - Covariaton

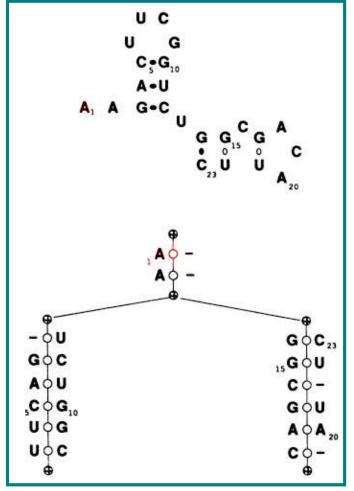
- Expect areas of base pairing in tRNA to be covarying between various species.
- Base pairing creates same stable tRNA structure in organisms.
- Mutation in one base yields pairing impossible and breaks down structure.
- Covariation ensures ability to base pair is maintained and RNA structure is conserved.


MI-Based Structure-Learning

 find best (max total MI) subset of column pairs among i...j, subject to absence of pseudo-knots

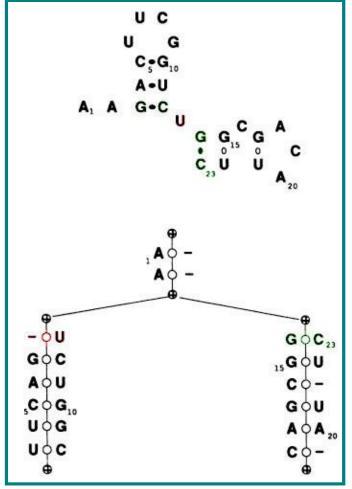

$$S_{i,j} = \max \begin{cases} S_{i+1,j} \\ S_{i,j-1} \\ S_{i+1,j-1} + M_{i,j} \\ \max_{i < j < k} S_{i,k} + S_{k+1,j} \end{cases}$$

- "just like Nussinov/Zucker folding"
- BUT, need enough data---enough sequences at right phylogenetic distance


Model Training

- Representation of RNA structure using Binary tree
- Nodes represent
 - Base pair if two bases are shown
 - Loop if base and "gap" (dash) are shown
- Pseudoknots still not represented
- Tree does not permit varying sequences
 - Mismatches
 - Insertions & Deletions

- Representation of RNA structure using Binary tree
- Nodes represent
 - Base pair if two bases are shown
 - Loop if base and "gap" (dash) are shown
- Pseudoknots still not represented
- Tree does not permit varying sequences
 - Mismatches
 - Insertions & Deletions



- Representation of RNA structure using Binary tree
- Nodes represent
 - Base pair if two bases are shown
 - Loop if base and "gap" (dash) are shown
- Pseudoknots still not represented
- Tree does not permit varying sequences
 - Mismatches
 - Insertions & Deletions

UC UÓC

Images – Eddy et al.

- Representation of RNA structure using Binary tree
- Nodes represent
 - Base pair if two bases are shown
 - Loop if base and "gap" (dash) are shown
- Pseudoknots still not represented
- Tree does not permit varying sequences
 - Mismatches
 - Insertions & Deletions

Covariance Model

- Covariance Model: HMM which permits flexible alignment to an RNA structure emission and transition probabilities
- Model trees based on finite number of states
 - Match states sequence conforms to the model:
 - MATP: State in which bases are paired in the model and sequence.
 - MATL & MATR: State in which either right or left bulges in the sequence and the model.
 - Deletion State in which there is deletion in the sequence when compared to the model.
 - Insertion State in which there is an insertion relative to model.

Covariance Model

- Covariance Model: HMM which permits flexible alignment to an RNA structure – emission and transition probabilities
- Transitions have probabilities.
 - Varying probability: Enter insertion, remain in current state, etc.
 - Bifurcation: No probability, describes path.

