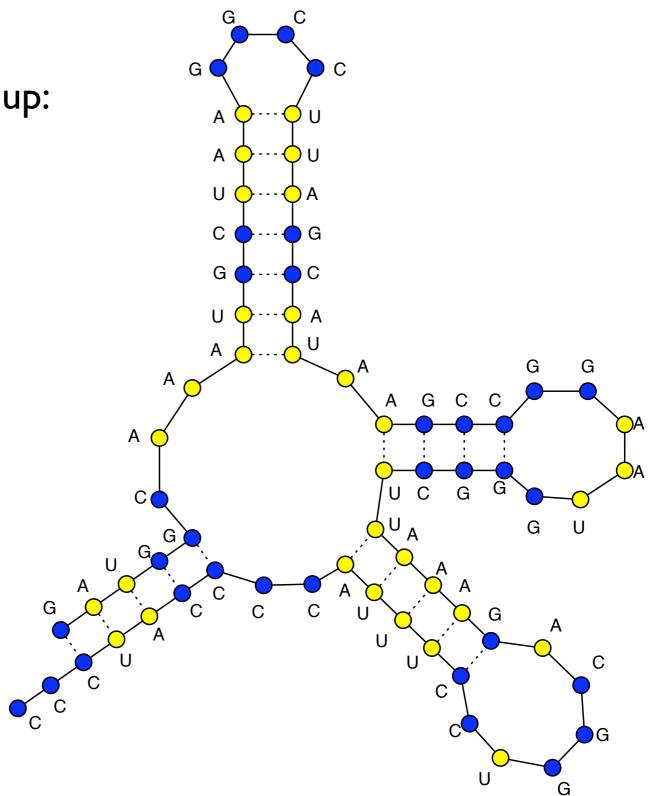
RNA Folding

02-25 I Carl Kingsford

RNA Folding

RNA is single stranded and folds up:

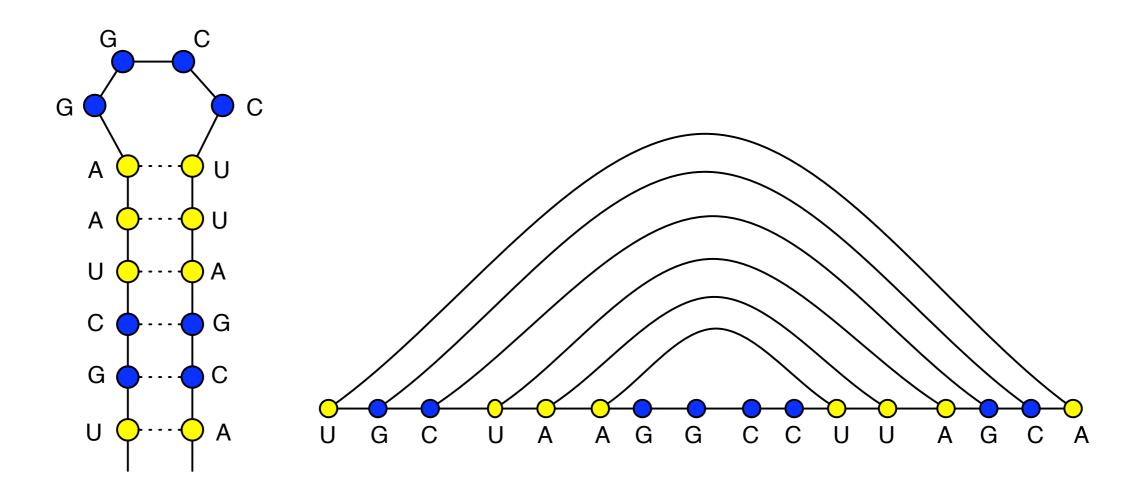
- G and C stick together
- A and U stick together



