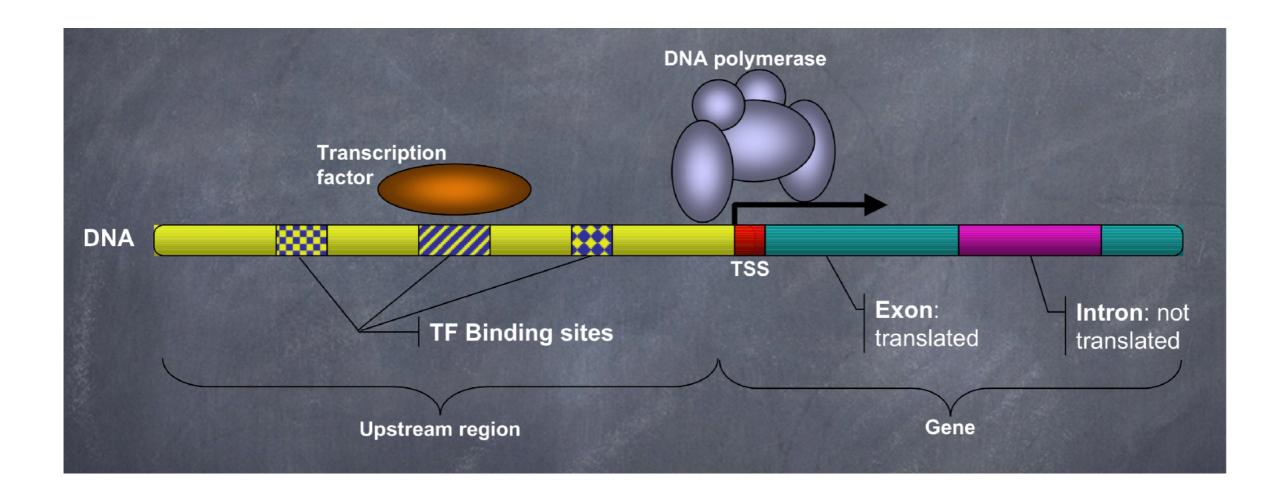
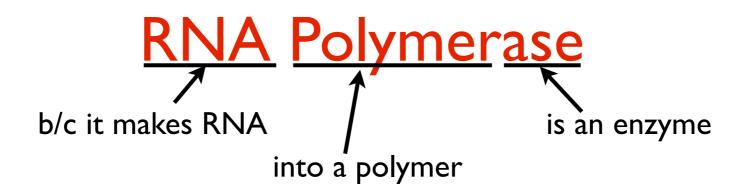
Motif Finding & Gibbs Sampling

02-25 I Slides by Carl Kingsford

DNA → mRNA → Protein



 Finding transcription factor binding sites can tell us about the cell's regulatory network.



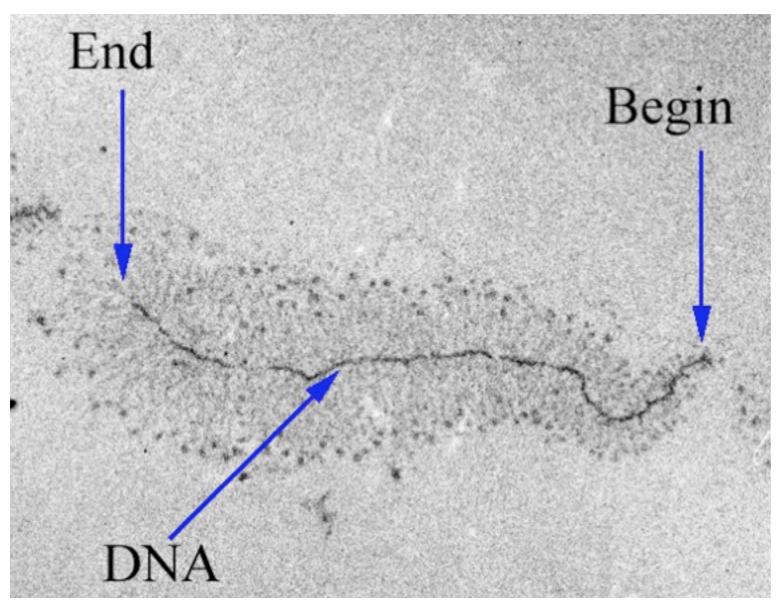


Image of transcription occurring.

Each "hair" is a piece of RNA that RNA pol is growing off of the DNA.

