
Molecular Evolution

3-Feb-2014
DEKM book

Notes from Drs. B. John and T. Benos
Mathematical Models in Biology, An Introduction, 

Allman and Rhodes, CUP 2004. 

1



Benos 02-710/MSCBIO2070  15-JAN-2008 2

Completed Genomes

More than 200 complete 
genomes have been 

sequenced

Slide courtesy: Serafim Batzoglou
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Evolution

Slide courtesy: Serafim Batzoglou
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http://sulab.org/2013/06/sequenced-genomes-per-year/
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Evolutionary Taxonomy

• Track DNA of species to determine 
phylogenetic relationship between species

• Assumptions

– DNA mutates slightly over generations

– Species descended from a common ancestor must 
have DNA sequences “similar” to each other
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Examples

• Example sequence:          CGTGACTTCC

–Base substitution:        CGGGACTTCC

–Base insertion:              CGATGACTTCC

–Base deletion:               CG GACTTCC

– Sequence insertion:     CGTATTAGGACTTCC

– Sequence deletion:      CG CTTCC

– Sequence duplication: CGTGACTTGACTTCC

– Sequence inversion:     CGTTCAGTCC
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Base mutations (general): definitions

• Base mutations: the source of sequence variation
• Transitions more frequent than transversions

A GPurines

C TPyrimidines

Transitions

Transversions
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Base mutations in ORFs: definitions

UGU

UGC

silent

UGG

missense

UGA

non-sense
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Base mutations in ORFs: definitions 
(cntd)

tggagctAtt attgctaagt Aacatttacc ccctgaagtt aatgGatcaa tcaagagaga 120

tgtgggctgt aatgaaTcgt Cttattgaat Taacaggttg gatcgttctt gtcgtttcag 180

tcattcttct tggcgtggcg agtcacattg acaactatca gccacctgaa cagagtgctt 240

cggtacaaca caagtaagct ctgcacttgt ggagcgacat gctgcccgtc cgggtgcatg 300

M N R L I E L

tggagctGtt attgctaagt Tacatttacc ccctgaagtt aatgAatcaa tcaagagaga 120

tgtgggctgt aatgaaCcgt Gttattgaat Aaacaggttg gatcgttctt gtcgtttcag 180

tcattcttct tggcgtggcg agtcacattg acaactatca gccacctgaa cagagtgctt 240

cggtacaaca caagtaagct ctgcacttgt ggagcgacat gctgcccgtc cgggtgcatg 300

M N R V I E

silent
missense nonsense
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Base mutations in ORFs: definitions 
(cntd)

tggagctAtt attgctaagt Aacatttacc ccctgaagtt aatgGatcaa tcaagagaga 120

tgtgggctgt aatgaaTcgt Cttattgaat Taacaggttg gatcgttctt gtcgtttcag 180

tcattcttct tggcgtggcg agtcacattg acaactatca gccacctgaa cagagtgctt 240

cggtacaaca caagtaagct ctgcacttgt ggagcgacat gctgcccgtc cgggtgcatg 300

M N R L I E L

tggagctGtt attgctaagt Tacatttacc ccctgaagtt aatgAatcaa tcaagagaga 120

tgtgggctgt aatgaaCcgt Gttattgaa- Taacaggttg gatcgttctt gtcgtttcag 180

tcattcttct tggcgtggcg agtcacattg acaactatca gccacctgaa cagagtgctt 240

cggtacaaca caagtaagct ctgcacttgt ggagcgacat gctgcccgtc cgggtgcatg 300

M N R V I E

deletion
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Molecular Evolution and its 
consequences 

1 Most related sequences have many positions 
that have mutated several times

2 Rate of accepted mutation is usually not the 
same for all types of base substitution

3 Different codon position have different 
mutation rates

4 Influence of selective pressure on the 
observed frequency of synonymous and non-
synonymous mutations
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Most related sequences have many positions that have 
mutated several times

• Neither of the following is true
– Sequences have only diverged to a moderate degree such that no 

position has been subjected to more than one mutation
• If so, once the sequences are aligned, all mutational events could be observed 

as nonidentical aligned bases and assume mutation to be from one base to 
another

– All sequences evolved at a constant mutation rate for all mutations at 
all times
• If so, the number of observed differences between any two aligned sequences 

would be directly proportional to the time elapsed since they diverged from 
their most recent common ancestor

• Evolutionary distance = p-distance (fraction of misaligned residues)
– Because of overlapping mutations, p-distance is an underestimate of 

the number of mutations that actually occurred

16



How many mutations?