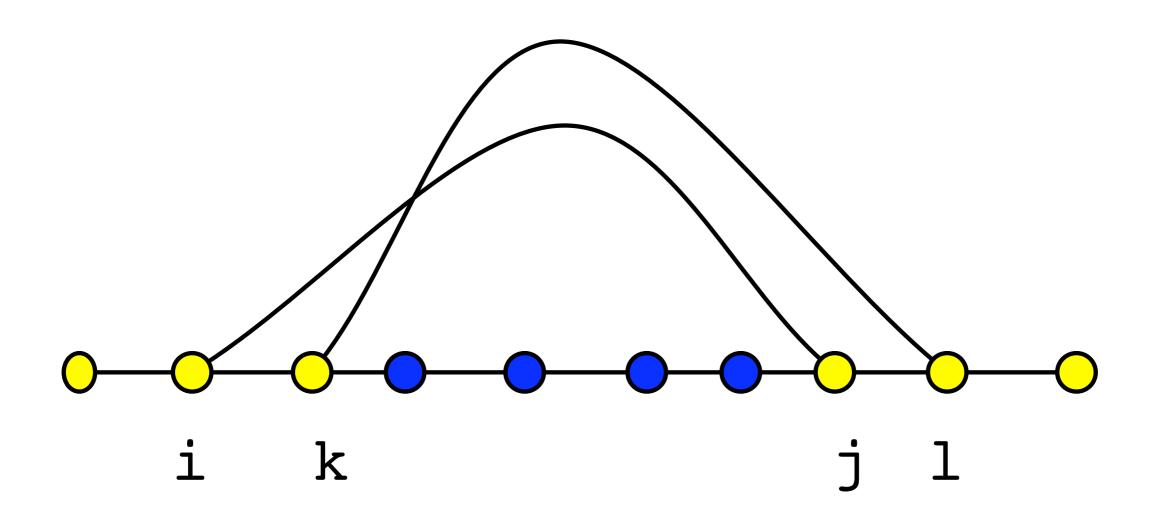
RNA Folding Rules

RNA folding rules:

- I. If two bases are closer than 4 bases apart, they cannot pair
- 2. Each base is matched to at most one other base
- 3. The allowable pairs are {U,A} and {C, G}
- 4. Pairs cannot "cross."



No Crossings



If (i,j) and (k,m) are paired, we must have i < k < m < j.

Paired bases have to be nested.

Pseudoknots Α DA-R HDV hTR G - C P1.1 G -U1A-RBD D Ε F MMTV PEMV-1 SRV-1 L1 C-G S2 L1 C . G . C G - C G - C

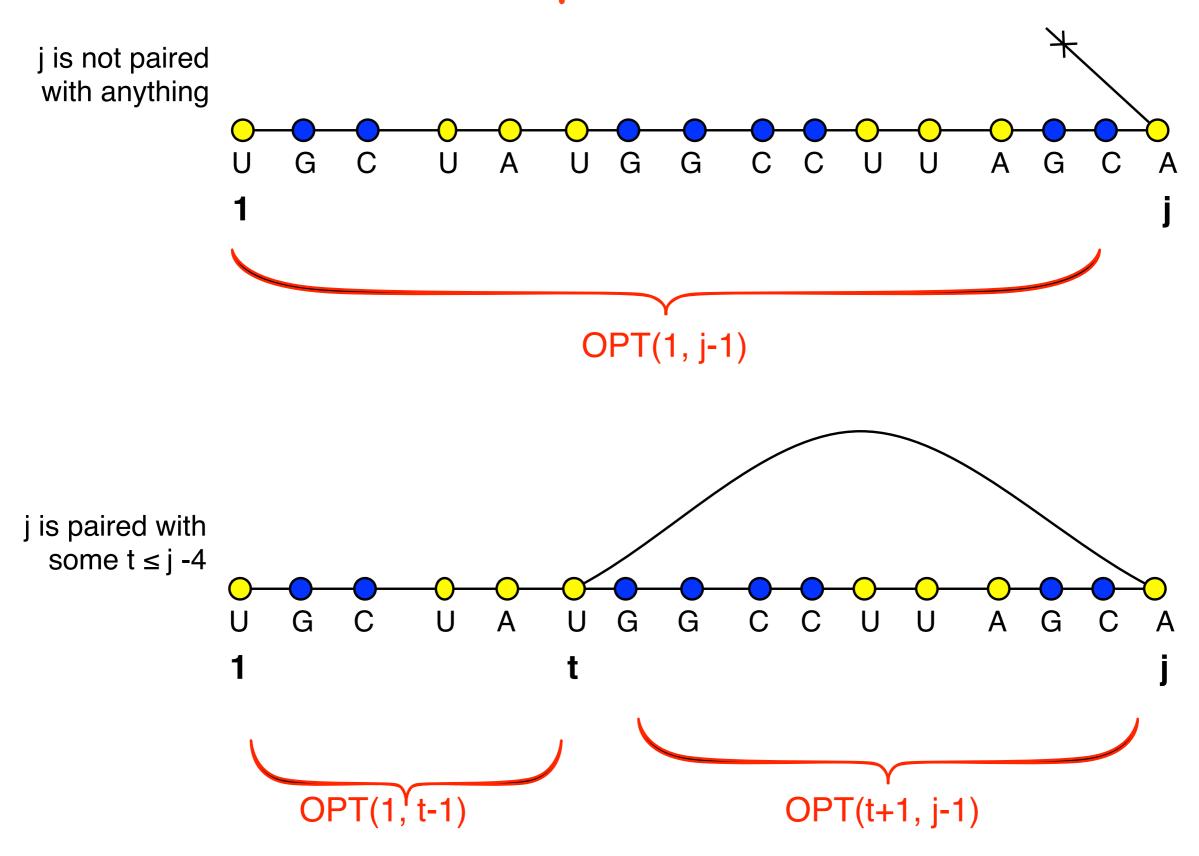
(Staple & Butcher, PLoS Biol, 2005)