 S(i, j) = Score at indices i and j in RNA when aligned to the Covariance Model.

$$M_{i,j} = \sum_{x_i,x_j} \int_{x_ix_j} \log_2 \frac{\int_{x_ix_j}}{\int_{x_i}\int_{x_j}}$$

$$S(i,j) = \max \begin{cases} S(i,j-1) \\ S(i,j-1) \end{cases}$$

$$S(i,j) = \max_{i \le k \le j} S(i,k) + S(k+1,j)$$

- Frequencies obtained by aligning model to "training data"—consists of sample sequences.
 - Reflect values which optimize alignment of sequences to model.

• S(i, j) = Score at indices i and j in RNA when aligned to the Covariance Model. $\begin{cases}
S(i+1, j-1) + M(i, j) \\
S(i+1, j)
\end{cases}$ $M_{i,j} = \sum_{x_i, x_j} \int_{x_i x_j} \log_2 \frac{\int_{x_i x_j} \int_{x_i x_j} \int_{x_$

$$S(i, j) = \max \begin{cases} S(i, j - 1) + M(i, j) \\ S(i, j - 1) \end{cases}$$

$$\lim_{i < k < j} S(i, k) + S(k + 1, j)$$

depending on symbol.

- Frequencies obtained by aligning model to "training data"—consists of sample sequences.
 - Reflect values which optimize alignment of sequences to model.

• S(i, j) = Score at indices i and j in RNA when aligned to the Covariance Model. $\begin{cases} S(i+1, j-1) + M(i, j) \\ S(i+1, j) \end{cases}$ $S(i, j) = \max \begin{cases} S(i, j-1) \\ S(i, j-1) \\ S(i, k) + S(k+1, j) \end{cases}$ Independent frequency of seeing the symbols (A, C, G, T) in locations i or judgmenting on symbols

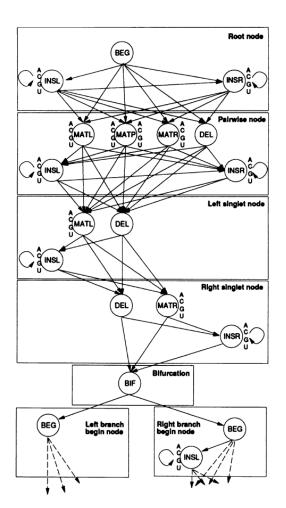
$$S(i, j) = \max \begin{cases} S(i + 1, j) \\ S(i, j - 1) \end{cases}$$

$$\begin{cases} S(i, j - 1) \\ \max_{i < k < j} S(i, k) + S(k + 1, j) \end{cases}$$

depending on symbol.

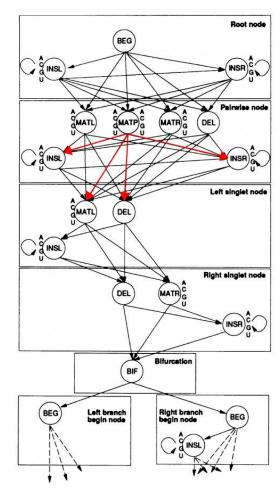
- Frequencies obtained by aligning model to "training data"—consists of sample sequences.
 - Reflect values which optimize alignment of sequences to model.

• S(i, j) = Score at indices i and j in RNA when aligned to the Covariance Model. $\begin{cases} S(i+1, j-1) + M(i, j) \\ S(i+1, j) \end{cases}$ $S(i, j) = \max \begin{cases} S(i, j-1) \\ S(i, j-1) \\ S(i, k) + S(k+1, j) \end{cases}$ Independent frequency of seeing the symbols (A, C, G, U) in locations i or judgmenting on symbols