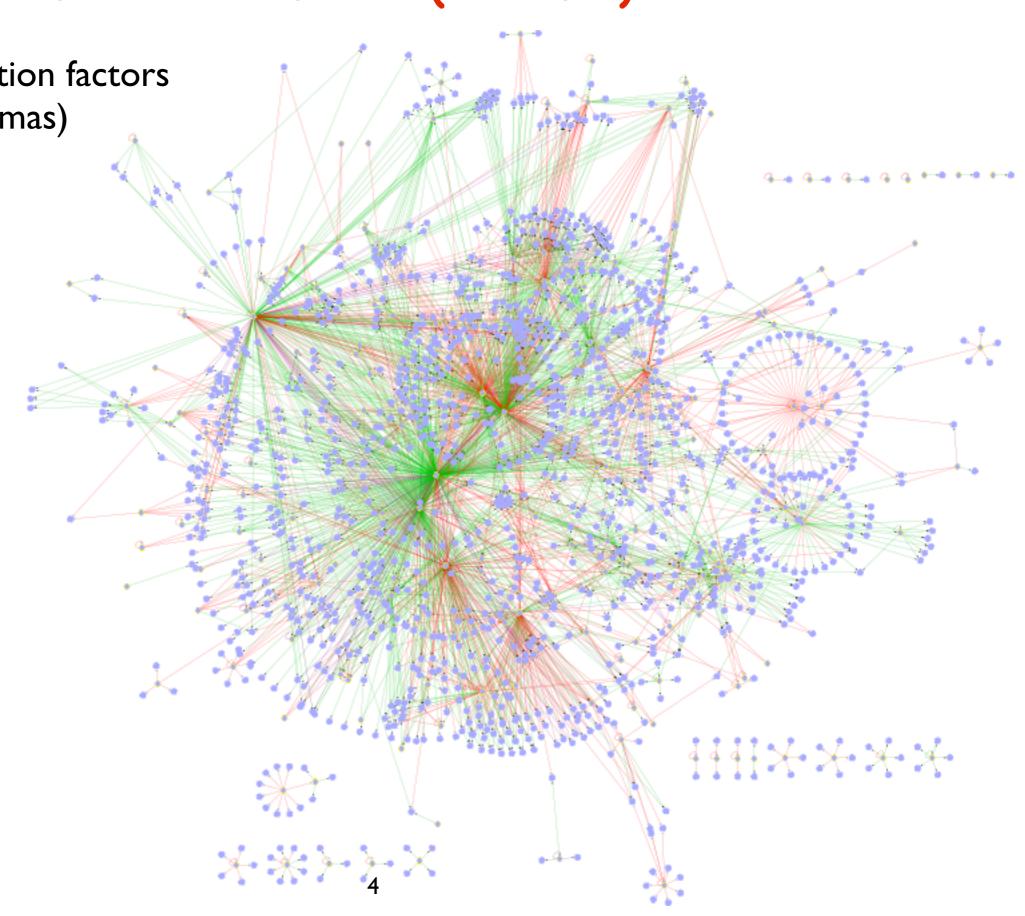
Transcription Network (E. coli)

169 transcription factors
(excluding sigmas)

