
Hardware Support for Thread-Level Speculation

J. Gregory Steffan

CMU-CS-03-122

April 2003

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Todd C. Mowry, Chair

Seth C. Goldstein
David O’Hallaron
Joel Emer, Intel

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Copyright c© 2003 J. Gregory Steffan

This research was sponsored by the National Aeronautics and Space Administration (NASA) under grant nos.
NAG2-1230 and NAG2-6054, and by a generous donation from the Intel Corporation. The views and conclusions

contained herein are those of the author and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of any sponsoring party or the U.S. Government.

Keywords: thread-level speculation, chip-multiprocessing, automatic parallelization, distributed computing, cache

coherence, value prediction, dynamic synchronization, instruction prioritization.

Abstract

Novel architectures that support multithreading, for example chip multiprocessors, have become increasingly com-

monplace over the past decade: examples include the Sun MAJC, IBM Power4, Alpha 21464, and Intel Xeon, HP PA-

8800. However, only workloads composed of independent threads can take advantage of these processors—to improve

the performance of a single application, that application must be transformed into a parallel version. Unfortunately

the process of parallelization is extremely difficult: the compiler must prove that potential threads are independent,

which is not possible for many general-purpose programs (e.g., spreadsheets, web software, graphics codes, etc.) due

to their abundant use of pointers, complex control flow, and complex data structures. This dissertation investigates

hardware support for Thread-Level Speculation (TLS), a technique which empowers the compiler to optimistically

create parallel threads despite uncertainty as to whether those threads are actually independent.

The basic idea behind the approach to thread-level speculation investigated in this dissertation is as follows. First,

the compiler uses its global knowledge of control flow to decide how to break a program into speculative threads as

well as transform and optimize the code for speculative execution; new architected instructions serve as the interface

between software and hardware to manage this new form of parallel processing. Hardware support performs the

run-time tasks of tracking data dependences between speculative threads, buffering speculative state from the regular

memory system, and recovering from failed speculation. The hardware support for TLS presented in this dissertation

is unique because it scales seamlessly both within and beyond chip boundaries—allowing this single unified design to

apply to a wide variety of multithreaded processors and larger systems that use those processors as building blocks.

Overall, this cooperative and unified approach has many advantages over previous approaches that focus on a specific

scale of underlying architecture, or use either software or hardware in isolation.

This dissertation: (i) defines the roles of compiler and hardware support for TLS, as well as the interface be-

ii

tween them; (ii) presents the design and evaluation of a unified mechanism for supporting thread-level speculation

which can handle arbitrary memory access patterns and which is appropriate for any scale of architecture with parallel

threads; (iii) provides a comprehensive evaluation of techniques for enhancing value communication between specu-

lative threads, and quantifies the impact of compiler optimization on these techniques. All proposed mechanisms and

techniques are evaluated in detail using a fully-automatic, feedback-directed compilation infrastructure and a realistic

simulation platform. For the regions of code that are speculatively parallelized by the compiler and executed on the

baseline hardware support, the performance of two of 15 general-purpose applications studied improves by more than

twofold and nine others by more than 25%, and the performance of four of the six numeric applications studied im-

proves by more than twofold, and the other two by more than 60%—confirming TLS as a promising way to exploit

the naturally-multithreaded processing resources of future computer systems.

iii

Acknowledgements

As I reflect over the past five years, I realize how numerous are the people that I must thank for contributing to this

work in many ways. I am indebted to my advisor, Todd Mowry, for the quality of my graduate career. His wisdom and

optimism guided me through two graduate schools and degrees, while teaching me how to do good research and share

it with the world. I am also grateful to Todd for arranging two enlightening internships, for his commitment to my

professional development, and for his friendship. I also thank the members of my thesis committee, Joel Emer, David

O’Hallaron, and Seth Goldstein, for their contributions to this dissertation and for steering it to successful completion.

This work would not have been possible without the efforts of others. I’d like to express my sincere gratitude to

Chris Colohan and Antonia Zhai for building and tuning the compiler infrastructure used in this dissertation, and for

years of enjoyable collaboration, advice, and companionship. I also thank the rest of the STAMPede’rs for listening

to practice talks, being an effective sounding board for new ideas, and for their support—technical and otherwise. For

making my days at CMU memorable (whether working or not) I thank Angela Demke-Brown, Chris Palmer, Jason

Flinn, Ted Wong, and Kip Walker.

I am quite fortunate to have worked with two phenomenal groups of people in industry. Earl Killian and the

architecture groups at MIPS (a division of SGI at the time) provided me with an introduction to computer architecture

in the real world, and Joel Emer and the VSSAD architecture group (DEC→Compaq→Intel) helped develop initial

support for TLS in a shared cache, and also demonstrated how to mix research and fun; all have my sincere gratitude.

There are also many people from whom I have benefited beyond academics. I thank Joe, Carrie, Addie, John, and

Pete for much needed relief from computers during my stay in Pittsburgh. Since leaving the University of Toronto,

Derek, Dan, Rob, Alex, Steve, Chris F., Masis, Stan, Sergio, and Aryn showed continued friendship and thoughtful-

ness. For their constant support, endless creativity, and mostly for keeping life interesting, I deeply thank my friends

iv

Alana, Angela S., Champ, Chris B., Chris E., Eastman, Fiona, Jake, Jason, Kathy, Katie, Kev C., Kev H., Laurel, Liisa,

Lucky, Mark, Maya, Mayte, Natalie, Rick, Rose, Ryan, Scooter, Scott, Stacey, Tim, and Tyler.

My time in graduate school would not have been possible without the support of family. I thank my parents-in-law

Hans and Lea Schwarzbauer as well as my sister-in-law Dawn for many years of warmth and understanding. I also

thank my parents Sac and Susan Steffan and my brother Ryan for providing constant encouragement, and helping me

to remember what is truly important. Finally, I thank my wife Nancy who through infinite patience and unconditional

love has given me the confidence to rise to many challenges.

v

Contents

1 Introduction 1

1.1 Example . 2

1.2 Related Work . 3

1.2.1 Loosely-Related Work . 3

1.2.2 Prior Related Work . 4

1.2.3 Concurrent Related Work . 6

1.3 Research Goals . 7

1.4 Overview . 8

2 Thread-Level Speculation 9

2.1 Introduction . 9

2.2 Execution Model . 9

2.3 Software Interface . 11

2.3.1 Required Interface Mechanisms . 11

2.3.2 TLS Instructions . 17

2.3.3 Examples . 18

2.4 Compiler Support . 22

2.5 Experimental Framework . 24

2.5.1 Benchmarks . 24

2.5.2 Simulation Models . 32

vi

2.6 Potential Performance . 34

2.7 Summary . 35

3 Support for Thread-Level Speculation in a Chip-Multiprocessor 36

3.1 Introduction . 36

3.1.1 An Example . 37

3.1.2 Potential Performance . 38

3.1.3 Related Work . 41

3.1.4 Overview . 42

3.2 Coherence Scheme For Scalable TLS . 43

3.2.1 Underlying Architecture . 43

3.2.2 Overview of Our Scheme . 43

3.2.3 Cache Line States . 45

3.2.4 Coherence Messages . 45

3.2.5 Baseline Coherence Scheme . 46

3.3 Implementation . 49

3.3.1 Epoch Numbers . 49

3.3.2 Implementation of Speculative State . 49

3.3.3 Preserving Correctness . 50

3.3.4 Allowing Multiple Writers . 52

3.4 Evaluation of Baseline Hardware Support . 53

3.4.1 Performance of the Baseline Scheme . 53

3.4.2 Overheads of Thread-Level Speculation . 58

3.5 Tuning the Coherence Scheme . 61

3.5.1 Support for Multiple Writers . 61

3.5.2 Speculative Coherence without Speculative Messages . 64

3.5.3 Speculative Invalidation of Non-Speculative Cache Lines . 65

vii

3.6 Sensitivity to Architectural Parameters . 66

3.6.1 Inter-Processor Communication Latencies . 66

3.6.2 Memory System . 69

3.6.3 Reorder Buffer Size and Complexity . 71

3.7 Implementation Alternatives . 76

3.7.1 Less Aggressive Designs . 78

3.7.2 Snoopy, Write-Through Coherence . 80

3.7.3 Implementing the Forwarding Frame . 81

3.7.4 Handling Violations . 83

3.7.5 Implementation of the Homefree Token . 87

3.8 Chapter Summary . 87

4 Support for Scalable Thread-Level Speculation 89

4.1 Introduction . 89

4.2 Support for a Shared Data Cache . 90

4.2.1 Implementation . 90

4.2.2 Performance of Shared Data Cache Support for TLS . 93

4.2.3 Tolerating Read and Write Conflicts . 97

4.2.4 Impact of Increasing Associativity . 100

4.3 Scaling Beyond Chip Boundaries . 102

4.3.1 Performance of Floating Point Benchmark Applications . 102

4.3.2 Scaling Up to Multi-Node Architectures . 103

4.3.3 Sensitivity to Inter-Node Communication Latency . 105

4.3.4 Impact of Page Layout . 106

4.4 Chapter Summary . 108

5 Improving Value Communication 110

5.1 Introduction . 110

viii

5.1.1 The Importance of Value Communication for Thread-Level Speculation 110

5.1.2 Techniques for Improving Value Communication . 112

5.2 A Closer Look at Improving Value Communication . 114

5.2.1 Impact of Compiler Optimization . 114

5.2.2 Importance of Issuing Around Wait Instructions . 115

5.2.3 The Potential for Further Improvement by Hardware . 117

5.3 Techniques for When Prediction Is Best . 118

5.3.1 Related Work . 118

5.3.2 Design Issues and Experimental Framework . 119

5.3.3 Memory Value Prediction . 119

5.3.4 Prediction of Forwarded Values . 123

5.3.5 Silent Stores . 126

5.4 Techniques for When Synchronization Is Best . 127

5.4.1 Hardware-Inserted Dynamic Synchronization . 128

5.4.2 Prioritizing the Critical Forwarding Path . 130

5.5 Combining the Techniques . 133

5.6 Chapter Summary . 135

6 Conclusions 137

6.1 Contributions . 137

6.1.1 A Cooperative Approach to TLS . 138

6.1.2 Unified Hardware Support for TLS . 138

6.1.3 A Comprehensive Evaluation of Techniques for Improving Value Communication Between

Speculative Threads . 138

6.2 Future Work . 139

6.2.1 Compiler Support . 139

6.2.2 Hardware Support for Improving Cache Locality . 141

ix

6.2.3 Online Feedback and Dynamic Adaptation . 141

A Full Coherence Scheme 142

A.1 Line State in the Cache . 142

A.2 Processor Actions . 144

A.3 Cache Actions . 145

A.4 Other Actions . 148

A.5 State Transition Diagram . 149

A.6 Coherence in the External Memory System . 152

x

List of Figures

1.1 Example of thread-level speculation (TLS). 2

2.1 Glossary of terms. 10

2.2 TLS execution model. 10

2.3 Speculative parallelization of a simple loop. 12

2.4 Interface for cancelling superfluous epochs. 13

2.5 Interface for passing the homefree token. 14

2.6 TLS instructions for thread and stack management. 15

2.7 TLS instructions for speculation management. 16

2.8 TLS instructions for value forwarding. 16

2.9 Threads in a basic for loop. 18

2.10 Threads in a for loop with an unknown ending condition. 19

2.11 A loop that re-uses threads. 20

2.12 A loop requiring forwarding. 21

2.13 Breakdown of unrollings used in the select benchmarks. S is the sequential version and B is the

baseline TLS version . 30

2.14 Comparing the sequential and TLS versions of the select benchmarks, this graph shows the fraction of

the unrollings used that are the same or different. 31

2.15 Simulation Models. 32

xi

2.16 Improvement in (a) region and (b) program execution time of the TLS version of the select bench-

marks, according to the simple simulator. 34

3.1 Using cache coherence to detect a RAW dependence violation. 38

3.2 Percentage of epochs that are violated. W tracks true dependences at a word granularity, L tracks true

dependences at a cache line granularity, and N builds on L by dissallowing implicit forwarding. 39

