
Algorithms in Nature

Distributed computing

2

Example Distributed systems

 Internet
 ATM (bank) machines
 Intranets/Workgroups
 Computing landscape will soon consist of

ubiquitous network-connected devices
 “The network is the computer”

3

Computers in a Distributed
System

Workstations: computers used by end-
users to perform computing
Server machines: computers which

provide resources and services
Mobile Devices: handheld computers

connected to the system via a wireless
communication link.
 …

4

Goals/Benefits

Resource sharing
Scalability
Fault tolerance / Robustness
Performance / Speed
Parallel computing can be considered a

subset of distributed computing

5

Challenges(Differences from
Local Computing)
Heterogeneity
Latency
Remote Memory vs Local Memory
Synchronization
Concurrent interactions the norm

Partial failure
Applications need to adapt gracefully in the face of

partial failure

6

Challenges cont’d
Security
Denial of service attacks
Mobile code

Scalability
Transparency

7

Scalability
Key to scalability: decentralized algorithms and

data structures
 No machine has complete information about the

state of the system
Machines make decisions based on locally available

information
Failure of one machine does not ruin the algorithm
There is no implicit assumption that a global clock

exists

8

Fundamental/Abstract Models

A fundamental model captures the
essential ingredients that we need to
consider to understand and reason about
a system’s behavior
Addresses the following questions
What are the main entities in the system?
How do they interact?
What are the characteristics that affect their

collective and individual behavior?

9

Fundamental/Abstract Models

Three issues to consider in models
Interaction model

Reflects the assumptions about the processes and the
communication channels in the distributed system

Failure model
Distinguish between the types of failures of the processes

and the communication channels
Security Model

Assumptions about the principals and the adversary

BASIC COMMUNICATION PRIMITIVE:
MESSAGE PASSING

Paradigm:
Send message to destination
Receive message from origin

Nice property: can make distribution
transparent, since it does not matter
whether destination is at a local computer
or at a remote one (except for failures).

Clean framework: “Paradigms for Process Interaction in

Distributed Programs,” G. R. Andrews, ACM Computing
Surveys 23:1 (March 1991) pp. 49-90.

BASIC COMMUNICATION PRIMITIVE:
Shared memory

Paradigm:
All processes use the same memory space
Need to overcome concurrent access to the

same location

 Both shared memory and message passing can be
emulated by the other paradigm and so any
algorithm that works for one would work for the other.
However, it is easier to emulate shared memory
using message passing than the other way around.

 BLOCKING (SYNCHRONOUS) VS.
NON-BLOCKING (ASYNCHRONOUS)
COMMUNICATION

For sender: Should the sender wait for the
receiver to receive a message or not?

For receiver: When arriving at a reception
point and there is no message waiting,
should the receiver wait or proceed?
Blocking receive is normal (i.e., receiver
waits).

Synchronous Distributed Systems: a system in
which the following bounds are defined
The time to execute each step of a process has an upper and

lower bound
Each message transmitted over a channel is received within a

known bounded delay
Each process has a local clock whose drift rate from real time has

a known bound
Asynchronous distributed system

Each step of a process can take an arbitrary time
Message delivery time is arbitrary
Clock drift rates are arbitrary

 Some implications
In a synchronous system, timeouts can be used to detect failures
Impossible to detect failures or “reach agreement” in an

asynchronous system

13

Interaction Models

Synchronous Distributed Systems: a system in
which the following bounds are defined
The time to execute each step of a process has an upper and

lower bound
Each message transmitted over a channel is received within a

known bounded delay
Each process has a local clock whose drift rate from real time has

a known bound
Asynchronous distributed system

Each step of a process can take an arbitrary time
Message delivery time is arbitrary
Clock drift rates are arbitrary

 Some implications
In a synchronous system, timeouts can be used to detect failures
Impossible to detect failures or “reach agreement” in an

asynchronous system

14

Interaction Models

Several computational problems can only
be (provably) solved in a synchronous
setting. However, asynchronous models are
much more realistic.

15

Omission and arbitrary failures

Class of failure Affects Description

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

16

Distributed applications

Applications that consist of a set of processes
that are distributed across a network of
machines and work together as an ensemble to
solve a common problem

In the past, mostly “client-server”
Resource management centralized at the server

 “Peer to Peer” computing represents a
movement towards more “truly” distributed
applications

	Algorithms in Nature
	Example Distributed systems
	Computers in a Distributed System
	Goals/Benefits
	Challenges(Differences from Local Computing)
	Challenges			cont’d
	Scalability
	Fundamental/Abstract Models
	Fundamental/Abstract Models
	BASIC COMMUNICATION PRIMITIVE: MESSAGE PASSING
	BASIC COMMUNICATION PRIMITIVE: Shared memory
	 BLOCKING (SYNCHRONOUS) VS. �NON-BLOCKING (ASYNCHRONOUS) COMMUNICATION
	Interaction Models
	Interaction Models
	Omission and arbitrary failures
	Distributed applications