RNA Folding

Given: a string $r = b_1b_2b_3,...,b_n$ with $b_i \in \{A,C,U,G\}$ *Find*: the largest set of pairs $S = \{(i,j)\}$, where $i,j \in \{1,2,...,n\}$ that satisfies the RNA folding rules.

Goal: match as many bases as possible.

Subproblems



Subproblems, 2

- We have a subproblem for every interval (i,j)
- How many subproblems are there?

$$\binom{n}{2} = O(n^2)$$

Recurrence

$$\underline{\mathsf{lf}\, j - i \leq 4} : \mathsf{OPT}(i,j) = 0$$

If j - i > 4:

$$OPT(i,j) = \max \begin{cases} OPT(i,j-1) \\ \max_t \{\mathbf{1} + OPT(i,t-1) + OPT(t+1,j-1) \end{cases}$$

In the 2nd case above, we try all possible t with which to pair j. That is, t runs from i to j-4.

Order to solve the subproblems

• In what order should we solve the subproblems?

What problems do we need to solve OPT(i,j)?

```
OPT(i,t-1) and OPT(t+1, j-1) for every t between i and j
```

In what sense are these problems "smaller?"

They involve smaller intervals of the string:

We solve OPT(i,j) in order of increase value of j - i.

Pseudocode

```
Initialize OPT[i,j] to 0 for 1 \le i,j \le n
For k = 5, 6,..., n-1 // interval length
For i = 1, 2, \ldots, n-k // interval start
Set j = i + k // interval end
    // find the best t
best t = 0
For t = i, ..., j-1:
      If rna[t] is complementary to rna[j]:
         best t = max(best t,
1 + OPT[i,t-1]+OPT[t+1,j-1]
    // Either pair j with t or nothing
    OPT[i,j] = max(best t, OPT[i,j-1])
  EndFor
EndFor
Return OPT[1,n]
```

Running Time

- $O(n^2)$ subproblems
- Each takes O(n) time to solve (have to search over all possible choices of t)
- Total running time is $O(n^3)$.

Summary

- This is essentially "Nussinov's algorithm," which was proposed for finding RNA structures in 1978.
- Same dynamic programming idea: write the answer to the full problem in terms of the answer to smaller problems.
- Still have an $O(n^2)$ matrix to fill.
- Main differences from sequence alignment:
 - We fill in the matrix in a different order: entries (i,j) in order of increasing j i.
 - We have to try O(n) possible subproblems inside the max. This leads to an $O(n^3)$ algorithm.

Gap Penalties

02-25 I Slides by Carl Kingsford

General Gap Penalties

AAAGAATTCA
$$VS.$$
 AAAGAATTCA $AAAGAATTCA$ $AAA---TCA$

These have the same score, but the second one is often more plausible.

A single insertion of "GAAT" into the first string could change it into the second.

- Now, the cost of a run of k gaps is $gap \times k$
- It might be more realistic to support general gap penalty, so that the score of a run of k gaps is $gap(k) < gap \times k$.
- Then, the optimization will prefer to group gaps together.