3.3 Improvement in (a) region and (b) program execution time of the TLS version of the select bench-

marks, according to the simple simulator—W tracks dependences at a word granularity, L tracks de-

pendences at a cache line granularity. 40

3.4 Base architecture for the TLS coherence scheme. 42

3.5 Our coherence scheme for supporting thread-level speculation. 44

3.6 Comparing Epoch Sequence Numbers. 50

3.7 Encoding of cache line states. In (b), X means “don’t-care”. 51

3.8 Support for multiple writers. 52

3.9 Impact on region execution time of our baseline hardware support for TLS. S is the original sequential

version, F is the speculative version run sequentially, and B is the speculative version run in parallel

on four processors. 55

3.10 Varying the number of processors from one through eight. The baseline architecture has four processors. 57

3.11 Size and flush latency of the ownership required buffer (ORB), as we vary the number of processors. . 58

3.12 Percentage of execution time wasted on failed speculation, and the breakdown of reasons for violations

as we vary the number of processors. 60

3.13 Percentage of misses where the cache line is resident in another first-level cache, which indicates the

impact of TLS execution on cache locality. 61

3.14 Impact of support for multiple writers. W does not model support for multiple writers while B (our

baseline architecture) does. 62

xii

3.15 Impact of re-selecting unrollings when multiple-writers is not supported. B is our baseline (which does

support multiple writers), W and U do not support multiple writers, and U re-selects unrollings. Note

that results may differ from Figure 3.14 since they are measured from benchmark versions where all

loops and all unrollings have been speculatively parallelized. 63

3.16 Impact of support for speculative coherence messages. E has no speculative coherence messages while

B (our baseline) does. 64

3.17 Impact of speculative invalidation of non-speculative cache lines. B (our baseline) models speculative

invalidation of non-speculative cache lines while D does not. 65

3.18 Impact of various communication latencies on the select benchmarks. B is our baseline which models

10 cycle interprocessor communication latency, S modifies B to have a zero-cycle spawn latency, F

modifies B to have a zero-cycle forwarding latency, H modifies B to pass the homefree token in zero

cycles, and N has no interprocessor communication latency. 67

3.19 Impact of varying communication latency (by tens of cycles). 69

3.20 Varying crossbar bandwidth from 8 to 32 bytes per cycle (for the select benchmarks). Note that our

baseline architecture has a crossbar bandwidth of 8 bytes per cycle. 70

3.21 Varying the number of data reference handlers from 4 to 32 (for the select benchmarks). Note that our

baseline architecture has 16 data reference handlers per processor. 72

3.22 Varying data cache size from 8KB to 64KB (for the select benchmarks). Note that our baseline archi-

tecture has a 32KB data cache per processor. 73

3.23 Varying data cache associativity from direct-mapped (1) to 2-way (for the select benchmarks). Note

that our baseline architecture is 2-way set-associative. 74

3.24 Impact of issuing memory references out-of-order. I models an in-order-issue pipeline, and B (our

baseline) models an out-of-order-issue pipeline. 75

3.25 Impact of varying the reorder buffer size, from 64 to 256 entries. Note that our baseline architecture

has a 128-entry reorder buffer. 77

3.26 Benefits of control independence. I is control independent (our baseline) and D is control dependent. . 79

xiii

3.27 Comparison with hardware support that only uses the load/store queues as speculative buffers. 16

models 16-entry load and store speculative buffers, 32 models 32-entry load and store speculative

buffers, and B is our baseline hardware support (using the first-level data caches as speculative buffers). 80

3.28 Implementation alternatives for the forwarding frame, where forwarding frame loads (FF load) and

stores (FF store) are managed by different mechanisms. 82

3.29 Impact of special hardware support for the forwarding frame. For B, all forwarding frame references

are through regular memory (our baseline); for F, forwarding frame references are first loaded from

regular memory but then saved in a forwarding frame buffer; and for R, all forwarding frame references

are to a shared register file. 83

3.30 Impact of support for avoiding any violation due to cache line replacement by immediately suspending

the offending epoch until it becomes homefree. B is our baseline hardware support, and S suspends

any epoch that attempts to replace a speculative cache line until it becomes homefree. 84

3.31 Impact of various violation notification and recovery strategies. B is our baseline strategy which polls

for a violation at the end of an epoch, and squashed epochs re-spawn; I modifies B such that squashed

epochs store their initial state and restart independently, without having to respawn; F modifies B such

that violations are notified immediately by an interrupt; G combines both I and F; and E modifies G

by not having speculative coherence messages. 85

3.32 Benefits of a hardware-visible homefree token. B (our baseline) models a software-only homefree

token, while E models a hardware-visible homefree token. 87

4.1 Hardware support for multiple epoch contexts in a single cache. 90

4.2 Support for efficient epoch number comparison. 91

4.3 Explicit vs implicit forwarding. 92

4.4 Region performance of the select benchmarks on both private-cache and shared-cache architectures.

P is speculatively executed on a 4-processor CMP with private caches, and S is speculatively executed

on a 4-processor CMP with a shared cache. 94

xiv

4.5 Varying the number of processors for both private and shared-cache architectures. Note that the shared

cache is the same size as each of the private caches (32KB). 95

4.6 Benefits of implicit forwarding in a shared cache. N does not support implicit forwarding, while S (our

shared-cache baseline) does. 96

4.7 Two epochs that store the same cache line. In (a), suspension of epoch 2 allows it to proceed later. In

(b), suspension cannot help, and epoch 2 is violated due to the write conflict. 97

4.8 Impact of suspending violations for replacement and conflicts. S is the baseline 4-processor shared-

cache architecture, U builds on S by tolerating conflicts and replacement through suspension of the

logically-later epoch, R builds on S by tolerating conflicts through replication, and Q supports both

suspension and replication. 98

4.9 Example of cache line replication. 99

4.10 Hardware support for multiple writers in a shared cache that also supports replication. 99

4.11 Impact of suspending violations for replacement and conflicts when the the shared data cache is 4-way

set-associativity (as opposed to 2-ways). S is the baseline 4-processor shared-cache architecture, U

builds on S by tolerating conflicts and replacement through suspension of the logically-later epoch, R

builds on S by tolerating conflicts through replication, and Q supports both suspension and replication. 101

4.12 Region performance of the select version of the floating point benchmarks when scaling (varying the

number of processors) within a chip. 102

4.13 Region performance of the select version of the floating point benchmarks on multiprocessor archi-

tectures with varying numbers of processors and nodes. For each benchmark we simulate 1, 2, and 4

nodes (N) of 1, 2, 4, and 8 processors per node. 104

4.14 Impact of varying the communication latency between nodes (chips) from 50 to 200 cycles; note that

for our baseline architecture it is 100 cycles. 106

xv

4.15 Breakdown of cycles spent servicing misses (in the memory system) for varying numbers of nodes (N)

and processors per node. DSM represents cycles spent on accessing both local and remote memory

in the distributed shared memory system; Ucache represents cycles spent on contention and trans-

mission in the inter-connection network (crossbar) between the data and instruction caches and the

unified cache, as well as cycles spent on fill and contention in the unified cache itself; Dcache rep-

resents cycles spent for fill and contention in the data cache while servicing data cache misses; and

Icache represents cycles spent on both filling cache lines and contention in the instruction cache while

servicing instruction cache misses. 107

4.16 Impact of the DSM page layout. B is the “baseline” data layout from Figure 4.13, and O models an

oracle migration strategy to estimate the maximum potential benefit of improved page allocation. . . 108

5.1 A memory value may be communicated between two epochs (E1 and E2) through (a) speculation, (b)

synchronization, or (c) prediction. 111

5.2 Potential impact of optimizing value communication. Relative to the normalized, original sequential

version, U shows the unoptized speculative version and P shows perfect prediction of all inter-thread

data dependences. 112

5.3 Reducing the critical forwarding path. 113

5.4 Performance impact of our TLS compiler. For each experiment, we show normalized region execution

time scaled to the number of processors multiplied by the number of cycles (smaller is better). S is

the sequential version, T is the TLS version run sequentially. There are two versions of TLS code

run in parallel: U and B are without and with compiler scheduling of the critical forwarding path,

respectively. Each bar shows a breakdown of how time is being spent. 114

5.5 Impact of issuing around wait instructions. For W, instructions cannot issue out-of-order with respect

to a blocked wait instruction, while in B (our baseline) they can. 116

5.6 Potential for improved value communication. B is our baseline, M shows perfect prediction of mem-

ory values, F shows perfect prediction of forwarded values, and P shows perfect prediction of both

forwarded and memory values. 117

xvi

5.7 Performance and failed speculation with memory value prediction. B is the baseline experiment, E

predicts all exposed loads, V only predicts loads that have caused violations using an exposed load

table and a violating loads list that are both unlimited in size, and L refines V with tables/lists that are

realistic in size. 121

5.8 Two mechanisms used to throttle memory value prediction: the exposed load table and violating loads

list. 122

5.9 Performance of forwarded value prediction. B is the baseline experiment, F predicts all forwarded

values S predicts forwarded values that have caused stalls. 124

5.10 Performance of silent stores optimization. B is the baseline experiment, and S optimizes silent stores. 127

5.11 Dynamic synchronization, which avoids failed speculation (left) by stalling the appropriate load until

the previous epoch completes (right). 128

5.12 Performance of dynamic synchronization. B is the baseline experiment, D automatically synchronizes

all violating loads (using a exposed load tables and violating loads lists of unlimited size), R builds on

D by periodically resetting the violating loads list, and L refines R with tables that are realistic in size. 129