• Knowing DNA seq info, measure the mutation 
amount in the evolutionary descent 

• ancestor seq S0:      ACCTGCGCTA

• intermediate seq S1:     ACGTGCACTA

• descendent seq S2:     ACGTGCGCTA

• (S0,S2) => 1 mutation => 1/10

• (S0,S1,S2) => 3 mutations => 3/10

• G -> A -> G  is a “hidden” mutation
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Rate of accepted mutation is usually not the same for 
all types of base substitution

• Simplest model: rates identical and time-
invariant with no substitution preferences

• Whether a mutation is retained or lost from 
populations’ gene pool will depend on many 
factors including..
– AA sequence is altered or not

– Effect on function

Rate of mutation and substitution preferences 
can vary at each position along the genome
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R = transitions/tranversions
• R = ½ but 4 in practice (mitochondrial gene 

sequences from mammalian subfam Bovinae)
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A GPurines

C TPyrimidines

Transitions

Transversions

Janacek et al Mol. Phylogenet. 
Evol. 6: 107-119, 1996
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Different codon positions have 
different mutation rates

UGU

UGC

silent

UGG

missense

UGA

non-sense

Synonymous mutations almost 

always from third codon position 

=> mutation rate will be higher



Influence of selective pressure on the observed 
frequency of synonymous and non-synonymous 

mutations

• Mutation: maintain or loose

• Depends on the selective pressure on the 
species and on whether the fitness of the 
organism changes because of mutation

• No selective pressure => random genetic drift

• Fitness: positive selection (mutation kept) vs 
negative selection (mutation lost)
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Influence of selective pressure on the observed 
frequency of synonymous and non-synonymous 

mutations

• With aligned sequences, possible to identify 
the type of selection

– Synonymous mutations will not affect fitness, thus 
neither selected for nor against…=> null model

– Ratio of the rates of non-synonymous 
mutations/synonymous mutations to determine 
positive, negative or neutral selection
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To get the rates, we need to apply correction! We will talk more on this shortly. 
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How many mutations?

• Knowing DNA seq info, measure the mutation 
amount in the evolutionary descent 

• ancestor seq S0:      ACCTGCGCTA

• intermediate seq S1:     ACGTGCACTA

• descendent seq S2:     ACGTGCGCTA

• (S0,S2) => 1 mutation => 1/10

• (S0,S1,S2) => 3 mutations => 3/10

• G -> A -> G  is a “hidden” mutation
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Modeling mutations

• Assume mutations are very rare, so that no more 
than 1 mutations occurs at the same site..very
restrictive

• Or use a suitable mathematical tool…probabilities

• Central question: Relate the observed fraction of 
sites that have mutated to the actual number of 
mutations that have occurred, which is not 
measurable from the data!!
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Probability that next base is A?

• AGCCTACTGGCCAGGACCTC..

• Prob(A at site 21) =  ?
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Recovering hidden mutations

• Given a sequence, we are interested in 
Prob(purine|i) or Prob(pyrimidine|i)

• Assume in each generation, base i has 1.5% 
change of transversion =>
– P(change|i) = 0.015 and P(no-change|i) = 0.985

• Assume changes within generations are 
independent to each other

• Consider changes over 2 generations with 4 
possibilities: change/no-change, followed by 
change/no-change
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Recovering hidden mutations

• P(change,change|i) = 0.015^2 = 0.000225

• P(change,no-change|i) =0.015 * 0.985 = 
0.0148

• P(no-change,change|i) =0.985*0.015 = 0.0148

• P(no-change,no-change|i) = 0.985^2 = 
0.970225

• Probability of hidden mutation: P(no-
change,no-change|i) + P(change,change|i) = 
0.970225 + 0.000225 = 0.97045
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Mutations with Poisson model and 
distance correction

Central question: Relate the observed fraction of 
sites that have mutated to the actual number of 
mutations that have occurred, which is not 
measurable from the data!!