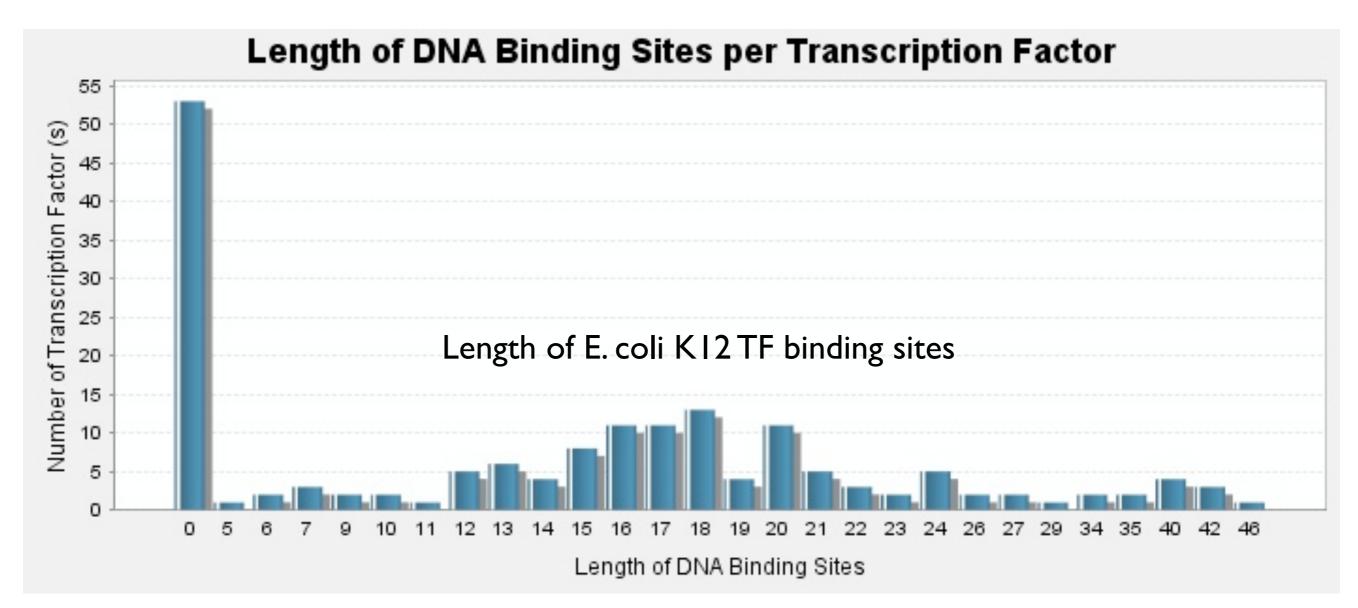
3322 edges

1753 activation,1369 repression,185 both,

3 unknown

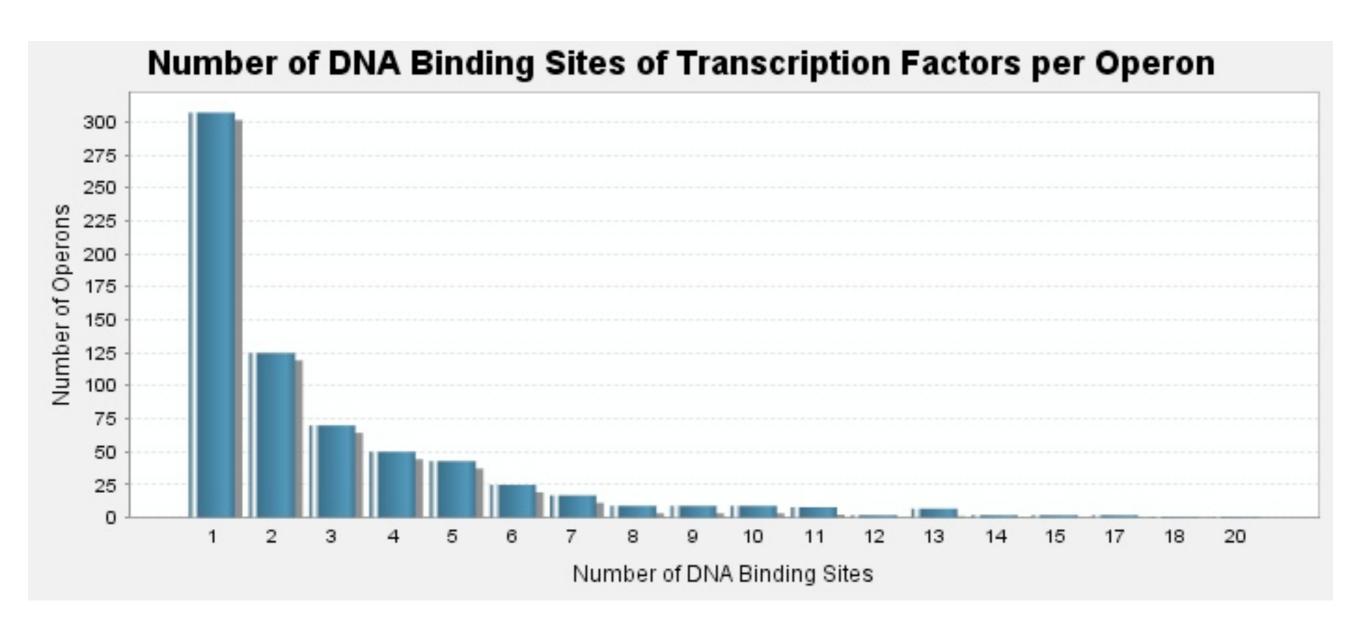


Transcription Factor Binding Sites



RegulonDB (Feb 27, 2010)

Transcription Factor Binding Sites



RegulonDB (Feb 27, 2010)

Motif Finding

- 1. ttgccacaaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag
- 2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctgatgga
- 3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccattccag
- 4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggattttacagca
- 5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta
- 6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

Given p sequences, find the most mutually similar length-k subsequences, one from each sequence:

$$\underset{s_1, \dots, s_p}{\operatorname{argmin}} \sum_{i < j} \operatorname{dist}(s_i, s_j)$$

 $dist(s_i,s_j) = Hamming distance between s_i and s_j$.

Hundreds of papers, many formulations (Tompa05)

Motif-finding by Gibbs Sampling

Problem. Given p strings and a length k, find the most "mutually similar" length-k substring from each string.

"Gibbs sampling" is the basis behind a general class of algorithms that is a type of local search.

It doesn't guarantee good performance, but often works well in practice.

