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High-dimensional data

Document classification:  

Billions of documents x 

Thousands/Millions of words/bigrams 

matrix

(i.e. lots of features)

Recommendation systems:

480,189 users x 17,770 movies 

matrix

Clustering gene expression profiles:

10,000 genes x 1,000 conditions



Curse of dimensionality

• Harder to interpret and visualize

• provides little intuition of the underlying structure of the data

• Harder to store data and learn complex models

• statistically and computationally challenging to classify

• dealing with redundant features and noise 

• Possibly worse generalization

Why might many features be bad?



Two types of dimensionality 

reductions

Feature selection: only a few features are relevant to the 

task

Latent features: a (linear) combination of features provides a 

more efficient representation than the observed features (e.g. 

PCA)

For example, topics 

(sports, politics, 

economics) instead of 

individual documents



Facial recognition

.....
(high-dimensionality space of possible human faces)

Say we wanted to build a 

human facial recognition 

system. 

Option 1: enumerate all 6 billion 

faces, update as necessary.

Option 2: learn a low-

dimensional basis that can be 

used to represent any face 

(PCA: Today)

Option 3: learn the basis using 

insights from how the brain 

does it (NMF: Wednesday)



Principal Component Analysis

A dimensionality reduction technique similar to auto-encoding neural 

networks:

x x
Learn a linear representation 

of the input data that can best 

reconstruct it

Hidden layer: a compressed representation of the input 

data. Think of compression as a form of pattern 

recognition.



Principal Components Analysis

face face

“eigenfaces”



Face reconstruction using PCA

Reconstruction using the first 25 

components (eigenfaces), one at a time

1        2        ...

25

Same, but adding 8 PCA 

components at each step

104

In general: top k dimensions are the k-dimensional 

representation that minimizes reconstruction (sum of 

squared) error.



Principal Component Analysis
Given data points in d-dimensional space, project them onto a lower 

dimensional space while preserving as much information as possible.

- e.g. find best planar approx to 3D data

- e.g. find best planar approx to 104D data

Principal components are orthogonal directions that capture variance in 

the data:

1st  PC: direction of greatest variability in the data

2nd PC: next orthogonal (uncorrelated) direction of greatest

variability: remove variability in the first direction, then

find the next direction of greatest variability.

Etc.
Projection of data point xi (a d-dim 

vector) onto 1st PC v is vTxi



PCA: find projections to 

minimize reconstruction 

error
Assume data is a set of d-dimensional vectors, where nth vector is:

We can represent these in terms of any d orthogonal vectors u1, ..., 

ud:

Goal: given M<d, find u1, ..., uM that minimizes:

original

data point
reconstructedwhere 

origin is mean-centered coefficient/weight of projection



PCA

Idea: zero reconstruction error if M=d, so all error is due to missing components.

Therefore:
Project difference between the 

original point and the mean 

onto the basis vector, take the 

square

Expand and re-

arrange

Co-variance matrix 

Substitute co-variance matrix

Measures correlation or inter-

dependence between two 

dimensions



PCA contd.

Review: matrix A has eigenvector u with eigenvalue ƛ if:

eigenvector of covariance matrix
eigenvalue (scalar)

The reconstruction error can be exactly 

computed from the eigenvalues of the 

covariance matrix



PCA Algorithm

1. X ← Create Nxd data matrix with one row 

vector xn per data point.

2. X ← subtract mean from each vector xn in

X

3. Σ ← compute covariance matrix of X

4. Find eigenvectors and eigenvalues of Σ

5. PCs ← the M eigenvectors with the largest 

eigenvalues
Original representation:

Transformed representation:



PCA example



PCA example
Reconstructed data using only first eigenvector (M=1)



PCA weaknesses
• Only allows linear projections

• Co-variance matrix is of size dxd.  If d=104, then |Σ| = 108

• Solution: singular value decomposition (SVD)

• PCA restricts to orthogonal vectors in feature space that minimize 

reconstruction error

• Solution: independent component analysis (ICA) seeks directions 

that are statistically independent, often measured using 

information theory

• Assumes points are multivariate Gaussian

• Solution: Kernel PCA that transforms input data to other spaces



PCA vs. Neural Networks

PCA Neural Networks
Unsupervised dimensionality 

reduction
Supervised dimensionality reduction

Linear representation that gives best 

squared error fit

Non-linear representation that gives 

best squared error fit

No local minima (exact)
Possible local minima (gradient 

descent)

Orthogonal vectors (“eigenfaces”)
Auto-encoding NN with linear units 

may not yield orthogonal vectors

Non-iterative Iterative



Is this really how humans characterize and identify 

faces?


