Algorithms in Nature

Dimensionality Reduction

High-dimensional data

(i.e. lots of features)

Document classification:

Billions of documents x
Thousands/Millions of words/bigrams
matrix

Recommendation systems:

480,189 users x 17,770 movies matrix

Clustering gene expression profiles:

10,000 genes x 1,000 conditions

Curse of dimensionality

Why might many features be bad?

- Harder to interpret and visualize
 - provides little intuition of the underlying structure of the data
- Harder to store data and learn complex models
 - statistically and computationally challenging to classify
 - dealing with redundant features and noise
- Possibly worse generalization

Two types of dimensionality reductions

Feature selection: only a few features are relevant to the task

X₃ - Irrelevant

<u>Latent features</u>: a (linear) combination of features provides a more efficient representation than the observed features (e.g. PCA)

For example, topics (sports, politics, economics) instead of individual documents

Facial recognition

Say we wanted to build a human facial recognition system.

Option 1: enumerate all 6 billion faces, update as necessary.

Option 2: learn a lowdimensional basis that can be used to represent *any* face (PCA: Today)

Option 3: learn the basis using insights from how the brain does it (NMF: Wednesday)

(high-dimensionality space of possible human faces)

Principal Component Analysis

A dimensionality reduction technique similar to auto-encoding neural networks:

Learn a *linear* representation of the input data that can best reconstruct it

Hidden layer: a compressed representation of the input data. Think of compression as a form of pattern recognition.

Principal Components Analysis

$$face_i = \sum_{k} c_{ik} eigenface_k$$

"eigenfaces"

Face reconstruction using PCA

Reconstruction using the first 25 components (eigenfaces), one at a time

Same, but adding 8 PCA components at each step

In general: top k dimensions are the k-dimensional representation that minimizes reconstruction (sum of squared) error.

Principal Component Analysis

Given data points in d-dimensional space, project them onto a lower dimensional space while preserving as much information as possible.

- e.g. find best planar approx to 3D data
- e.g. find best planar approx to 10⁴D data

Principal components are orthogonal directions that capture variance in the data:

1st PC: direction of greatest variability in the data

2nd PC: next orthogonal (uncorrelated) direction of greatest variability: remove variability in the first direction, the find the next direction of greatest variability.

Projection of data point x_i (a d-dim vector) onto 1st PC v is v^Tx_i

PCA: find projections to minimize reconstruction error

Assume data is a set of d-dimensional vectors, where nth vector is:

$$x^n = \langle x_1^n, \cdots, x_d^n \rangle$$

We can represent these in terms of any d orthogonal vectors u1, ...,

$$x^n = \sum_{i=1}^d z_i^n \mathbf{u_i}$$

Goal: given M<d, find u₁, ..., u_M that minimizes: $E_M = \sum_{i=1}^N ||x^n - \hat{x}^n||^2$ where $\hat{x}^n = \bar{x} + \sum_{i=1}^M z_i^n \mathbf{u}_i$ original reconstructed data point

origin is mean-centered coefficient/weight of projection

PCA

<u>Idea</u>: zero reconstruction error if M=d, so all error is due to missing components.

Therefore:
$$E_M = \sum_{i=M+1}^d \sum_{n=1}^N [\mathbf{u}_i^\mathrm{T} (x^n - \bar{x})]^2$$

Project difference between the original point and the mean onto the basis vector, take the square

$$=\sum_{i=M+1}^{d}\sum_{n=1}^{N}[\mathbf{u}_{i}^{\mathrm{T}}(x^{n}-\bar{x})][\mathbf{u}_{i}^{\mathrm{T}}(x^{n}-\bar{x})]$$

Expand and rearrange

$$= \sum_{i=M+1}^{d} \sum_{n=1}^{N} [\mathbf{u}_i^{\mathrm{T}} (x^n - \bar{x})] [(x^n - \bar{x})^{\mathrm{T}} \mathbf{u}_i]$$

$$= \sum_{i=M+1}^{d} \mathbf{u_i}^{\mathbf{T}} \Sigma \mathbf{u_i}$$

Substitute co-variance matrix

Co-variance matrix
$$\Sigma_{ij} = \sum_{n=1}^N (x_i^n - ar{x}_i)(x_j^n - ar{x}_j)^{\mathrm{T}}$$

Measures correlation or interdependence between two dimensions

PCA contd.

$$E_{M} = \sum_{i=M+1}^{d} \mathbf{u_i}^{T} \Sigma \mathbf{u_i}$$

Review: matrix A has eigenvector u with eigenvalue λ if: $Au = \lambda u$

$$E_M = \sum_{i=M+1}^d \lambda_i$$

The reconstruction error can be exactly computed from the eigenvalues of the covariance matrix

PCA Algorithm

- 1. X ← Create Nxd data matrix with one row vector xⁿ per data point.
- 2. $X \leftarrow$ subtract mean from each vector x^n in X
- 3. Σ compute covariance matrix of X
- 4. Find eigenvectors and eigenvalues of Σ
- 5. PCs ← the M eigenvectors with the largest eigenvalues

Original representation:
$$x^n = \langle x_1^n, \dots, x_d^n \rangle$$

Transformed representation:

$$\hat{x}^n = \langle \mathbf{u_1}^T x^n, \dots, \mathbf{u_M}^T x^n \rangle$$

PCA example

PCA example

Reconstructed data using only first eigenvector (M=1)

PCA weaknesses

- Only allows linear projections
- Co-variance matrix is of size dxd. If $d=10^4$, then $|\Sigma| = 10^8$
 - Solution: singular value decomposition (SVD)
- PCA restricts to orthogonal vectors in feature space that minimize reconstruction error
 - Solution: independent component analysis (ICA) seeks directions that are statistically independent, often measured using information theory
- Assumes points are multivariate Gaussian
 - Solution: Kernel PCA that transforms input data to other spaces

PCA vs. Neural Networks

PCA

Unsupervised dimensionality reduction

Linear representation that gives best squared error fit

No local minima (exact)

Non-iterative

Orthogonal vectors ("eigenfaces")

Neural Networks

Supervised dimensionality reduction

Non-linear representation that gives best squared error fit

Possible local minima (gradient descent)

Iterative

Auto-encoding NN with linear units may not yield orthogonal vectors

Is this really how humans characterize and identify faces?