General Gap Penalties

Previous DP no longer works with general gap penalties because the score of the last character depends on details of the previous alignment:

Instead, we need to "know" how long a final run of gaps is in order to give a score to the last subproblem.

Three Matrices

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a character-character **match or mismatch**.

X[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a **space in X**.

Y[i,j] =score of best alignment of x[1..i] and y[1..j] ending with a **space in Y**.

$$M[i,j] = \text{match}(i,j) + \max \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \\ Y[i-1,j-1] \end{cases}$$

$$X[i,j] = \max \begin{cases} M[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \\ Y[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \end{cases}$$

$$Y[i,j] = \max \begin{cases} M[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \\ X[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \end{cases}$$

The M Matrix

We now keep 3 different matrices:

M[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a character-character **match or mismatch**.

X[i,j] = score of best alignment of x[1..i] and y[1..j] ending with a **space in X**.

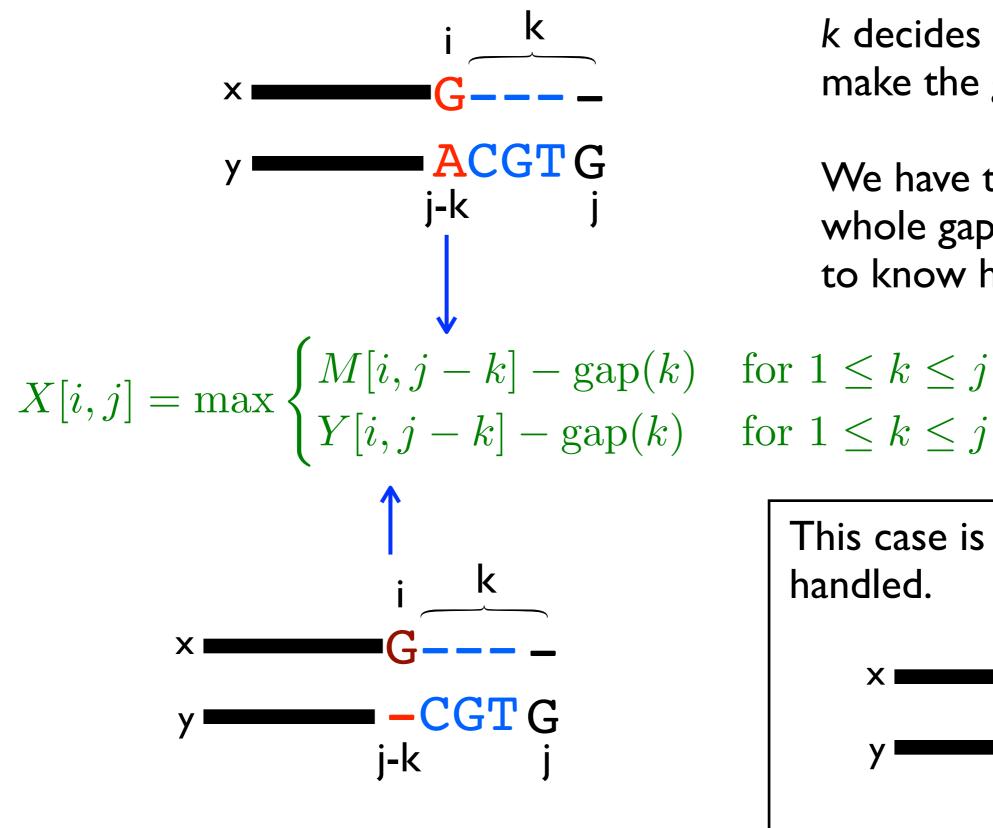
Y[i,j] =score of best alignment of x[1..i] and y[1..j] ending with a **space in Y**.

By definition, alignment ends in a match.

$$M[i,j] = \text{match}(i,j) + \max \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \\ Y[i-1,j-1] \end{cases}$$

Any kind of alignment is allowed before the match.