5.13 Prioritization of the critical forwarding path. We show (a) our algorithm, where we mark the instruc-

tions on the input chain of the critical store and the pipeline’s issue logic gives them high priority; (b)

some statistics, namely the fraction of issued instructions that are given high priority by our algorithm

and issue early, and also the improvement in the average number of cycles from the start of the epoch

until each signal. 131

5.14 Performance impact of prioritizing the critical forwarding path: B is the baseline experiment, and S

prioritizes the critical forwarding path. 132

5.15 Performance impact of prioritizing the critical forwarding path when it has not been scheduled by

the compiler: U has not been scheduled by the compiler, S builds on U by prioritizing the critical

forwarding path, and B is scheduled by the compiler. 133

5.16 Performance of all techniques combined. B is the baseline experiment, F models techniques for op-

timizing forwarded values, M models techniques for optimizing memory values, and A models all

techniques. 134

xvii

A.1 Exposed and un-exposed uses. 147

xviii

List of Tables

1.1 Summary of related hardware schemes for TLS. 6

2.1 Benchmark descriptions and inputs used. 24

2.2 Truncation of benchmark execution. 25

2.3 Statistics for the select benchmark versions. 26

2.4 Statistics for the max-coverage benchmark versions. 28

2.5 Comparing TLS and sequential versions of the select benchmarks. 29

2.6 Simulation parameters. 33

3.1 Memory Access Statistics. 39

3.2 Region and Program Speedups and Coverage. 54

3.3 Forwarding Frame Sizes (in 8-byte words) . 82

5.1 Memory value prediction statistics for the select benchmarks. 120

5.2 Forwarded value prediction statistics for the select benchmarks. 125

5.3 Percent of dynamic, non-stack stores that are silent (for the select benchmarks). 126

5.4 Summary of techniques for improving value communication. 135

A.1 Shared cache line states. 143

A.2 Processor-initiated actions. 144

A.3 Actions generated by the shared cache controller. 145

A.4 Other actions. 148

xix

A.5 Cache state transition diagram (Continued on next page). →X represents the transition to new state X,

and (A)?(B):(C) denotes if A then B else C. 150

A.5 Cache state transition diagram (Continued on next page). 151

A.5 Cache state transition diagram (Continued from previous page). 152

xx

Chapter 1

Introduction

Due to rapidly increasing transistor budgets, today’s microprocessor architect is faced with the pleasant challenge of

deciding how to translate these extra resources into improved performance. In the last decade, microprocessor perfor-

mance has improved steadily through the exploitation of instruction-level parallelism (ILP), resulting in superscalar

processors that are increasingly wider-issue, out-of-order, and speculative. However, this highly-interconnected and

complex approach to microarchitecture is running out of steam. Cross-chip wire latency (when measured in processor

cycles) is increasing rapidly, making large and highly interconnected designs infeasible [1, 58]. Both development

costs and the size of design teams are growing quickly and reaching their limits. Increasing the amount of on-chip

cache eventually shows diminishing returns [22]. Instead, an attractive option is to exploit thread-level parallelism

(TLP).

The transition to new designs that support multithreading has already begun: the Sun MAJC [68], IBM Power4 [38],

and the Sibyte SB-1250 [8] are all chip-multiprocessors (CMPs), in that they incorporate multiple processors on

a single die. Alternatively, the Alpha 21464 [20] supports simultaneous multithreading (SMT) [19, 70, 71], where

instructions from multiple independent threads are simultaneously issued to a single processor pipeline. These new

architectures still benefit from ILP, since ILP and TLP are complementary.

While it is relatively well-understood how to design cost-effective CMP and SMT architectures, the real issue is

how to use thread-level parallelism to improve the performance of the software that we care about. Multiprogram-

ming workloads (running several independent programs at the same time) and multithreaded programs (using separate

1

while(continue cond) {
...
x = hash[index1];
...
hash[index2] = y;
...

}

(a) Pseudo-code.

Processor1 Processor2 Processor3 Processor4

T
im

e

Epoch 1 Epoch 3 Epoch 4

Epoch 4

= hash[10]

hash[25] =
...

...

...
attempt_commit()

= hash[3]

hash[10] =
...

...

...
attempt_commit()

Epoch 2

hash[21] =
...

...

...
attempt_commit()

= hash[33]

hash[30] =
...

...

...
attempt_commit()

= hash[10]

hash[25] =
...

...

...
attempt_commit()

= hash[19]

Redo

Violation!

(b) TLS execution.

Figure 1.1. Example of thread-level speculation (TLS).

threads for programming convenience, such as in a web server) both naturally take advantage of the available concur-

rent threads. However, we often are concerned with the performance of a single application. To use a multithreaded

processor to improve the performance of a single application we need that application to be parallel.

Writing a parallel program is not an easy task, requiring careful management of communication and synchroniza-

tion, while at the same time avoiding load-imbalance. We would instead like the compiler to translate any program

into a parallel program automatically. While there has been much research in this area of automatic parallelization

for numeric programs (array-based codes with regular access patterns), compiler technology has made little progress

towards the automatic parallelization of non-numeric applications: progress here is impeded by ambiguous memory

references and pointers, as well as complex control and data structures—all of which force the compiler to be con-

servative. Rather than requiring the compiler to prove independence of potentially-parallel threads, we would like the

compiler to be able to parallelize if it is likely that the potential threads are independent. This new form of parallel

execution is called thread-level speculation (TLS).

1.1 Example

TLS allows the compiler to automatically parallelize portions of code in the presence of statically ambiguous data

and control dependences, thus extracting parallelism between whatever dynamic dependences actually exist at run-

time. To illustrate how TLS works, consider the simple while loop in Figure 1.1(a) which accesses elements in

2

a hash table. This loop cannot be statically parallelized due to possible data dependences through the array hash.

While it is possible that a given iteration will depend on data produced by an immediately preceding iteration, these

dependences may in fact be infrequent if the hashing function is effective. Hence a mechanism that could speculatively

execute the loop iterations in parallel—while squashing and re-executing any iterations which do suffer dependence

violations—could potentially speed up this loop significantly, as illustrated in Figure 1.1(b). In this example, the

program is running on a shared-memory multiprocessor, and some number of processors (four, in this case) have been

allocated to the program by the operating system. Each of these processors is assigned a unit of work, or epoch, which

in this case is a single loop iteration. When complete, each epoch attempts to commit its speculative work. In this

case a read-after-write (RAW) data dependence violation is detected between epoch 1 and epoch 4; hence epoch 4 is

squashed and restarted to produce the correct result, while epochs 1, 2, and 3 commit. This example demonstrates the

basic principles of TLS.

1.2 Related Work

This section provides an overview of the field of related work, which can be divided into three categories: loosely-

related work, related work done prior to this dissertation, and related work done concurrently. An in-depth discussion

of how this dissertation is differentiated from related work is given in each successive chapter.

1.2.1 Loosely-Related Work

Concepts similar to thread-level speculation have been explored in concurrency for databases, aggressive simula-

tion, and functional languages. For databases, the concept of speculative synchronization [43, 45, 46] as an alternative

to mutual exclusion was a matter of great debate in the database community; the results of this debate are summarized

by Agrawal et al. [2]. The time warp operating system [36] is an optimistically-parallel discrete event simulation en-

gine, where a simulation is parallelized with optimistic synchronization. Events are simulated early—when the input

parameters may possibly still change. In the case of misspeculation, the results of the simulated event are rolled back

and the event is re-simulated to ensure correctness. Finally, Knight [39] and Halstead [61] each proposed forms of

thread-level speculation within the context of functional languages.

3

1.2.2 Prior Related Work

Herlihy et al. [35, 53] proposed using transactional memory to support TLS for numeric codes; however, this work

was quite preliminary, and not explored in detail. The following two works are more relevant: the LRPD test [60]

which is a software-only version of TLS that applies only to array-based codes, and the Multiscalar architecture [27,

65] which was the first complete evaluation of an architecture designed specifically for supporting TLS. More detail

about each of these schemes follows.

The LRPD Test

Padua et al. [60] devised a method for parallelizing loops for numeric codes in the presence of ambiguous data

dependences. Their entirely software-based approach, called the LRPD test, allows the compiler to parallelize loops

without fully disambiguating all memory references. For a given loop, the LRPD test is performed on each shared

variable with ambiguous references by creating corresponding shadow arrays to track read and write accesses. These

shadow arrays are examined at the end of the parallel execution of the loop: if any cross-iteration data dependences

were violated, the loop is re-executed sequentially; otherwise the parallel execution of the loop was correct.

Although a purely software-based approach is attractive, there are two shortcomings to the LRPD test. First, the

LRPD test requires the creation of shadow storage for all shared data, and is therefore not applicable to most non-

numeric codes due to their complex data structures and extensive use of heap-allocated objects. Second, the LRPD

test does not extract any parallelism in the presence of a single cross-iteration read-after-write dependence: the loop is

re-executed sequentially in such cases. In summary, only a narrow class of loops can be parallelized effectively using

the LRPD test.

The Multiscalar Architecture

The most relevant prior work is the Wisconsin multiscalar architecture [26, 27, 65]. This architecture performs

aggressive control and data speculation through the use of large hardware structures devoted to the task. The following

describes the multiscalar system architecture, beginning with the compilation process.

During compilation for multiscalar execution, a program is broken up into small tasks. A task may consist of a only

few instructions or perhaps several basic blocks. The compiler inserts a bit-vector called the create mask into every

task denoting which registers are live at the end of the task. Hardware then uses this information to forward register

4

values between tasks.

The multiscalar architecture speculatively executes tasks in parallel by executing the tasks before the corresponding

branches and memory dependences have been resolved. Processors in the multiscalar architecture are arranged in a

ring, and each processor is tightly-coupled with its two neighboring processors. At any given time during execution,

one of the processors is considered the head of the ring: this processor is executing the oldest task, and its work

is not considered speculative since there are no longer any preceding tasks. There are two main benefits to the ring

architecture. First, the ordering between tasks is implied by the order of the processors in the ring, thus making it trivial

to terminate the appropriate tasks when a dependence is violated. Second, the tight-coupling of adjacent processors in

the ring simplifies register forwarding, since register values are forwarded between consecutive tasks.

As described earlier, the create mask informs hardware which registers are live at the end of each task, and hardware

automatically forwards these register values between tasks. Synchronization of register values that are communicated

between tasks is provided by a busy bit that is associated with each register which is set when the register value arrives

at the receiving processor.

To support data speculation, the multiscalar architecture includes the address resolution buffer (ARB) [27] which

performs dynamic memory disambiguation. The ARB sits between the processors and the first-level cache, and all

memory accesses are filtered through it. For each store to memory, the store address and the value are saved in one

of the ARB’s associative entries for the corresponding processor. On each memory access, the ARB is searched for

previous accesses to the same address: if the ARB notices that a store and load to the same address have occurred

out-of-order then all speculative tasks including and beyond the violating task are terminated.