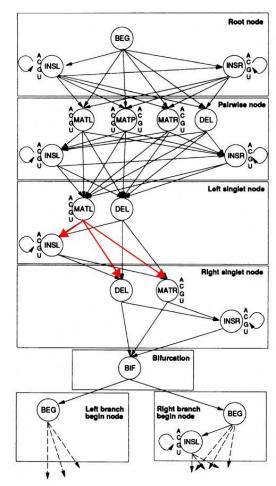

$$S(i, j) = \max \begin{cases} S(i + 1, j) \\ S(i, j - 1) \end{cases}$$

$$\begin{cases} S(i, j - 1) \\ S(i, k) + S(k + 1, j) \end{cases}$$

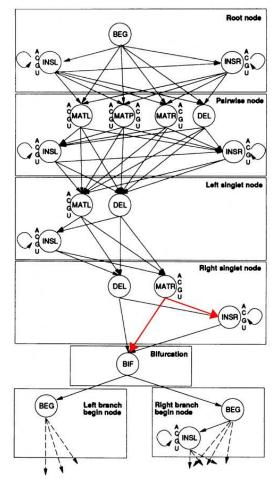
depending on symbol.


- Frequencies obtained by aligning model to "training data"—consists of sample sequences.
 - Reflect values which optimize alignment of sequences to model.

- Calculate the probability score of aligning RNA to CM.
- Three dimensional matrix— O(n³)
 - Align sequence to given subtrees in CM.
 - For each subsequence, calculate all possible states.
- Subtrees evolve from bifurcations
 - For simplicity, left singlet is default.

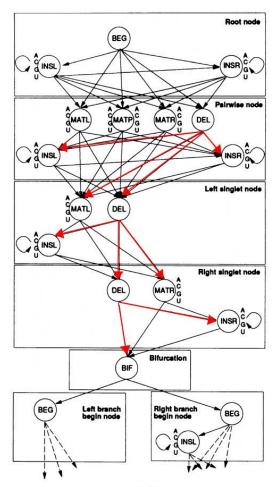

Images—Eddy et al.

- For each calculation, take into account:
 - Transition (T) to next state.
 - Emission probability (P) in the state as determined by training data.


$$S_{i,j,y}(y = MATP) = \max_{y_{next}} [S_{i+1,j-1,y_{next}} + \log T(y_{next} \mid y) + \log P(x_i, x_j \mid y)]$$

Images—Eddy et al.

- For each calculation, take into account:
 - Transition (T) to next state.
 - Emission probability (P) in the state as determined by training data.


$$S_{i,j,y}(y = MATL, INSL) = \max_{y_{next}} [S_{i+1,j,y_{next}} + \log T(y_{next} \mid y) + \log P(x_i \mid y)]$$

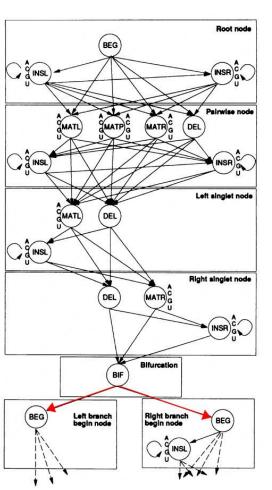
Images—Eddy et al.

- For each calculation, take into account:
 - Transition (T) to next state.
 - Emission probability (P) in the state as determined by training data.

$$S_{i,j,y}(y = MATR, INSR) = \max_{y_{next}} [S_{i,j-1,y_{next}} + \log T(y_{next} \mid y) + \log P(x_j \mid y)]$$

Images—Eddy et al.

- For each calculation, take into account:
 - Transition (T) to next state.
 - Emission probability (P) in the state as determined by training data.
- Deletion—does not have emission probability associated with it.



$$S_{i,j,y}(y = DEL) = \max_{y_{next}} [S_{i,j,y_{next}} + \log \mathcal{T}(y_{next} \mid y)]$$

Images—Eddy et al.

- For each calculation, take into account:
 - Transition (T) to next state.
 - Emission probability (P) in the state as determined by training data.
- Deletion—does not have emission probability associated with it.
- Bifurcation—does not have state probability associated with it.

$$S_{i,j,y}(y = BIFURC) = \max_{i-1 \le mid \le j} [S_{i,mid,y_{left}} + S_{mid+1,j,y_{right}}]$$

Covariance Model Drawbacks

Needs to be well trained.

- Not suitable for searches of large RNA.
 - Structural complexity of large RNA cannot be modeled
 - Runtime
 - Memory requirements