Assumes:

- 1. we know the length *k* of the motif we are looking for.
- 2. each input sequence contains exactly 1 real instance of the motif.
- 3. No gaps

Gibbs Sampling: Profiles

If we knew the starting point of the motif in each sequence, we could construct a Sequence Profile (PSSM) for the motif:

X3

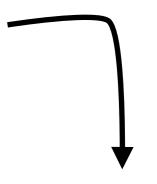
1. ttgccacaaataatccgccttcgcaaattgaccTACCTCAATAGCGGTAgaaaaacgcaccactgcctgacag

X2

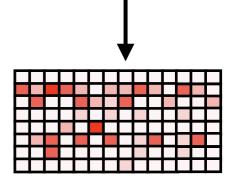
XΙ

- 2. gtaagtacctgaaagttacggtctgcgaacgctattccacTGCTCCTTTATAGGTAcaacagtatagtctga
- 3. ccacacggcaaataaggagTAACTCTTTCCGGGTAtgggtatacttcagccaatagccgagaatactgccatt
- 4. ccatacccggaaagagttactccttatttgccgtgtggttagtcgcttTACATCGGTAAGGGTAgggatttt
- 5. aaactattaagatttttatgcagatgggtattaaggaGTATTCCCCATGGGTAacatattaatggctctta
- 6. ttacagtctgttatgtggtggctgttaaTTATCCTAAAGGGGTAtcttaggaatttactt

X6

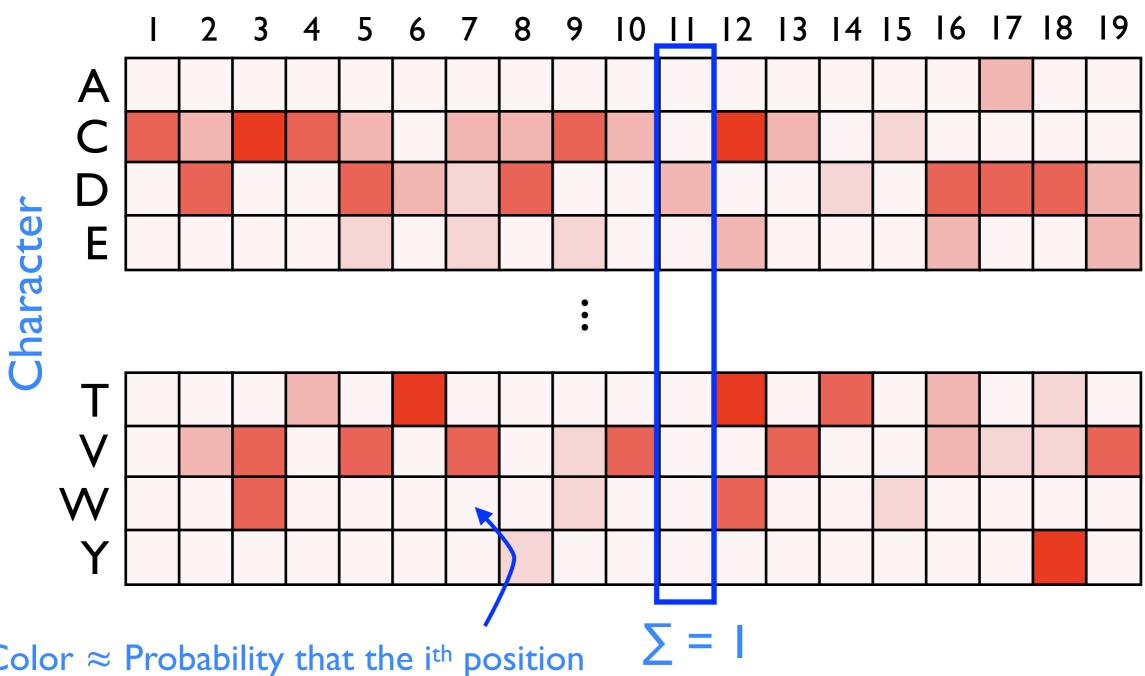


TACCTCAATAGCGGTA
TGCTCCTTTATAGGTA
TAACTCTTTCCGGGTA
TACATCGGTAAGGGTA
GTATTCCCCATGGGTA
TTATCCTAAAGGGGTA



Sequence Profiles (PSSM)

Motif Position



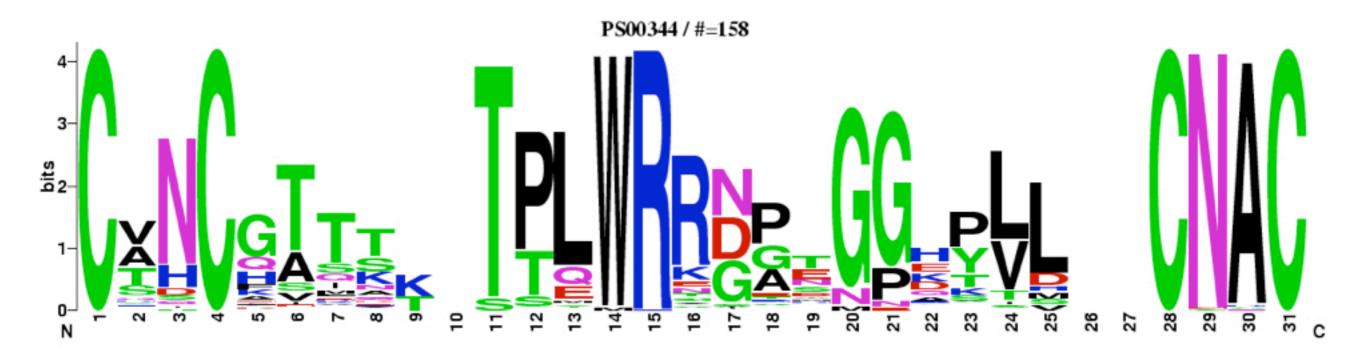
Color \approx Probability that the ith position has the given amino acid = $e_i(x)$.

