Algorithnms in Nature

Dimensionality Reduction

Sinah



High-dimensional data

(i.e. lots of features)

Document classification:

Billions of documents x
Thousands/Millions of words/bigrams
matrix

Recommendation systems:
480,189 users x 17,770 movies
matrix

Clustering gene expression profiles:
10,000 genes x 1,000 conditions




Curse of dimensionality

Why might many features be bad?

® Harder to interpret and visualize

® provides little intuition of the underlying structure of the data

® Harder to store data and learn complex models
® statistically and computationally challenging to classify

® dealing with redundant features and noise

® Possibly worse generalization



Two types of dimensionality

reductions

Feature selection: only a few features are relevant to the

task
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Latent features: a (linear) combination of features provides a
more efficient representation than the observed features (e.qg.

PCA)

For example, topics
(sports, politics,
economics) instead of
individual documents



Facial recognl

Say we wanted to build a
human facial recognition
system.

Option 1: enumerate all 6 billion
faces, update as necessary.

Option 2: learn a low-
dimensional basis that can be

used to represent any face
(PCA: Today)

Option 3: learn the basis using
iInsights from how the brain
does it (NMF: Wednesday)

(high-dimensionality space of possible human faces)



Principal Component Analysis

A dimensionality reduction technique similar to auto-encoding neural
networks:

Learn a linear representation
of the input data that can best X —>
reconstruct it

Hidden layer: a compressed representation of the input
data. Think of compression as a form of pattern
recognition.




Principal Components Analysis
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Face reconstruction using PCA

Reconstruction using the first 25 Same, but adding 8 PCA
components (eigenfaces), one at a time components at each step
1 2

In general: top k dimensions are the k-dimensional
representation that minimizes reconstruction (sum of
squared) error.




Principal Component Analysis

Given data points in d-dimensional space, project them onto a lower
dimensional space while preserving as much information as possible.

- e.g. find best planar approx to 3D data N

- e.g. find best planar approx to 104D data

Principal components are orthogonal directions that capture variance in
the data:

1st PC: direction of greatest variability in the data — Qo
2nd PC: next orthogonal (uncorrelated) direction of greatest | /5=
variability: remove variability in the first direction, the 1d=1

find the next direction of greatest variability.

Projection of data point x;(a d-dim
Etc. vector) onto 1st PC vis v7x;




PCA: find projections to
minimize reconstruction
error

Assume data is a set of d-dimensional vectors, where nt" vector is:
" =<zxl,---, x5 >
We can represent these in terms of any d orthogonal vectors uy, ...,
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origin is mean-centered coefficient/weight of projection



PCA

|dea: zero reconstruction error if M=d, so all error is due to missing components.
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Substitute co-variance matrix

Measures correlation or inter-
dependence between two
dimensions




PCA contd.

d

EM= E i Elli
=M1

Review: matrix A has eigenvector u with eigenvalue A if: Au = Au

— Elli = Ailli

7 N\

eigenvector of covariance matrix
eigenvalue (scalar)

E : A@. The reconstruction error can be exactly
i=M-+1 computed from the eigenvalues of the
covariance matrix




PCA Algorithm

1. X «<— Create Nxd data matrix with one row
vector x" per data point.

2. X < subtract mean from each vector x" in

X

3. 2 «— compute covariance matrix of X

4. Find eigenvectors and eigenvalues of 2

5. PCs «— the M eigenvectors with the largest

eigenvalues -
. L Transformed representation:
Original representation:
AT T n T n

g" =<7, ,Tq > r=<wmr,...,uMm T >




PCA example

Figure 1 Figure 1
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PCA example

Reconstructed data using only first eigenvector (M=1)
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PCA weaknesses

Only allows linear projections

Co-variance matrix is of size dxd. If d=10%, then |Z| = 108

Solution: singular value decomposition (SVD)

PCA restricts to orthogonal vectors in feature space that minimize
reconstruction error

Solution: independent component analysis (ICA) seeks directions
that are statistically independent, often measured using
information theory

Assumes points are multivariate Gaussian

Solution: Kernel PCA that transforms input data to other spaces



PCA vs. Neural Networks

PCA Neural Networks
Unsupervised d|.menS|onaI|ty Supervised dimensionality reduction
reduction
Linear representation that gives best  Non-linear representation that gives
squared error fit best squared error fit
. Possible local minima (gradient
No local minima (exact) descent)
Non-iterative Iterative

Auto-encoding NN with linear units

Orthogonal vectors (“eigenfaces”
J (elg ) may not yield orthogonal vectors



Is this really how humans characterize and identify
faces?