Although the multiscalar architecture facilitates efficient control and data speculation, it does so at the cost of an

architecture which is highly specialized to that mode of execution. The ring layout of processors is beneficial for

forwarding data between consecutive tasks, but is not efficient when executing a conventional parallel program. The

ARB is a large and complex structure; since an associative search is performed for most memory accesses, latency

through the ARB is longer than that of an ordinary first-level cache. Therefore the multiscalar architecture will not be

efficient at executing multiprogramming workloads or even conventional parallel programs. However, experimental

results for the multiscalar architecture show that speculative execution is a promising way to improve the performance

of non-numeric applications using multiple processors.

5

Table 1.1. Summary of related hardware schemes for TLS.
System Underlying Applications Speculative

Approach Composition Architecture Supported Buffering

DMT [4] HW-only SMT general-purpose buffer between processor and L1
CSMP [50] HW-only SMT general-purpose L1 cache
Trace Processor [62] HW-only CMP general-purpose (not specified)

Krishnan99 [42] SW/HW CMP general-purpose L1 caches
Hydra [34] SW/HW CMP general-purpose buffers between L1s and L2
SVC [31] SW/HW CMP general-purpose L1 caches
SUDS [25] SW/HW CMP (RAW) general-purpose undo-log/buffer at each processor
Zhang99 [78] SW/HW MP numeric undo-log/buffer at each node
Cintra00 [12] SW/HW MP/CMP numeric L1 and L2 caches

Our approach SW/HW MP/CMP/SMT general-purpose L1 caches

1.2.3 Concurrent Related Work

There are currently many approaches to support for TLS. Of these, one class of schemes are implemented entirely

in software [32, 60, 63] but require explicit code and storage to track data dependences and buffer speculative modi-

fications (or provide an undo-log); these schemes are thus only effective for array-based, numeric applications where

the portions of memory for which cross-thread dependences need to be tracked are well defined. A software-only

approach to TLS support for arbitrary memory accesses (pointers) is infeasible.

Approaches to TLS that involve hardware support may be divided into two classes: those that are implemented

entirely in hardware [4, 50, 62], and those that use both hardware and software [12, 25, 31, 34, 41, 42, 59, 78], as sum-

marized in Table 1.1. Hardware-only approaches have the advantage of operating on unmodified binaries, but are

limited since hardware must decide how to break programs into speculative threads without knowledge of high-level

program structure. Hardware-only approaches are generally more complex than those that take advantage of software

support since any transformation and optimization of TLS execution must be implemented entirely in hardware, in

addition to the mechanisms for selecting speculative threads.

These schemes may also be classified based on the underlying architecture: those that focus on chip-multiprocessor

(CMP) architectures [25, 31, 34, 41, 56, 78]1, those that focus on simultaneously-multithreaded (SMT) or other shared-

cache architectures [4, 50], and those that scale beyond a single chip to multiprocessor (MP) architectures [12, 32, 59,

60, 63, 77, 79]. With the exception of the scheme by Cintra et al. [12], no related approach is scalable both within

a chip and also beyond a chip to multiprocessor systems; i.e., no related approach is applicable to multiprocessor

1Note that the SUDS scheme [25] is implemented using the MIT RAW reconfigurable architecture, as opposed to extending a conventional
CMP.

6

systems, chip-multiprocessors, and shared-cache architectures (such as SMT).

Related approaches can also be differentiated by the class of applications that are supported. Two approaches [12,

78] focus solely on numeric applications, while the rest focus on general-purpose applications. Any scheme which

supports general-purpose applications will also function correctly for numeric applications. However, no related work

contains a thorough evaluation of both general-purpose and numeric applications. It is also important to note that

related schemes that do scale beyond a chip (MP) focus solely on numeric applications.

Finally, related approaches demonstrate a wide variety of hardware implementations, of which one of the most

important features is the mechanism for buffering speculative state and tracking data dependences between speculative

threads. For this purpose, dynamic multithreading (DMT) [4], SUDS [25], and Zhang et al. [78] introduce a new buffer

near the processor; the latter two approaches speculatively modify memory and use the buffers to maintain an undo

log, while the former uses its buffers to separate speculative modifications from memory. The Hydra [34] introduces

speculative buffers between the write-through first-level caches and the unified second-level cache. These speculative

buffers must be sufficiently large to be effective, but adding large amounts of speculation-specific buffering to the

memory hierarchy is undesirable. The remaining approaches [12, 31, 42, 50]2 use the existing caches as speculative

buffers. A comprehensive summary and quantitative comparison of several schemes for TLS support is provided by

Garazan et al. [29].

The next section describes the goals that differentiate this dissertation from related work.

1.3 Research Goals

While there are many important issues regarding the role of the compiler in TLS, this thesis focuses on the design

of the underlying hardware support. Thus, my thesis is that: hardware support for thread-level speculation that is

simple and efficient, and that can scale to a wide range of multithreaded architectures can empower the com-

piler to improve the performance of sequential applications. Furthermore, a deep understanding of the key aspects

of this novel hardware support—tracking data dependences and buffering speculative state, detecting and recover-

ing from failed speculation, management of speculative threads, communication of data values between speculative

threads, and the partitioning of these mechanisms between hardware and software—can be obtained.

2The Trace Processor [62] approach does not specify means for buffering speculative modifications and tracking data dependences, deferring
instead to related work.

7

The hardware support for TLS presented in this dissertation achieves the following four goals:

1. to handle arbitrary memory accesses—not just array references;

2. to preserve the performance of non-speculative workloads;

3. to provide a framework for scaling seamlessly both within and beyond chip boundaries;

4. to fully exploit the compiler and minimize the amount and complexity of the underlying hardware support.

While some previous efforts achieve a subset of the above goals, none achieves all four—hence these goals differ-

entiate this work.

1.4 Overview

The remainder of this dissertation is organized as follows. Chapter 2 provides the background necessary for the

remainder of the dissertation. We define TLS terms and its execution model, and describe a cooperative approach to

TLS hardware support—defining the roles of compiler and hardware and the interface between them. Also presented

are the compiler infrastructure, benchmark applications, and simulation framework used in the evaluations in this

dissertation. The chapter concludes with an estimate of the potential performance benefits of TLS for the benchmark

applications.

In Chapter 3, we present the design for a unified mechanism for supporting thread-level speculation which can

handle arbitrary memory access patterns and which is appropriate for any scale of architecture with parallel threads.

The evaluation in this chapter focuses on support within a chip-multiprocessor, while in Chapter 4 we evaluate further

support for speculation in a shared cache as well as the scalability of our approach beyond chip boundaries.

Chapter 5 provides a comprehensive evaluation of techniques for enhancing value communication between specu-

lative threads, including several schemes for prediction and synchronization. The impact of compiler optimization on

these techniques is also quantified.

Finally, we conclude in Chapter 6 by enumerating the contributions of this dissertation and discussing potential

future directions. Note that the Appendix defines the speculative cache coherence scheme in full detail

8

Chapter 2

Thread-Level Speculation

2.1 Introduction

This chapter provides the background necessary for the rest of the dissertation. We begin with a description of

the high-level execution model for TLS targeted by software as well as the software interface to architected TLS

support, including the definitions of new instructions. The compilation infrastructure including thread selection, code

transformation, optimization, and code generation are all described, although an in-depth evaluation of compilation

issues for TLS [76] is beyond the scope of this thesis1. This chapter also presents the experimental framework used

in the evaluations throughout this dissertation including the benchmark applications and simulation infrastructure.

Finally, through a preliminary simulation study we demonstrate the potential for TLS to improve performance.

2.2 Execution Model

This section describes the execution model for TLS that is targeted by the compiler and implemented in hardware.

The following description also serves as a high-level overview of the the remainder of this section.

First, we divide a program into speculatively-parallel units of work called epochs. Each epoch is associated with its

own underlying speculative thread, and creates the next epoch through a lightweight fork called a spawn, as shown

in Figure 2.2(a). The spawn mechanism forwards initial parameters and a program counter (PC) to the appropriate

processor. An alternative approach would be to have a fixed pool of speculative threads that grab epochs from a

1See http://www.cs.cmu.edu/ stampede for an in-depth treatment of compilation issues for TLS

9

Epoch: The unit of execution within a program which is executed speculatively.

Epoch Number: A number which identifies the relative ordering of epochs within an OS-level thread. Epoch numbers also indicate
that certain parallel threads are unordered.

Homefree Token: A token which indicates that all previous epochs have made their speculative modifications visible to memory
and hence speculation for the current epoch is successful.

Logically Earlier/Later: With respect to epochs, logically-earlier refers to an epoch that preceded the current epoch in the original
execution while logically-later refers to an epoch that followed the current epoch.

OS-level Thread: A thread of execution as viewed by the operating system—multiple speculative threads may exist within an
OS-level thread.

Speculative Context: The state information associated with the execution of an epoch.

Sequential Portion: The portion of a program where TLS is not exploited.

Spawn: A light-weight fork operation that creates and initializes a new speculative thread.

Speculative Region: A single portion of a program where TLS (speculative parallelism) is exploited.

Speculative Thread: A light-weight thread that is used to exploit speculative parallelism within an OS-level thread.

Violation: A thread has suffered a true data dependence violation if it has read a memory location that was later modified by a
logically-earlier epoch—other types of violations are described later.

Figure 2.1. Glossary of terms.

spawn

homefree

E1
E2

E3

(a) Steady-state execution.

E2
E1

E3

violated

committed

(b) Recovering from a violation.

Figure 2.2. TLS execution model.

10

centralized work queue.

A key component of any architecture for TLS is a mechanism for tracking the relative ordering of the epochs. In

our approach, we timestamp each epoch with an epoch number to indicate its ordering within the original sequential

execution of the program. We say that epoch X is “logically-earlier” than epoch Y if their epoch numbers indicate that

epoch X should have preceded epoch Y in the original sequential execution. Epochs commit speculative results in the

original sequential order by passing a homefree token which indicates that all previous speculative threads have made

all of their speculative modifications visible to the memory system and hence it is safe to commit. When an epoch is

guaranteed not to have violated any data dependences with logically-earlier epochs and can therefore commit all of its

speculative modifications, we say that the epoch is homefree.

In the case when speculation fails for a given epoch, all logically-later epochs that are currently running are also

violated and squashed. In Figure 2.2(b), speculation fails for epoch 2 which in turn causes epoch 3 to be squashed.

Although more aggressive strategies are possible, this conservative approach ensures that an epoch does not continue

to execute when it may have received incorrect data.

2.3 Software Interface

We have architected our TLS system to involve both the compiler and hardware, hence we require an interface

between them. There are a number of issues to consider for such an interface: some issues are analogous to those

for purely parallel applications, such as creating threads and managing the stacks; others are unique to TLS, such as

passing the homefree token and recovering from failed speculation. In this section, we begin with a description of

the important components of the software interface to TLS hardware, and then we present the new instructions that

implement this interface.

2.3.1 Required Interface Mechanisms

For thread-level speculation, there are many possible implementations for the interface between hardware and

software. In this section we briefly explore the design space of interfaces and also present our approach.