10

Sequence Logos

Height of letter ≈ fraction of time that letter is observed at that position.

(Height of all the letters in a column ≈ to how conserved the column is)



Motif Position

Gibbs Sampling, Version 1: Pseudocode

Set $(x_1, x_2, ..., x_p)$ to random positions in each input string.

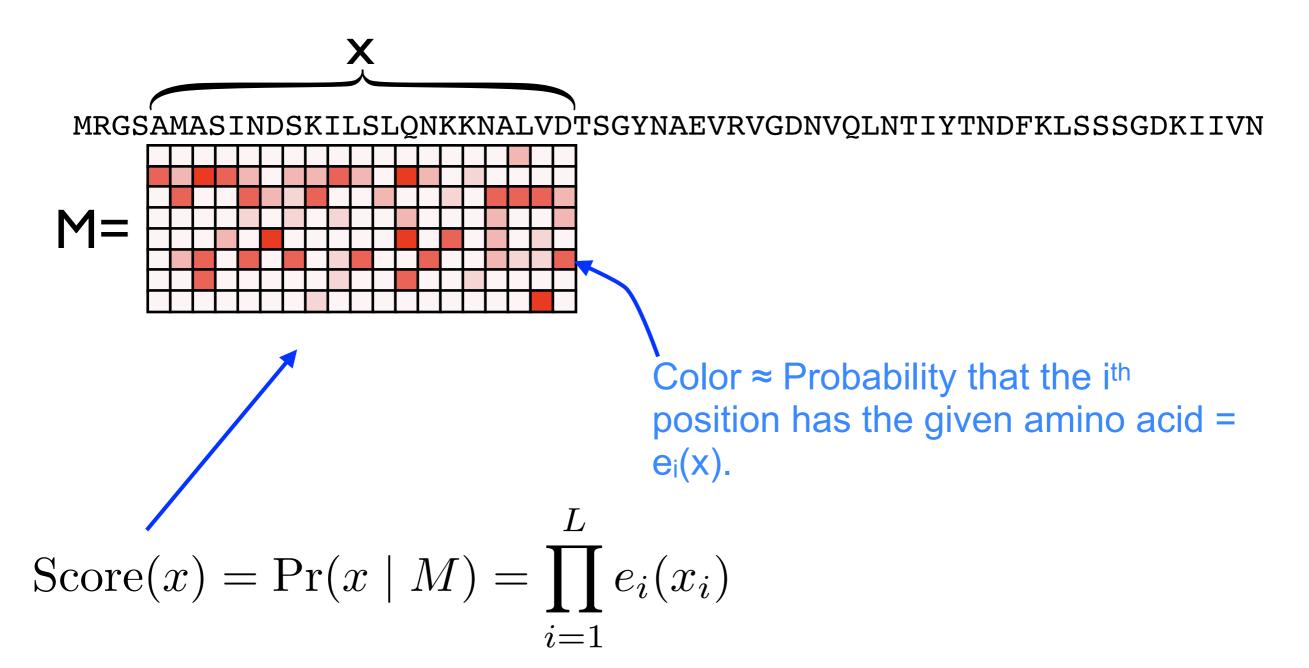
repeat until the answer $(x_1, x_2, ..., x_p)$ doesn't change:

for i = 1 ... p:

Build a profile M using sequences at $(x_1, x_2, ..., x_p)$ except x_i

Set x_i to where the profile M matches **best** in string *i*.

Scoring a Subsequence x



Score of a string according to profile M = Product of the probabilities you would observe the given letters.

Background Frequencies

Interested in how different this motif position is from we expect by chance.

Correct for "expect by chance" by dividing by the probability of observing x in a random string:

ScoreCorrected(x) =
$$\frac{\Pr(x \mid M)}{\Pr(x \mid \text{background})} = \prod_{i=1}^{L} \frac{e_i(x_i)}{b(x_i)}$$

 $b(x_i) := probability of observing character <math>x_i$ at random. Usually computed as $(\# x_i)$ in entire string) / (length of string)

Often, to avoid multiplying lots of terms, we take the log and then sum:

