1. A genetic algorithm to cluster graphs [70 points]

Finding dense modules or clusters in a graph is an important part of many data mining problems.
One popular definition of a ‘module’ is a set of nodes that have many more within-module con-
nections (i.e. connections between nodes in the same module) than between-module connections
(i.e. connections between nodes in different modules) than expected by chance. In 2002, Newman
proposed an objective function, called modularity, that characterizes the quality of a clustering C'
of a graph G = (V, E):

9(G,C) ==Y (Auw — kuko/(2m))(1 — zup), (1)

u,veV

where Ay, is 1 if u and v have an edge in E and 0 otherwise; &, is the degree of node u (i.e. its
number of neighbors); m is the total number of edges in the graph; and the variables x, describe
C by indicating which nodes are in the same module. Specifically, for every pair of nodes, y, =0
if u and v belong to the same module, and x,, = 1 otherwise. Notice that there is no contribution
towards the modularity score for a pair of nodes that lie in different modules and that all terms
(Ayy; ku, kv, m) are fixed besides the zy, terms.

The goal is to find the clustering C' that maximizes this function. In general, the clustering C' can

have any number of modules (from 1 to n, where n is the number of nodes in the graph), but all
nodes must be assigned to exactly one module.

Q1.1 Write a genetic program to cluster an input graph into modules that optimizes the Newman
objective function using at most 5 clusters.

We have provided an example network for you to test your genetic algorithm (karate.txt, down-
loadable from the class website). The first line of this file begins with a hash ‘#’ followed by the
number of nodes and edges in the following format:

#n=34,m=78
Each following line is tab-delimited and contains the two end-points of each edge:

10

20

33 32
In general, if there are m edges in the graph, there should be exactly m + 1 lines in the file. All
graphs are undirected and edges are repeated only once (e.g. in the above example, there will not
be a second line with ‘0 1’ since this is the same as the first line for undirected graphs).
Expected output: Your program should output the optimal modularity found as well as the

clustering corresponding to the optimal modularity. Specifically, the first line of the output should
contain the modularity score in the following format:

#modularity=0.419790

The following lines should contain the clustering with one line per module and specifying which
nodes were assigned to that module:

Module 1: 01 2 3 6
Module 2: 4 5 10
Module k: 33 9 11

What you should submit: an executable program, written in any language you want, that
takes one command-line parameter corresponding to a filename which contains the graph data
(e.g. karate.txt). It is very important that you can take input from any graph in the described for-
mat because we will test your algorithm on different graphs. You should also include a README. txt
file explaining how to compile and run your program on the example network. If your program
does not run, you will get 0 points.

Submission: Please email a zip file containing your code and a README . txt to navlakha@cs. cmu.edu
before the deadline.

In addition, please answer the following questions about your design.

Q1.2 For this graph clustering problem, what is the analog of an ‘individual’ in the sense that it
was presented in lecture?

A clusteriing
J

Q1.3 What is the ‘fitness’ function?

The MAM\Q;LJj fonchin

Q1.4 Describw how you represented or encoded a solution (i.e. a clustering C) in your genetic
algorithm?

Q1.4 What were the main ideas behind your solution? Which operations did you use (mutation,
cross-over, etc.), and how did you ensure that they always produced a valid clustering (e.g. how
did you ensure that a node was not assigned to multiple clusters?)?

2. Short-answer questions about genetic algorithms [20 points]

2.1 In genetic algorithms, a schema is a template that defines a set of possible strings. For example,
the schema H =(0 * %1 % 1 % x 0 %) implies that the first bit of the string must be 0, but the
second bit can either be 0 or 1, etc. A string destroys the schema if the string is not a possible
string defined by the schema. What is the probability that H will not be destroyed by mutation
that occurs with probability 1/127

l.t
The pees foed geschoma 1, Gard A e vateded 30 (1= %)

K3 pls)
2.2 The fitness f of a string of bits s with [= 4 is defined as the integer value representation of a

(e.g. £(0101) = 5). What is the average fitness of the schema (1+ %) under f? What is the average
fitness of the schema (0 * *x) under f7

—

Ave fhness o (1ree) 0 (LS
Aoy Lidyess —E (oxwx=) - 35
[S -P’fs 1
2.3 What is the problem of doing cross-over operations for the traveling salesman problem? What

about point mutations? Provide a way to perform the cross-over and mutation operations, respec-
tively, that avoids these issues.

Tov VG55 0weAsS) You cwld vl dhe same (;{‘j dwice . Swmdar ssve Wit

f*l:u,\h\ ratecitns . Thea arve e weys bo Wl e Haey BN £ Pm.{’r meatedcons 4

(2=4)

\L3YHYS 6 | iF a mulotton o ccevT oot (’D‘l‘#‘“"‘M 2y " e e i e tth Wb was

5 0 n o N ; 13456 (e\dD. ,
Preslyod 4 _
L H3o5e (hew) Lsprs]
2.4 There are nine possible schemas for a bit string that uses two bits: 00,01,11, 11, 0%, *0, 1%, %1, .

How many possible schemas are there for a bit string with [bits?

~ A
)

[Spts)

3. Dimensionality Reduction [10 points]

3.1 Given the following data, draw the first two principal components that would be found using
the PCA algorithm presented in class.

20 LI T T T T T
@
' J
of ° .
® o
c® s,
e g 090
—20 B ® L] s [] -
@
[]
L]
—40}]
o
X
—60F =
—80F B
—100} .
'12920 0 20 40 60 80 100 120

16 3]

3.2 Would the reconstruction error be > 0, < 0, or = 0 if we were allowed to choose 1 component?
What if we could choose 2 components?

[((N/Fc-‘l\«'zm.':[e vwred s 20
?,{;;Vspw'{'s. Fiakal ‘s =0 -
L4 ois]