11

/* Initialize y so that there is a RAW dependence
* in iteration 6 of the loop: */
y[] = {20, 21, 22, 23, 24, 25, 5,

27, 28, 29, 30, ...};
...
i = 0;
while (++i < N) {

x[i] = x[y[i]];
}

i=0

...
x[N]=x[y[N]]

x[1]=x[21]
x[2]=x[22]tim

e

single thread

(a) The sequential version of a simple while loop.

my i = 0;
start(my i):

if(++my i < N) {
/* Pass value of my i as a parameter to the
* next thread: */
td = lightweight fork(&start, my i);
x[my i] = x[y[my i]];
attempt commit();
end thread();

}
/* Falls through after last iteration: */
i = my i;

x[6]=x[5]9

...
x[9]=x[29]

1
i=0

3
4x[1]=x[21]

2

x[4]=x[24]

5 x[5]=x[25]]

x[2]=x[22] x[3]=x[23]

Violation!
...

8

...
10

...

6 x[6]=x[5] 7 x[7]=x[27]

x[10]=x[30]

x[8]=x[28]

(b) The speculative version.

Figure 2.3. Speculative parallelization of a simple loop.

Threads

Before we discuss issues which are unique to speculation, we first consider one of the requirements for any kind

of parallel execution: the creation of parallel threads. Figure 2.3(a) shows an example of a simple while loop where

the elements of the array x are updated using array y as an index into x. The array y has been initialized such that

the sixth iteration of the loop (i.e. when i = 6) will depend on the output of the preceding iteration (i.e. when i = 5);

otherwise, the iterations are independent.

There are two methods for distributing work to threads: a static method, and a dynamic method. With static distri-

bution, all threads are initialized prior to speculative execution—for example, by specifying a round-robin assignment

of epochs for the next speculative region. With dynamic creation, each speculative thread initializes the next; this

approach is more tolerant of load imbalance between epochs than the static approach. The dynamic approach is also

advantageous when the number of available processors is constantly changing, (e.g. in a multiprogramming environ-

ment): the dynamic approach can more easily adapt to this situation by growing or shrinking the number of threads to

match the available resources.

Figure 2.3(b) illustrates the dynamic model through a simple loop. Each epoch creates the next through a lightweight

12

i = 0;
do {

x[i] = x[y[i]];
i++;

} while (i < x[i]);

(a) A simple do-while loop
with unknown bounds.

my i = 0;
start(my i):

td = lightweight fork(&start, my i + 1);
x[my i] = x[y[my i]];
if(cancelled()) {

/* Cascade the cancel to subsequent threads: */
cancel thread(td);
end thread();

}
attempt commit();
my i++;
if(my i < x[my i]) {

end thread();
}
/* Cancel extra loop iterations and continue: */
cancel thread(td);
i = my i;

(b) Speculative version with cancelling.

Figure 2.4. Interface for cancelling superfluous epochs.

fork operation, performs its speculative work, and then attempts to commit its speculative modifications to memory.

The lightweight fork returns a thread descriptor (td) which serves as a handle on the next thread.

Stacks

A key design issue is the management of references to the stack. A naive implementation would maintain a single

stack pointer (shared among all epochs) and a stack in memory that is kept consistent by the underlying data depen-

dence tracking hardware. The problem with this approach is that speculation would fail frequently and unnecessarily:

for example, whenever multiple epochs store values to the same location on the stack. These dependence violations

would effectively serialize execution. In addition, whenever the stack pointer is modified, the new value must be for-

warded to all successive epochs. An alternative approach is to create a separate stacklet [30] for each epoch to hold

local variables, spilled register values, return addresses, and other procedure linkage information. These stacklets are

created at the beginning of the program, assigned to each of the participating processors, and re-used by the dynamic

threads. The stacklet approach allows each epoch to perform stack operations independently, allowing speculation to

proceed unhindered.

Epoch Cancellation

To speculatively parallelize certain code structures we require support for control speculation. For example, a

while loop with an unknown termination condition can be speculatively parallelized, but superfluous epochs beyond

the correct termination of the loop may be created. For correct execution we require the ability to cancel any such

13

i = 0;
while (++i < N) {

x[i] = x[y[i]];
}

(a) Original code.

my i = 0;
start(my i):

if(++my i < N) {
td = lightweight fork(&start, my i);
x[my i] = x[y[my i]];
wait for homefree token();
commit speculative writes();
pass homefree token(td);
end thread();

}
/* Falls through after last iteration: */
i = my i;

(b) Threaded code.

Figure 2.5. Interface for passing the homefree token.

superfluous epochs. Figure 2.4(a) shows a while loop with an unknown ending condition, and Figure 2.4(b) shows

the speculatively-parallelized version of the loop with support for cancelling superfluous epochs. Each speculative

context provides a flag that indicates whether the current epoch has been cancelled. Any epoch that is cancelled

also cancels its child epoch if one exists.2 In contrast to an epoch that suffers a violation, a cancelled epoch is not

re-executed by the run-time system.

Homefree Token

We cannot determine whether speculation has succeeded for the current epoch until all previous epochs have made

their speculative modifications visible to memory—hence the act of committing speculative modifications to memory

must be serialized. Two unattractive options would be 1) for a central entity to maintain the ordering of the active

epochs, or 2) to broadcast to all processors any changes in the allocation of epoch numbers. A more efficient approach

is to directly pass an explicit token—which we call the homefree token—from the logically-earliest epoch to its suc-

cessor when it commits and makes all of its speculative modifications visible to memory. Receipt of the homefree

token indicates that the current epoch has no predecessors, and hence is no longer speculative.

Figure 2.5 illustrates how the attempt commit operation can be implemented by waiting for the homefree

token, committing speculative modifications to memory, and then passing the homefree token directly to the next

epoch—thereby avoiding the need for central coordination. This homefree token mechanism is simply a form of

producer/consumer synchronization and hence can be implemented using normal synchronization primitives. One

option is to perform homefree synchronization at the user level through regular shared memory, without differentiating

the homefree token from other synchronization objects. Another option is to make the homefree token visible to

2Another option is to interrupt and terminate the epoch, rather than poll a flag.

14

thread descriptor spawn(start address): Creates a new thread which begins execution at the start address given.
A thread descriptor is returned which can be used to refer to the thread in future calls—if no processor is able to enqueue
this request for a new thread then a thread descriptor of zero is returned. A speculative context including a stacklet is also
allocated for the new thread, and the contents of the forwarding frame are copied to the new thread’s forwarding frame.

void end thread(): Terminates execution of the current thread, frees its resources, frees its stack (unless it was saved), and
invalidates any uncommitted speculative modifications.

error code cancel thread(thread descriptor): Locates the specified thread and delivers a cancel signal to it. If
the thread has registered a cancel handler, the thread asynchronously jumps to it. If not, then the thread is terminated. If the
specified thread does not exist then this instruction is treated as a no-op.

error code violate thread(thread descriptor): Notifies the specified thread of a violation—if the thread de-
scriptor is null or invalid then this is a no-op.

sp save sp(): Returns the current stack pointer and marks it so that the stacklet is not freed when the thread ends.

void restore sp(sp): Frees the current stacklet and sets the stack pointer to the value provided.

Figure 2.6. TLS instructions for thread and stack management.

hardware so that hardware can react immediately to its arrival. For now, our software interface defers this decision and

assumes that the underlying run-time system provides the necessary synchronized behavior. We will evaluate these

alternatives later in Chapter 3.7.5.

Value Forwarding

There are often variables that are, at compile time, provably dependent between epochs: for example, a local

scalar that is both used and defined every epoch. There are two options when such cases arise. First, the compiler

could allocate the variable in memory which would then cause dependence violations between all consecutive epochs.

Second, the compiler could synchronize and forward that variable between consecutive epochs, avoiding dependence

violations. In our approach, the compiler allocates forwarded variables on a special portion of the stack called the

forwarding frame; the forwarding frame supports the communication of values between epochs, and synchronizes the

accesses to these variables. The forwarding frame is defined by a base-address within the stack frame and an offset

from that base address; this way, any regular load or store to an address within the predefined forwarding frame address

range can be treated appropriately. The address range of the forwarding frame is defined through the software interface

at the beginning of every speculative region. Accesses to the forwarding frame are exempt from the data dependence

tracking mechanisms of the underlying hardware.

15

void set sequence number(sequence number): Sets the sequence number of the current thread to create a partial
ordering in relation to other speculative threads.

void become speculative(): Informs the processor that subsequent memory references should be treated as speculative;
if the homefree token has already arrived then this is a no-op. If a violation occurs during speculation then the processor
discards all speculative modifications, returns to the address of this become speculative() instruction, and restarts
execution.

void wait for homefree token(): Blocks a thread until it receives the homefree token. If the homefree token is already
held then this is treated as a no-op.

void commit speculative writes(): This blocking instruction makes buffered speculative modifications visible to all
other speculative threads before returning.

void pass homefree token(thread descriptor): This instruction passes the homefree token to the specified thread.

Figure 2.7. TLS instructions for speculation management.

void set forwarding frame(forward struct address): Sets the base address of the forwarding frame (within the
stack frame) When used in combination with set forwarding size, this specifies a portion of the stack to be copied to the
child epoch upon a spawn, as well as individual locations to be forwarded mid-epoch.

void set forwarding size(size): Specifies the size of the forwarding frame (as measured from the base address pro-
vided by the set forwarding frame instruction).

void wait for value(offset): Causes the current thread to block until it receives a value at the specified offset in the
forwarding frame.

void send value(thread descriptor,offset): Send the scalar value from the specified location within the forward-
ing frame to the specified thread. The receiving thread will wake up if it is waiting for that value, and will not block should
it subsequently attempt to wait for that value.

Figure 2.8. TLS instructions for value forwarding.

16

2.3.2 TLS Instructions

We now describe the software interface to TLS hardware support. The goal of this design is to provide the necessary

interface to hardware while permitting the exploration of implementation alternatives. For this reason we decompose

all TLS events to their component parts and assign a new TLS instruction to each part.

Instructions for Managing Threads and Stacks

A TLS program requires the ability to create speculative threads. In our approach, we are primarily concerned

with providing concurrency at a very low cost—hence we implement a lightweight fork instruction called a spawn.

A spawn instruction creates a new thread which begins execution at the start address (PC) given, and is initialized

through a copy of the current thread’s forwarding frame; a thread descriptor for the child thread is returned as a

handle. When its speculative work is complete, a thread is terminated by the end thread instruction. Rather

than require software to be aware of the number of available speculative contexts (eg., processors), the semantics

of the spawn primitive are such that it may fail: failure is indicated by a returned thread-descriptor value of zero.

Whenever a spawn fails, the speculative thread that attempted the spawn simply executes the next epoch itself. This

method allows speculative threads to grow to consume all of the available processing resources without creating an

unmanageable explosion of threads.