The X (and Y) matrices

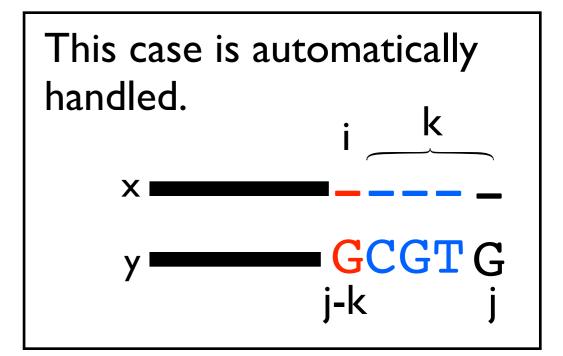


k decides how long to make the gap.

We have to make the whole gap at once in order to know how to score it.

for
$$1 \le k \le j$$

for $1 \le k \le j$



Running Time for Gap Penalties

$$M[i,j] = \text{match}(i,j) + \max \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \\ Y[i-1,j-1] \end{cases}$$

$$X[i,j] = \max \begin{cases} M[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \\ Y[i,j-k] - \operatorname{gap}(k) & \text{for } 1 \le k \le j \end{cases}$$

$$Y[i,j] = \max \begin{cases} M[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \\ X[i-k,j] - \operatorname{gap}(k) & \text{for } 1 \le k \le i \end{cases}$$

Final score is max {M[n,m], X[n,m],Y[n,m]}.

How do you do the traceback?

Runtime:

- Assume |X| = |Y| = n for simplicity: $3n^2$ subproblems
- 2n² subproblems take O(n) time to solve (because we have to try all k)

$$\Rightarrow$$
 O(n³) total time

Affine Gap Penalties

- $O(n^3)$ for general gap penalties is usually too slow...
- We can still encourage spaces to group together using a special case of general penalties called affine gap penalties:

```
gap_start = the cost of starting a gap
gap_extend = the cost of extending a gap by one more space
```

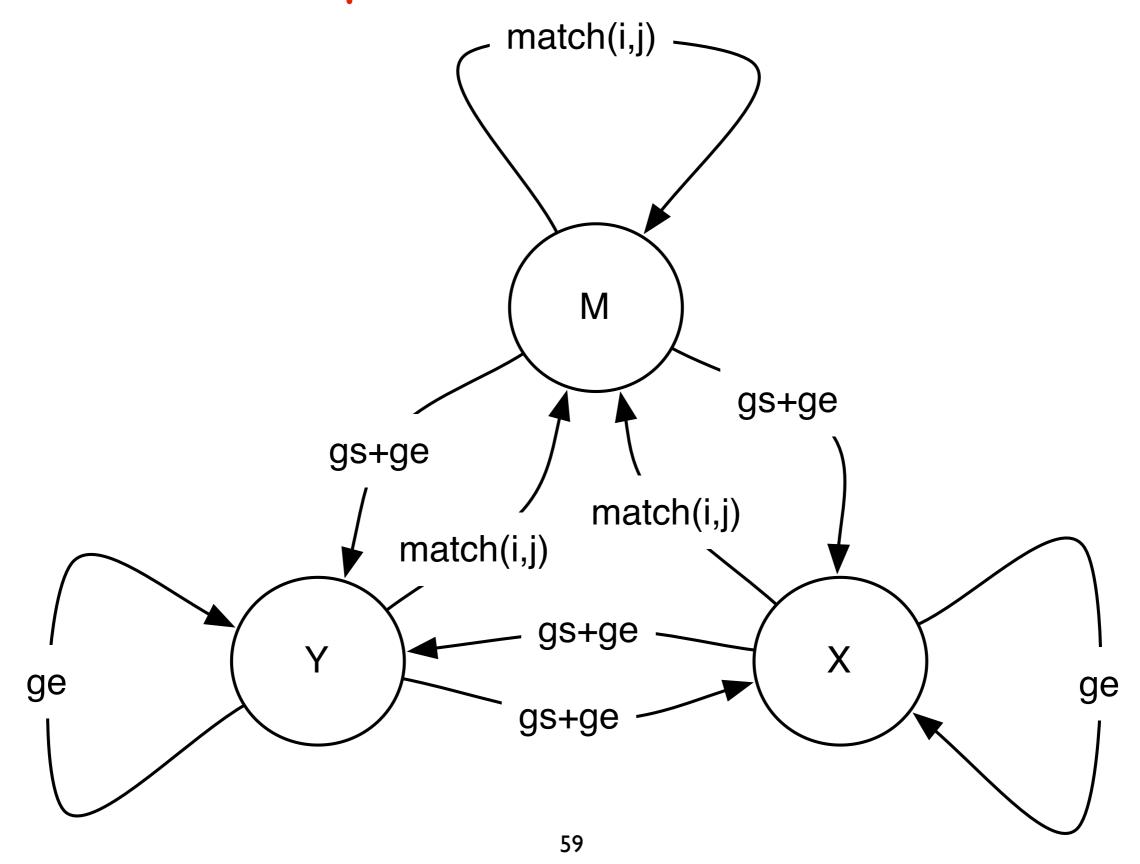
 Same idea of using 3 matrices, but now we don't need to search over all gap lengths, we just have to know whether we are starting a new gap or not.