(blackboard)
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Jukes Cantor model  for estimating 
distances between sequences – Markov

A

C

G

T

f f

f

f

f

f

1-3f 1-3f

1-3f

1-3f
Markov Transition probability 
Matrix

               A        C         G         T
1 3

1 3
1 3

1 3

 
  
 
  

f f f f A
f f f f C

A
f f f f G
f f f f T



pr(state after next is Sk | current state is Si)

= ∑j pr(state after next is Sk, next state is Sj | current state is Si) 

= ∑j pr(next state is Sj| current state is Si) x pr(state after next is Sk | current    

state is Si, next state is Sj) 

= ∑j pi,j x pj,k

= (i,k)-element of P2, where P=(pi,j).

More generally,

pr(state t steps from now is Sk | current state is Si)   = i,k element of Pt

For markov models



For Markov models
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Jukes-Cantor model - Formulation

               A                   C               G              T
1 3 ( ) ( ) ( ) ( )
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M t
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Jukes-Cantor model - Formulation

0 0

               
( ) ( ). ( ) 

( ) ( ) ( ). ( ) ( ). (0)'( ) lim lim ( ). '(0)
   

   
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   
 t t

M t t M t M t
M t t M t M t M t M t MM t M t M

t t

tth step probability 
distribution matrix

OR

t-step transition matrix 
because (I,J) element is 
the Prob. To move from 
state I to J in t-steps 

              A                   C               G              T
1 3 ( ) ( ) ( ) ( )

( ) 1 3 ( ) ( ) ( )
( )

( ) ( ) 1 3 ( ) ( )
( ) ( ) ( ) 1 3 ( )

 
  
 
  

f t f t f t f t A
f t f t f t f t C

M t
f t f t f t f t G
f t f t f t f t T



JC model derivation- cont’d            
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JC model derivation- cont’d            
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JC model – cont’d
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JC model – last step
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Illustration

Human and bovine beta‐globins are aligned with no deletions at 145 out of 
147 sites.  They differ at 23 of these sites. Thus   n≠/n = 23/145, and the 
corrected distance using the Jukes‐Cantor formula is (natural logs)

 19/20  log(1  20/19  23/145) = 17.3  10‐2 per site 

=> 17.3  10‐2  145= 25.1

19 20ln(1 );
20 19

*100

K d

K


 



Corrected distances between protein sequences 

Below diagonal: observed number of differences per 100 amino acids 
Above diagonal: number of differences per 100 amino acids
Correction method: Jukes-Cantor

19 20ln(1 );
20 19

*100

K d

K


 

hum     mac     bov pla chi       sha

hum      ---- 5          17       26       37      109

mac      5        ---- 19       26       36       100 

bov 16         17         ---- 32       47       109

pla 23         23         27        ---- 35       106

chi       31         30         37        29       ---- 98

sha 65         62        65        64       61      ----



Other models

Kimura's K2P model (1980)

And others: F84 model (Felsenstein).. 

A

C

G

T

g g

f

f

g

g

1-f-2g 1-f-2g

1-f-2g 1-f-2g



And there is of course the general 12-parameter model which has 
arbitrary rates for each of the 12 possible changes (from each of the 
4 nucleotides to each of the 3 others). 
(Neither of these has formulas for the transition probabilities, but 
those can be done numerically.)

A
C
G
T

A C G T

Cαπ Gβπ Tγπ
Aαπ Gδπ Tεπ
Aβπ Cδπ Tνπ

Aγπ Cεπ Gνπ

The general time-reversible model



Concluding points on theoretical models 
of  substitutions

Most models assume that sites evolve 
independently (which is not entirely realistic). 
more realistic models ? the more complicated 
the model, it is hard to compute the probabilities
For proteins each of the transition probabilities 
are widely different, simple modeling not 
possible! – What to do? – Numerical Solution



Blackboard notes

• Re-derive JC based on rate matrix

• Introduce more complex model such as 
Kimura

• Use Kimura model to calculate 
transition/transversion rate ratio R
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Problems with Neutral Theory

• Neutral mutations, should vary as a function 
of generation/life time; there should be more 
changes per million years for rodents than for 
primates

• However, some proteins evolve at constant 
rate among lineages without regard to 
generation time: same rate between mice/rats 
and chimp/human
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Next week: Phylogenetic trees
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