The cancel thread and violate thread primitives allow an epoch to cancel another epoch or trigger a

violation and recovery for another epoch, facilitating speculation on more than just data values, such as control spec-

ulation. There are also instructions for saving and restoring the stack pointer, and returning to the regular stack after

using stacklets during the speculative region.

Instructions for Managing Speculation

Within a speculative thread, software must first initialize speculative execution. The set sequence number

instruction allows software to specify an epoch number to hardware. After an epoch is created, it may perform non-

speculative memory accesses to initialize itself. Once this phase of execution is complete, the become speculative

instruction indicates that future memory references are speculative.

Several instructions manage the homefree token. It is created and passed by the wait for homefree token

and pass homefree token primitives, while the commit speculative writes primitive instructs hardware

17

for(i = 0; i < N; i++) {
S1;
x[i] = y[z[i]];
S2;

}

(a) A for loop with a possible depen-
dence.

struct forwarding frame {int i;} ff;
int my i = 0;
set forwarding frame(&ff);
set forwarding size(sizeof(struct forwarding frame));
ff.i = 0;

start:
my i = ff.i;
if(my i < N) {

ff.i = my i + 1;
td = spawn(&start);
set sequence number(my i);
become speculative();
S1;
x[my i] = y[z[my i]];
S2;
wait for homefree token();
commit speculative writes();
pass homefree token(td);
end thread();

}

(b) Transformed TLS code.

Figure 2.9. Threads in a basic for loop.

to make all speculative modifications visible to the memory system before returning. All three of these instructions

could potentially be combined into one instruction, but for now we keep them separate to maximize flexibility.

Instructions for Forwarding Values

There are four primitives that support the forwarding of values between epochs. First are two instructions that

are executed at the beginning of a speculative region to define the forwarding frame by giving its base address

and size. The other two instructions name a value to wait for or send by specifying an offset into the forwarding

frame. The send value primitive specifies the thread descriptor of the target epoch, and the location of the actual

value to be sent. These primitives implement fine-grained synchronization, since we synchronize on each individual

value (rather than waiting before the first use of any forwarded value and sending after the last definition of any for-

warded value). This granularity also allows the processor to issue instructions out-of-order with respect to a blocked

wait for value instruction. In particular, the wait for value instruction is also associated with a destination

register so that the corresponding load instruction (which actually loads the value from the forwarding frame) can be

blocked while other instructions are issued around it.

2.3.3 Examples

The instructions presented so far are sufficient to generate a broad class of TLS programs. Figure 2.9 shows an

example loop that has been speculatively parallelized using the new TLS instructions, and the illustration shows its

18

for(i = 0; i < f(i); i++) {
S1;
x[i] = x[y[i]];
S2;

}
S3;

(a) A for loop with an unknown ending con-
dition.

struct forwarding frame {int i;} ff;
int my i = 0;
if(my i < f(my i)) {

set forwarding frame(&ff);
set forwarding size(sizeof(struct forwarding frame));
ff.i = 0;

start:
my i = ff.i;
ff.i = my i + 1;
set cancel handler(&cancelled);
td = spawn(&start);
set sequence number(my i);
become speculative();
S1;
x[my i] = x[y[my i]];
S2;
my i++;
loop test = my i < f(my i);
wait for homefree token();
commit speculative writes();
if (loop test) {

pass homefree token(td);
end thread();

} else {
/* This was the last iteration. */
if(td != 0) {

/* Cancel subsequent threads: */
cancel epoch(td);

}
goto continue;

}
cancelled:

/* Cancel any more epochs if they exist
cancel thread(td);
end thread();

}
continue:

S3;

(b) Transformed for TLS.

Figure 2.10. Threads in a for loop with an unknown ending condition.

execution on a four processor multiprocessor. The variable i is updated and copied to the next epoch through the

forwarding frame at each spawn, and also serves as the epoch number which is set by the set sequence number

primitive. The code is constructed such that the spawn instruction may fail and the current speculative thread will

continue and execute the next epoch itself. The final speculative thread will branch around the outermost if construct,

wait to be homefree, and then continue to execute the code following the loop.

As described in Section 2.3.1, the bounds of a loop may not be known at compile time, and hence a program may

erroneously continue to speculate beyond the end of the loop. In this case the extra epochs are cancelled using the

cancel thread instruction once the end of the loop is known. Figure 2.10 shows how such a loop with unknown

bounds can be speculatively parallelized. In the example, the next iteration of the loop is always spawned, and extra

iterations are cancelled when the end of the loop is found.

19

for(i = 0; i < N; i++) {
S1;
x[i] = y[z[i]];
S2;

}

(a) A for loop with a possible depen-
dence.

struct forwarding frame {int i;} ff;
int my i = 0;
if(my i < f(my i)) {

set forwarding frame(&ff);
set forwarding size(sizeof(struct forwarding frame));
ff.i = 0;

start:
my i = ff.i;
if (my i < N) {

ff.i = my i + 1;
td = spawn(&start);
set sequence number(my i);
become speculative();
S1;
x[my i] = y[z[my i]];
S2;
wait for homefree token();
commit speculative writes();
if(td == 0) {

/* Spawn failed, re-use the thread: */
goto start;

} else {
pass homefree token(td);
end thread();

}
}
wait for homefree token();

(b) Transformed TLS code.

Figure 2.11. A loop that re-uses threads.

Figure 2.11 shows how we can cleverly code the speculative version of a loop so that an existing thread is re-used

whenever a spawn fails. If the spawn returns zero, then the spawn failed and the current thread goes on to execute

the next epoch itself.

Figure 2.12(a) illustrates two cross-epoch dependences: one that is ambiguous (through x) and one that is definite

(through v). Our TLS interface allows us to speculate on the ambiguous dependence while directly satisfying the

definite dependence through value forwarding. As shown in Figure 2.12(b), the array x is modified speculatively

while v is synchronized using the TLS instructions for forwarding values. Since both i and v are stored on the

forwarding frame, they have offsets of zero and one respectively. The entire forwarding frame is copied when each

epoch is spawned, initializing each epoch with the proper value of i.

After speculatively updating x, each epoch must synchronize and update v. The wait for value primitive stalls

the execution of all loads from the forwarding frame at the offset specified, and the pipeline logic also stalls any further

indirectly-dependent instructions. Once the value of v is produced by the previous thread, the wait for value

instruction unblocks and the value of v is loaded from the forwarding frame. The variable v is then updated, stored

20

for(i = 0; i < N; i++) {
S1;
x[i] = y[z[i]];
S2;
v += z[i];
S3;

}

(a) A for loop with both definite and
ambiguous dependences.

struct forwarding frame {
int i; /* offset 0 */
int v; /* offset sizeof(int) */

} ff;
int my i = 0;
int my v = 0;
set forwarding frame(&ff);
set forwarding size(sizeof(struct forwarding frame));
ff.i = 0;
ff.v = 0;

start:
my i = ff.i;
if (my i < N) {

ff.i = my i + 1;
td = spawn(&start);
set sequence number(my i);
become speculative();
S1;
x[my i] = y[z[my i]];
S2;
wait for value(sizeof(int));
my v = ff.v;
my v += z[i];
ff.v = my v;
send value(td,sizeof(int));
S3;
wait for homefree token();
commit speculative writes();
pass homefree token(td);
end thread();

}
wait for homefree token();

(b) Transformed TLS code.

Figure 2.12. A loop requiring forwarding.

21

back to the forwarding frame, and then the next epoch is sent the updated value. The send value instruction must

not be issued out-of-order with respect to the updated definition of the variable v, hence it references v as a parameter

to create a dependence.

2.4 Compiler Support

In contrast with hardware-only approaches to TLS, we rely on the compiler to define where and how to speculate.

Our compiler infrastructure is based on the Stanford SUIF 1.3 compiler system [67] which operates on C code. For

Fortran applications, the source files are first converted to C using sf2c, and then converted to SUIF format. Our

infrastructure performs the following phases when compiling an application to exploit TLS.

Deciding Where to Speculate

One of the most important tasks in a thread-speculative system is deciding which portions of code to speculatively

parallelize [14]. For the evaluations in this dissertation, the compiler uses profile information to decide which loops

in a program to speculatively parallelize—a thorough treatment of this issue is beyond the scope of this dissertation.

We limit our focus to loops for two reasons: first, loops comprise a significant portion of execution time (coverage)

and hence can impact overall program performance; second, loops are fairly regular and predictable, hence it is

straightforward to transform loop iterations into epochs. Investigation of the impact of parallelizing regions other than

loops is also beyond the scope of this dissertation.

The following gives a basic description of the loop selection process used to compile benchmark applications.

The first step is to measure every loop in every benchmark application by instrumenting the start and end of each

potential speculative region (loop) and epoch (iteration). Second, we filter the loops to only consider those that meet

the following criteria:

• the coverage (fraction of dynamic execution) is more than 0.1% of execution time;

• there is more than one iteration per invocation (on average);

• the number of instructions per iteration is less than 16000 (on average);

• the total number of instructions per loop invocation is greater than 30 (on average);

22

• it does not contain a call to alloca(), which would interfere with stack management.

The purpose of this initial filtering is to remove from consideration those loops that are unlikely to contribute to

improved performance.

In the third step, we unroll each loop by factors of 1 (no unrolling), 2, 4, and 8, generating several versions of each

benchmark to measure. Next we measure the expected performance of each loop and unrolling when run speculatively

in parallel using detailed simulation (see Section 2.5.2) on our baseline hardware support for TLS (see Chapter 3), and

select loops in two different ways for the purposes of evaluating our hardware support. The first way is to maximize

performance, where we select the loops that contribute the greatest performance gain—we will refer to this as the select

version of the benchmarks. The second way is to maximize coverage, where we greedily select loops that represent

the largest fraction of execution time, regardless of performance—we will refer to this as the max-coverage version of

the benchmarks. In both cases the best performing unrolling factor is used for each loop, and chosen independently

for the sequential and speculative versions of each application.

Transforming to Exploit TLS

Once speculative regions are chosen, the compiler inserts the TLS instructions (described in Section 2.3.2) that

interact with hardware to create and manage the speculative threads and forward values.

Optimization

Without optimization, execution can be unnecessarily serialized by synchronization (through wait and signal

operations). A pathological case is a “for” loop in the C language where the loop counter is used at the beginning

of the loop and then incremented at the end of the loop—if the loop counter is synchronized and forwarded then the

loop will be serialized. However, scheduling can be used to move the wait and signal closer to each other, thereby

reducing this critical path. Our compiler schedules these critical paths by first identifying the computation chain

leading to each signal, and then using a dataflow analysis which extends the algorithm developed by Knoop [40] to

schedule that code in the earliest safe location. We can do even better for any loop induction variable that is a linear

function of the loop index; the scheduler hoists the associated code to the top of the epoch and computes that value

locally from the loop index, avoiding any extra synchronization altogether. These optimizations have a large impact

on performance [76], as we show later in Chapter 5.