Affine Gap Penalties

$$\begin{split} M[i,j] &= \mathrm{match}(i,j) + \mathrm{max} \begin{cases} M[i-1,j-1] \\ X[i-1,j-1] \end{cases} & \text{If previous alignment ends in } \\ Y[i-1,j-1] & \text{match, this is a new gap} \end{cases} \\ \chi &= \mathrm{max} \begin{cases} \mathrm{gap_start} + \mathrm{gap_extend} + M[i,j-1] \\ \mathrm{gap_extend} + X[i,j-1] \\ \mathrm{gap_start} + \mathrm{gap_extend} + Y[i,j-1] \end{cases} \end{split}$$

$$Y[i,j] = \max \begin{cases} \text{gap_start} + \text{gap_extend} + M[i-1,j] \\ \text{gap_start} + \text{gap_extend} + X[i-1,j] \\ \text{gap_extend} + Y[i-1,j] \end{cases}$$

Affine Gap as Finite State Machine



Affine Base Cases (Global)

• M[0, i] = "score of best alignment between 0 characters of x and i characters of y that ends in a match" = - ∞ because no such alignment can exist.

- X[0, i] = "score of best alignment between 0 characters of x and i characters of y that ends in a gap in x" = $gap_start + i \times gap_extend$ because this alignment looks like:
- M[i, 0] = M[0, i] and Y[0, i] and Y[i,0] are computed using the same logic as X[i,0] and X[0,i]

Affine Gap Runtime

- 3mn subproblems
- Each one takes constant time
- Total runtime O(mn):
 - back to the run time of the basic running time.

Traceback

- Arrows now can point between matrices.
- The possible arrows are given, as usual, by the recurrence.
 - E.g. What arrows are possible leaving a cell in the M matrix?

Why do you "need" 3 matrices?

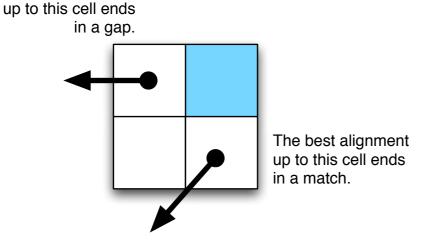
Alternative WRONG algorithm:

```
M[i][j] = max(
    M[i-1][j-1] + cost(x[i], y[i]),
    M[i-1][j] + gap + (gap_start if Arrow[i-1][j] != \( \lefta \),
    M[j][i-1] + gap + (gap_start if Arrow[i][j-1] != \( \lefta \))
)
```

WRONG Intuition: we only need to know whether we are starting a gap or extending a gap.

The arrows coming out of each subproblem tell us how the best alignment ends, so we can use them to decide if we are starting a new gap.

The best alignment



PROBLEM: The best alignment for strings x[1..i] and y[1..j] doesn't have to be used in the best alignment between x[1..i+1] and y[1..j+1]

Why 3 Matrices: Example

match = 10, mismatch = -2, gap = -7, $gap_start = -15$

CA-T

OPT(4, 3) = optimal score =
$$30 - 15 - 7 = 8$$

CARTS

CA-T-

WRONG(5, 3) =
$$30 - 15 - 7 - 15 - 7 = -14$$

CARTS

CAT--

$$OPT(5, 3) = 20 - 2 - 15 - 14 = -11$$

this is why we need to keep the X and Y matrices around. they tell us the score of ending with a gap in one of the sequences.

Recap

- General gap penalties require 3 matrices and $O(n^3)$ time.
- Affine gap penalties require 3 matrices, but only $O(n^2)$ time.