ScoreCorrectedLog(x) =
$$\lim_{i \neq 1} \frac{e_i(x_i)}{b(x_i)} = \sum_{i=1}^{L} \log \left(\frac{e_i(x_i)}{b(x_i)}\right)$$

```
def gibbs(Seqs, k):
   """Segs is a list of strings. Find the best motif."""
  # start with random indices
   I = [random.randint(0, len(x) - k) for x in Seqs]
  LastI = None
  while I != LastI: # repeat until nothing changes
     LastI = list(I)
     # iterate through every string
      for i in xrange(len(Seqs)):
        # compute the profile for the sequences except i
        P = profile for([
                x[j:j+k] for q, (x, j) in enumerate(zip(Seqs, I))
                   if q != i
             ])
        # find the place the profile matches best
        best = None
         for j in xrange(len(Seqs[i]) - k + 1):
            score = profile score(P, Seqs[i][j : j + k])
            if score > best or best is None:
              best = score
              bestpos = j
        # update the ith position with the best
         I[i] = bestpos
   return I, [x[j:j+k] for x, j in zip(Seqs, I)]
```

Gibbs Example

```
gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [8, 1, 2] ['dog', 'row', 'gwo'] —— random starting
2: [8, 5, 0] ['dog', 'dog', 'dog'] positions
F: [8, 5, 0] ['dog', 'dog', 'dog']
                                         Small bias toward "o" in
                                         the middle is correct.
gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [4, 3, 1] ['uic', 'wnd', 'ogw']
2: [6, 2, 4] ['ckd', 'own', 'ood']
3: [8, 5, 0] ['dog', 'dog', 'dog']
F: [8, 5, 0] ['dog', 'dog', 'dog']
gibbs(["thequickdog", "browndog", "dogwood"], k=3)
1: [2, 0, 1] ['equ', 'bro', 'ogw']
2: [7, 4, 2] ['kdo', 'ndo', 'gwo'] Might not find
F: [7, 4, 2] ['kdo', 'ndo', 'gwo'] the optimal.
```

Another Example

```
gibbs(["aaa123", "678aaa45", "9a7aaab", "32aa19a8aaa"], 3)
1: [0, 5, 0, 2] ['aaa', 'a45', '9a7', 'aa1']
2: [1, 3, 3, 8] ['aa1', 'aaa', 'aaa', 'aaa']
3: [0, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'aaa']
F: [0, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'aaa']
```

Can be multiple optimal answers

Bias toward "a" in the profile quickly leads to finding the implanted "aaa"

```
gibbs(["aaabbb", "bbbaaabb", 'babaaab', 'ababacaaabac', 'abbbababaaabbbaba'], 3)
1: [1, 4, 0, 4, 11] ['aab', 'aab', 'bab', 'aca', 'bbb']
2: [1, 4, 4, 7, 9] ['aab', 'aab', 'aab', 'aab', 'aab']
F: [1, 4, 4, 7, 9] ['aab', 'aab', 'aab', 'aab', 'aab']
gibbs(["aaabbb", "bbbaaabb", 'babaaab', 'ababacaaabac', 'abbbababaaabbbaba'], 3)
1: [0, 3, 3, 3, 8] ['aaa', 'aaa', 'aaa', 'bac', 'aaa']
2: [0, 3, 3, 6, 8] ['aaa', 'aaa', 'aaa', 'aaa', 'aaa']
F: [0, 3, 3, 6, 8] ['aaa', 'aaa', 'aaa', 'aaa', 'aaa']
```

Randomness: Gibbs Sampling

- Run the Gibbs sampling multiple times to make it more likely you find the global optimal.
- Can increase the use of randomness to further avoid getting stuck in local optima by choosing new x_i randomly.

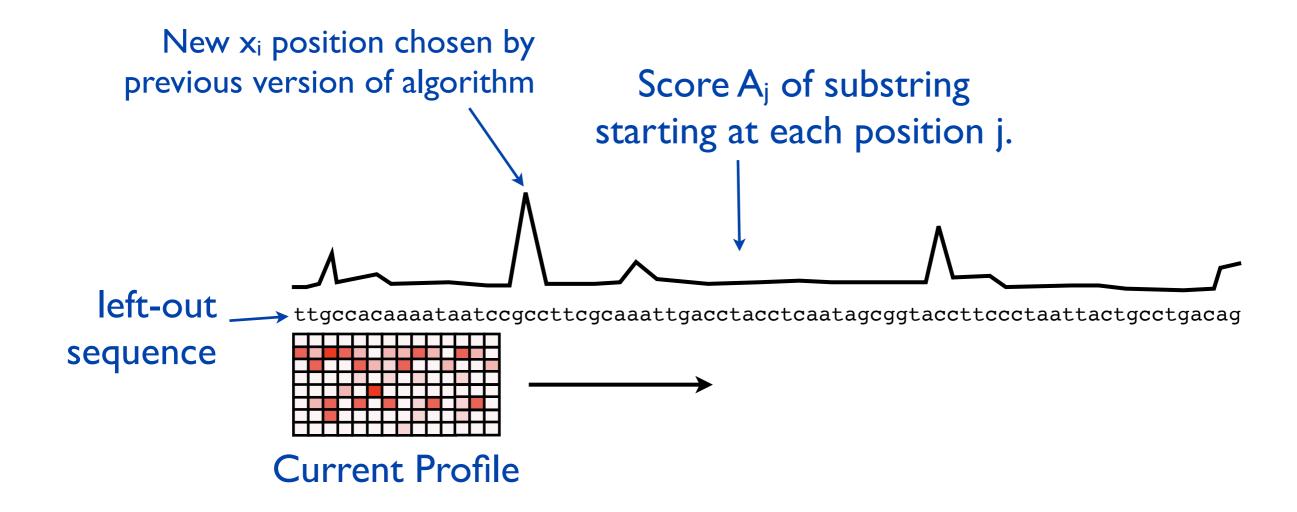
Set $(x_1, x_2, ..., x_p)$ to random positions in each input string.