23

Table 2.1. Benchmark descriptions and inputs used.
Benchmark Description Input

SP
E

C
In

t2
00

0
BZIP2 compression reduced input: ./bzip2.c 1
CRAFTY chess board solver test input
GAP group theory interpreter test input
GCC compiler test input
GZIP compression test input
MCF combinatorial optimization test input
PARSER natural language parsing test input
PERLBMK perl interpreter subset of test input (avoiding fork())
TWOLF place and route for standard cells test input
VORTEX OO database test input
VPR place and route for FPGAs place portion of test input

SP
E

C
fp

20
00

AMMP models molecular dynamics test input
ART thermal image recognition with a neural network test input
BUK ∗ bucket sort 4MB
EQUAKE simulates an earthquake using an unstructured mesh test input
MESA an OpenGL work-alike library test input
MGRID computational fluid dynamics multigrid solver test input

SP
E

C
in

t9
5

COMPRESS compression/decompression test input
GCC compiler test input
GO game playing, AI, plays against itself test input
IJPEG image processing train input
LI lisp interpreter test input
M88KSIM microprocessor simulator train input
PERL perl interpreter primes.pl from test input
VORTEX OO database test input

Code Generation

Our compiler outputs C source code which encodes our new TLS instructions as in-line MIPS assembly code using

gcc’s “asm” statements. This source code is then compiled with gcc v2.95.2 using the “-O3” flag to produce

optimized, fully-functional MIPS binaries containing new TLS instructions.

2.5 Experimental Framework

In this section we describe and analyze the benchmark applications (compiled as described in Section 2.4) and

simulation infrastructure that are used throughout this dissertation to evaluate our scheme for TLS.

2.5.1 Benchmarks

We evaluate our support for TLS using all of the SPECint95, SPECint2000, and SPECfp2000 benchmarks [16]

with the following exceptions: EON, which is written in C++ and not supported by SUIF; GALGEL, FACEREC, LUCAS,

and FMA3D which are written in Fortran90 and not supported by SUIF; and WUPWISE, APPLU, SIXTRACK, SWIM,

and APSI for which SUIF compilation fails. Note that we also evaluate the BUK application from the NAS-Parallel

24

Table 2.2. Truncation of benchmark execution.

Ended Instructions
Benchmark Starting Point Description of Skipped Code Early? Simulated

SP
E

C
In

t2
00

0

BZIP2 spec.c:306 init y 334.3M
CRAFTY main.c:2022 arg parsing, config parsing, init y 351.6M
GAP gap.c:188 init y 258.8M
GCC toplev.c:3917 argument parsing, setting up register sets y 1040.9M
GZIP gzip.c:293 arg parsing, init y 446.9M
MCF none (reading input coupled with intense computation) n 300.7M
PARSER main.c:1839 arg parsing, random init y 599.8M
PERLBMK unix perlmain.c:49 init n 41.6M
TWOLF main.c:89 input file reading n 276.7M
VORTEX bmt0.c:512 command parsing and initialization y 1007.6M
VPR main.c:178 arg parsing, init y 536.2M

SP
E

C
fp

20
00

AMMP ammp.c:141 variable init y 256.7M
ART scanner.c:1160 argument parsing, reading input y 385.6M
BUK ∗ none - n 51.3M
EQUAKE quake.c:244 memory init, reading input n 742.6M
MESA mesa4.c:486 argument parsing, GL init, reading mesh y 1015.7M
MGRID mgrid.f:68 setup routine y 696.5M

SP
E

C
In

t9
5

COMPRESS harness.c:232 generation of input data set n 3.6M
GCC toplev.c:3483 argument parsing, setting up register sets y 1018.3M
GO g2.c:414 init up to file reading y 1028.5M
IJPEG none (command execution mixed in with argument parsing) y 637.0M
LI xlisp.c:41 init stuff, init file reading and processing y 747.1M
M88KSIM main.c:234 init up to file reading n 172.5M
PERL none (input script parsing is really part of perl—nothing to skip) n 12.4M
VORTEX bmt0.c:512 command parsing and initialization y 1008.9M

benchmark suite [6]. A brief description of each benchmark and the input data set used is given in Table 2.1. To

maintain reasonable simulation times, we use the test input set for most benchmarks; for PERLBMK we have modified

the test input to avoid calls to fork(), and we have reduced the BUK application to its kernel, removing the data set

generation and verification code.

To maintain reasonable simulation time, we truncate the execution of each benchmark as described in Table 2.2. For

all appropriate benchmarks we also skip the initialization portion of execution and begin simulation with a “warmed-

up” memory system, loaded from a pre-saved snapshot. For each benchmark we simulate up to the first billion

instructions. Since the sequential and TLS versions of each benchmark are compiled differently, the compiler instru-

ments them to ensure that they terminate at the same point in their executions relative to the source code so that the

executions are comparable.

Table 2.3 shows an analysis of the select benchmark versions. In two cases, GZIP and PERL, the region selection al-

gorithm has opted to select no regions at all. For the remaining integer benchmarks, coverage (the portion of dynamic

25

Table 2.3. Statistics for the select benchmark versions.
Portion Average Average

of Dynamic Number Epoch Number
Execution of Unique Size of Epochs

Application Parallelized Parallelized (dynamic Per Dynamic
Name (Coverage) Regions insts) Region Instance

SP
E

C
In

t2
00

0

BZIP2 45.0% 4 1089.2 45876.4
GCC 18.0% 44 316.1 62.9
CRAFTY 9.7% 6 5188.3 6.0
GAP 10.0% 1 374.1 2.6
GZIP 0.0% 0 0.0 0.0
MCF 41.0% 6 602.8 552.2
PARSER 18.0% 11 392.0 456.4
PERLBMK 17.8% 4 90.2 298.8
TWOLF 20.6% 6 167.5 10.6
VORTEX 4.2% 4 2718.1 14.7
VPR 70.2% 2 182.0 6.4

SP
E

C
fp

20
00

AMMP 68.3% 1 489.9 11.2
ART 58.4% 7 176.4 2403.8
BUK ∗ 49.7% 2 94.0 8192.0
EQUAKE 32.3% 4 723.5 2087.6
MESA 35.4% 3 291.4 41043.0
MGRID 83.4% 5 3422.3 18.2

SP
E

C
in

t9
5

GCC 15.6% 35 314.8 61.0
COMPRESS 39.3% 1 42.0 539.0
GO 21.2% 21 428.9 41.5
IJPEG 93.3% 16 1546.5 15.6
LI 0.5% 1 94.7 50.8
M88KSIM 61.5% 6 813.8 66.2
PERL 0.0% 0 0.0 0.0
VORTEX 4.3% 4 8557.9 14.6

26

execution of the sequential version that is speculatively parallelized) ranges from 0.5% to 93.3%, and averages 28.8%.

Many of these applications spend significant time in regions of code other than loops (for example in recursion); con-

sideration of speculative regions other than loops is beyond the scope of this thesis. For the floating-point benchmarks,

which tend to be dominated by loops, coverage ranges from 37.8% to 99.4%. For some benchmarks, good coverage is

achieved by selecting several significant loops, such as for EQUAKE which has a coverage of 86.1% through 8 different

selected loops. In contrast, VPR has a coverage of 70.2% through only 2 unique loops. The SPECint2000 version of

GCC has 44 loops selected, but a coverage of merely 18.0%.

Epoch size is another important characteristic. If epochs are too small, the overheads of speculative parallelization

will be overwhelming. If epochs are too large, then they will likely be dependent, or we may not have enough buffer

space to hold all of the speculative state. Table 2.3 indicates a wide range of average epoch sizes for the selected

regions, from just 42.0 dynamic instructions in COMPRESS to over 8 thousand dynamic instructions in the SPECint95

version of VORTEX. Over all benchmarks, the average number of dynamic instructions per epoch is 768.5, which

is quite large. However, the average number of epochs per dynamic region instance can be quite small for some

benchmarks: for example, 2.6 for GAP. On average, only 2 or 3 processors will be busy when speculating for GAP

TLS will have a minimal performance impact on applications for which coverage is low. For this reason, we also

use the max-coverage benchmark versions described in Section 2.4 which contain regions selected to maximize cov-

erage rather than performance. For the integer max-coverage benchmarks, coverage ranges from 13.9% to 99.5% and

averages 69.9%—a significant increase over the select benchmarks. Similarly, coverage for the floating point bench-

marks increases to an average of 93.5%. Average epoch size also increases to 16473.5 across all integer benchmarks

and 1176.1 across all floating point benchmarks. As we explore more advanced techniques for improving TLS perfor-

mance, it will be important to know whether techniques can improve the performance of the max-coverage benchmarks

and hence increase the overall impact of TLS.

Table 2.5 presents a comparison of TLS and sequential versions of the select benchmarks. Usually, the size of the

executable for the TLS version of an application is larger than that of the sequential version due to the addition of TLS

instructions and forwarding frame references—over all of the benchmarks the average increase in size is 6.5%, which

is reasonable. In some cases, the TLS version is actually smaller: this is caused by TLS instructions which hinder

certain optimizations that can increase code size. Dynamic loads and stores increase by 16.7% and 80.1% respectively,

27

Table 2.4. Statistics for the max-coverage benchmark versions.
Portion Average Average

of Dynamic Number Epoch Number
Execution of Unique Size of Epochs

Application Parallelized Parallelized (dynamic Per Dynamic
Name (Coverage) Regions insts) Region Instance

SP
E

C
In

t2
00

0

BZIP2 99.0% 9 761.1 49110.6
GCC 81.6% 107 1218.8 82.6
CRAFTY 35.2% 30 389.8 70.6
GAP 94.6% 5 282981.3 3.3
GZIP 39.6% 12 193.5 1754.0
MCF 61.3% 16 1413.9 864.5
PARSER 91.1% 57 2350.2 173.6
PERLBMK 32.2% 19 214.8 64.6
TWOLF 98.1% 24 2422.8 63.3
VORTEX 13.9% 6 3062.3 11.9
VPR 99.5% 1 3298.2 5785.5

SP
E

C
fp

20
00

AMMP 79.7% 6 222.3 81.0
ART 99.9% 18 371.9 2569.4
BUK ∗ 49.7% 2 94.0 8192.0
EQUAKE 85.3% 20 494.3 1382.5
MESA 96.9% 6 468.1 27369.5
MGRID 99.6% 8 4731.2 30.5

SP
E

C
in

t9
5

GCC 80.6% 98 1391.7 58.8
COMPRESS 97.9% 4 673.0 153.6
GO 93.8% 58 1686.4 16.8
IJPEG 95.9% 21 2942.1 13.4
LI 58.6% 1 2587.4 1.0
M88KSIM 96.0% 3 1851.6 6171.4
PERL 44.7% 5 498.1 2.6
VORTEX 14.0% 6 3060.2 11.9

28

Table 2.5. Comparing TLS and sequential versions of the select benchmarks.
Increase Increase Increase Fraction Fraction

in Dynamic in Dynamic in Dynamic Dynamic Forwarding Dynamic TLS
Benchmark Executable Size Loads Stores Frame References Instructions