repeat until the best $(x_1, x_2, ..., x_p)$ doesn't change too often

Build a profile M using sequences at $(x_1, x_2, ..., x_p)$ except x_i

Choose x_i according to the profile probability distribution of M in string i.

Profile Probability Distribution



Instead of choosing the position with the best match, choose a position randomly such that:

Probability of choosing position
$$j = \frac{A_j}{\sum_i A_i}$$

Gibbs Sampling - Recap

• "Motif finding" is the problem of finding a set of common substrings within a set of strings.

Useful for finding transcription factor binding sites.

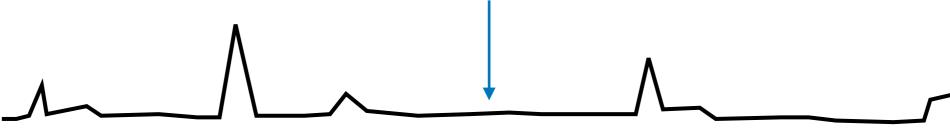
- **Gibbs sampling:** repeatedly leave one sequence out and optimize the motif location in the left-out sequence.
- Doesn't guarantee finding a good solution, but often works.

Expectation Maximization (for motif finding)

A Problem with Gibbs

- Gibbs maintains a single current guess (x₁, x₂, ..., x_p) about where the motif instances are
- This entire distribution is used only to sample the next *x_i*:

probability of generating motif starting here under current model M



ttgccacaaaataatccgccttcgcaaattgacctacctcaatagcggtaccttccctaattactgcctgacag

 Instead, "Expectation Maximization" (EM) uses the entire distribution to update the PSSM model M.

EM: maximization of the expected likelihood

Goal: Find $x_1, x_2, ..., x_p$ and M to maximize the likelihood:

Likelihood
$$\rightarrow$$
 $\Pr(x_1, ..., x_p \mid M) = \prod_{j=1}^p \prod_{i=1}^k e_i(x_{ji})$ The probability of x being observed, given the model M.

Challenge is that both x and M are unknown

If M was fixed, easy to find the best x:

$$\max_{x} f(\mathbf{x}) = \Pr(\mathbf{x} \mid M)$$

Scan each sequence, picking the k-mer x that maximizes f(x)

If the x's were fixed, easy to find the best M:

$$\max_{M} g(M) = \Pr(x \mid M)$$

Build M from the given x's.

Concept: Alternate between these two views

 Gibbs Sampling (version 1): alternate between solving these two maximization problems

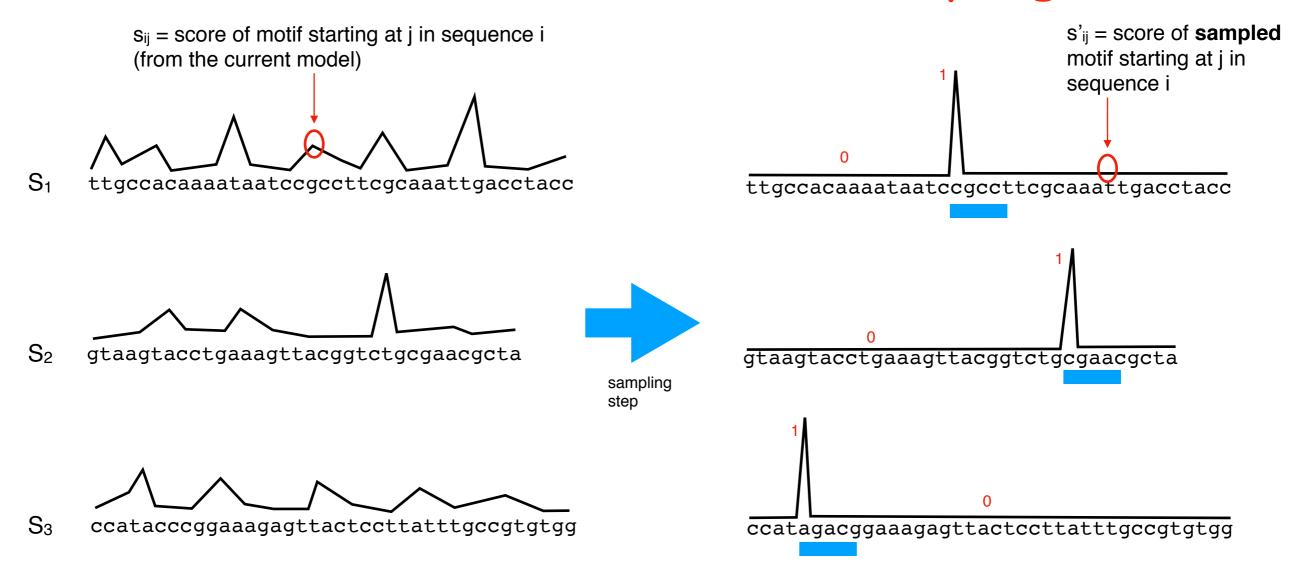
 Gibbs Sampling (version 2): alternate between maximizing the model (g(M)) and sampling from the current model:

sample from
$$f(x) = \Pr(x \mid M)$$

$$\max_{M} g(M) = \Pr(x \mid M)$$

<u>EM</u>: Repeatedly maximize the current value of g(M) expected over random choices of x.

Another View of Gibbs Sampling

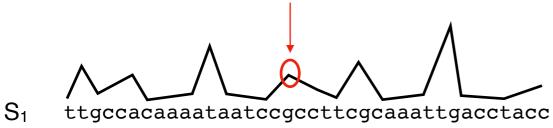


First column of new matrix (model) computed using:

$$M[c,0] = \frac{\sum \{s'_{ij} \mid S_i[j] = c\}}{\sum S'_{ij}} \leftarrow \text{numerator} = \# \text{ of sequences}$$

EM for motif finding: skip the sampling step

 s_{ij} = score of motif starting at j in sequence i



First column of new matrix:

$$M[c,0] = \frac{\sum \{s_{ij} \mid S_i[j] = c\}}{\sum s_{ij}}$$

mth column of new matrix:

$$M[c, m] = \frac{\sum \{s_{ij} \mid S_i[j+m] = c\}}{\sum s_{ij}}$$

- Doesn't "commit" to a sampled choice of motif instances
- Instead uses each possible sequence weighted by score

EM Summary Part 1

EM: Compute a series of models M₁ → M₂ → M₃ ...
using the equations on the previous slide. Stop when M
doesn't change much.

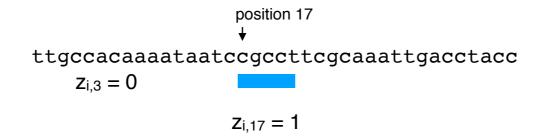
 Gibbs (version 1) → Gibbs (version 2) → EM uses more and more of the computed distribution

- EM maximizes the expected value of the likelihood over random choices of the "hidden" variables, which are the locations of the motifs
 - It's not clear yet that that is what the EM algorithm we presented is doing
 - We'll see more intuition about this soon.

Hidden Variables View of EM

Hidden variables z_{ij} tell us where the motifs are

$$z_{ij} = \begin{cases} 1 & \text{motif starts at position } j \text{ in sequence } i \\ 0 & \text{otherwise} \end{cases}$$



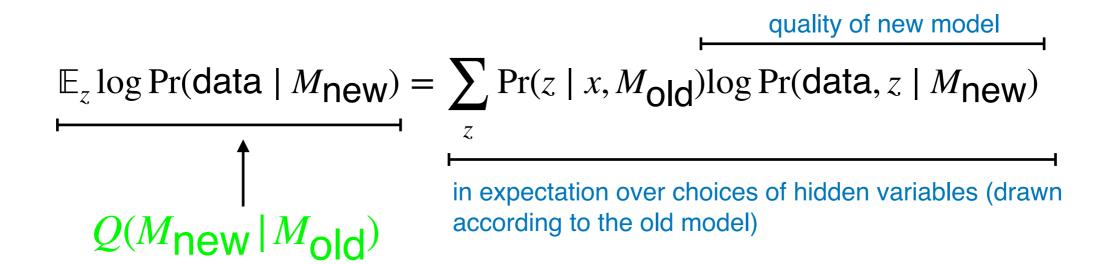
Now, want to find M to maximize:

Likelihood
$$\rightarrow$$
 Pr(data | M) = $\sum_{\text{choices of } z}$ Pr(data, $z \mid M$) by definition of joint probability

Instead Maximize Expected log likelihood

Likelihood
$$\rightarrow$$
 $\Pr(\text{data} \mid M) = \sum_{z} \Pr(\text{data}, z \mid M)$ by definition of joint probability

Expected log likelihood:



EM now iteratively computes:

$$\max_{M \text{new}} Q(M_{\text{new}} \mid M_{\text{old}})$$