SP
E

C
In

t2
00

0

BZIP2 1.4% 4.2% 2.0% 8.8% 0.8%
GCC -0.1% 9.3% 22.6% 35.4% 4.2%
CRAFTY 2.7% 24.0% 194.3% 40.7% 5.6%
GAP -0.9% 8.7% 32.4% 36.1% 4.0%
MCF 31.7% 22.6% 65.3% 36.0% 8.6%
PARSER 2.2% 36.1% 757.9% 35.3% 2.4%
PERLBMK -0.3% 24.0% 314.1% 55.7% 9.4%
TWOLF 4.2% 24.1% 94.2% 51.2% 5.4%
VORTEX -0.8% 2.5% 7.0% 22.3% 1.9%
VPR 2.5% 13.6% 38.5% 21.7% 4.3%

SP
E

C
fp

20
00

AMMP 3.5% 4.0% 3.6% 19.1% 0.8%
ART 42.2% 51.1% 194.0% 38.9% 5.5%
BUK ∗ 0.6% -11.0% 18.5% 25.8% 3.2%
EQUAKE 35.6% 6.7% 39.4% 8.9% 0.7%
MESA 3.2% 15.4% -5.1% 32.7% 9.3%
MGRID 14.2% -0.5% -29.7% 0 0.1%

SP
E

C
in

t9
5

GCC 2.9% 11.5% 26.2% 34.3% 4.1%
COMPRESS 10.6% 75.1% -2.9% 78.5% 5.9%
GO 0.9% 1.5% 14.4% 20.3% 2.7%
IJPEG -7.8% 1.0% -5.5% 33.7% 2.7%
LI -0.2% 25.0% 33.9% 21.0% 5.5%
M88KSIM 1.6% 20.8% 34.1% 53.2% 3.1%
VORTEX -3.0% 2.5% 7.0% 22.3% 1.8%

on average: this increase is significant, and is due partly to the hindrance of optimizations, and partly due to turning

register-allocated variables into references to the forwarding frame. For some benchmarks the increase in stores can

be quite large: as high as 757.9% for PARSER. A back-end which is designed specifically for TLS would be able to

produce code that is significantly more efficient. Within speculative regions across all benchmarks, forwarding frame

references account for 30.7% of all memory references, and TLS instructions account for 3.9% of all instructions.

As described in Section 2.4, the region selection algorithm also selects an unrolling for each selected loop. Fig-

ure 2.13 visualizes the unrollings selected for the select benchmark versions. The floating-point benchmarks favor

larger unrollings since they tend to have smaller, more regular loops. Comparing the sequential and TLS versions

we see that the unrollings chosen are quite different, and not necessarily larger for either version. For the sequential

versions, an average of 40.9% of loops are not unrolled (an unrolling of one), while for the TLS versions an average

of 34.5% of loops are not unrolled, indicating that TLS favors unrolling. Figure 2.14 shows whether the unrollings

chosen differ between the sequential and TLS versions of each benchmark. Across all of the benchmarks, an average

of 57.5% of selected loops have differing unrollings.

29

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
U

n
ro

lli
n

g
s

S B

bzip
2

S B

gcc
S B

cr
af

ty
S B

gap
S B

m
cf

S B

par
se

r
S B

per
lb

m
k

S B

tw
olf

S B

vo
rte

x
S B

vp
r

1
2
4
8

(a) SPECint2000.

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
U

n
ro

lli
n

g
s

S B

am
m

p
S B

ar
t

S B

buk
S B

eq
uak

e
S B

m
es

a
S B

m
grid

S B

sw
im

1
2
4
8

(b) SPECfp2000.

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
U

n
ro

lli
n

g
s

S B

gcc
S B

co
m

pre
ss

S B

go
S B

ijp
eg

S B
li

S B

m
88

ks
im

S B

vo
rte

x

1
2
4
8

(c) SPECint95.

Figure 2.13. Breakdown of unrollings used in the select benchmarks. S is the sequential version and B is the baseline TLS
version

30

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
U

n
ro

lli
n

g
s

bzip
2

gcc

cr
af

ty
gap m

cf

par
se

r

per
lb

m
k

tw
olf

vo
rte

x
vp

r

same

diff

(a) SPECint2000.

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
U

n
ro

lli
n

g
s

am
m

p ar
t

buk

eq
uak

e
m

es
a

m
grid

sw
im

same

diff

(b) SPECfp2000.

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
o

f
U

n
ro

lli
n

g
s

gcc

co
m

pre
ss go

ijp
eg li

m
88

ks
im

vo
rte

x

same

diff

(c) SPECint95.

Figure 2.14. Comparing the sequential and TLS versions of the select benchmarks, this graph shows the fraction of the
unrollings used that are the same or different.

31

a.out

MINT+

time

engine

single-CPI

dependence
checker manager

(a) Simple model.

MINT+

epoch_trace_manager epoch_trace_manager

trace_manager

epoch_scheduler

ifetcher

reorder_buffer

dref_handler iref_handler

CPU

ifetcher

reorder_buffer

dref_handler iref_handler

CPU

dcache icache

unified_cache

dcache icache

unified_cache

DSM

a.out

entire_mem_system

(b) Detailed model.

Figure 2.15. Simulation Models.

For the remainder of the dissertation, we will only analyze a subset of the SPEC benchmarks. We do not study

SPECint2000:GZIP or SPECint95:PERL in the select version of the benchmarks since there were no regions selected

for those benchmarks. Finally, both GCC and VORTEX appear in both SPECint95 and SPECint2000, so we only use

the more recent version.

2.5.2 Simulation Models

We evaluate the potential of our approach to TLS using a simple machine model that is built on top of the

MINT+ [72] MIPS emulator, as shown in Figure 2.15(a). It models a four-processor TLS machine where each instruc-

tion takes a single cycle to execute (a.k.a. single-CPI), and there is no communication latency between processors.

This simple model provides an idealized dependence checker and a basic timing model that is easy to understand and

32

Table 2.6. Simulation parameters.

Pipeline Parameters

Issue Width 4
Functional Units 2 Int, 2 FP, 1 Mem, 1 Branch
Reorder Buffer Size 128
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction GShare (16KB, 8 history bits)

Memory Parameters

Cache Line Size 32B
Instruction Cache 32KB, 4-way set-assoc
Data Cache 32KB, 2-way set-assoc, 2 banks
Unified Secondary Cache 2MB, 4-way set-assoc, 4 banks
Miss Handlers 16 for data, 2 for insts
Crossbar Interconnect 8B per cycle per bank
Minimum Miss Latency to 10 cycles
Secondary Cache
Minimum Miss Latency to 75 cycles
Local Memory
Main Memory Bandwidth 1 access per 20 cycles

provides a clear perspective on key issues.

We also evaluate our approach using a detailed model—built upon the MINT+ [72] MIPS emulator as well—that

simulates 4-way issue, out-of-order, superscalar processors similar to the MIPS R10000 [75] but with more modern

structure sizes (i.e. a 128 entry reorder buffer, larger caches etc.). As illustrated in Figure 2.15(b), MINT+ is used to

generate a trace of instructions which are then broken into parallel traces and buffered. In this multithreaded simulator,

each CPU has an instruction fetcher and pools of memory reference handlers, as well as its own physically private data

and instruction caches, connected to a unified second level cache by a crossbar switch. Register renaming, the reorder

buffer, branch prediction, instruction fetching, branching penalties, and the memory hierarchy (including bandwidth

and contention) are all modeled, and are parameterized as shown in Table 2.6. In the underlying memory system, to

avoid the implementation and simulation overhead of time-outs and re-tries, cache coherence is modeled by performing

each action globally and atomically, but then modeling the latency and contention of the coherence messages for the

action so that it does not complete until after an appropriate delay. The performance of this coherence model is

somewhat optimistic in that it avoids certain conflicts between two processors which may lead to occasional failure

and re-try of requests in a real multiprocessor, which would incur a greater latency than we model; however, this

impact should be small since such events are relatively rare. For some experiments, a distributed shared memory

(DSM) network is modeled where each cache line is assigned a home memory module in a round-robin fashion across

all nodes in the simulated system.

There are two ways in which this detailed model is inaccurate, since the performance model does not directly control

the fetch and execute operation of the underlying MINT+ emulator.3 First, we do not have the ability to simulate the

3An example of a more recent simulation infrastructure where the performance model directly controls fetch and execute is the ASIM [21]
framework and the underlying AINT feeder.

33

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 98
.0

bzip
2

78
.4

gcc

27
.7

co
m

pre
ss

65
.2

cr
af

ty
82

.5
gap

71
.2

go

43
.3

ijp
eg

73
.1

li

30
.4

m
88

ks
im

89
.9

m
cf

34
.1

par
se

r

46
.5

per
lb

m
k

35
.5

tw
olf

63
.6

vo
rte

x

45
.4

vp
r

(a) Region execution time.

|0

|50

|100

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 10
1.

1

bzip
2

98
.2

gcc

54
.1

co
m

pre
ss

10
0.

8

cr
af

ty

99
.6

gap

96
.7

go

47
.3

ijp
eg

10
2.

9

li

59
.5

m
88

ks
im

95
.6

m
cf

85
.7

par
se

r

92
.7

per
lb

m
k

10
9.

1

tw
olf

99
.2

vo
rte

x

63
.3

vp
r

(b) Program execution time.

Figure 2.16. Improvement in (a) region and (b) program execution time of the TLS version of the select benchmarks, according
to the simple simulator.

exact mispredicted path—instead, we execute the correct path and flush the pipeline when the mispredicted branch is

resolved, then re-execute the correct path again. Second, we do not model “overshoot” for while loops: this is the case

when extra epochs beyond the end of a while loop are spawned and later cancelled when they are deemed unnecessary.

It is not clear whether simulated TLS performance benefits or suffers from these inaccuracies.

2.6 Potential Performance

Before we delve into the design and implementation of hardware support for TLS in the next chapter, we first

want to understand the potential performance benefits of the applications we have speculatively parallelized. Using

34

the simple model described in Section 2.5.2, we model four single-issue processors and exact dependence tracking

between speculative threads. In this model, any read-after-write dependence through memory between epochs causes

the offending epoch and all logically-later epochs to be violated and restarted immediately—other dependences, such

as write-after-write, do not cause violations. Values that are explicitly synchronized through the forwarding frame

mechanism are communicated instantly.

Figure 2.16(a) shows the execution time of the speculative regions of code, each normalized to that of the corre-

sponding sequential version. We observe that excellent region speedups are attainable for most applications. However,

considering the program coverage of these regions (which is small for some applications) reported in Table 2.3, the

resulting program speedups shown in Figure 2.16(b) are more modest. COMPRESS, IJPEG, M88KSIM, and VPR still

obtain significant speedup; MCF, PARSER, and PERL obtain modest speedup; and the remaining benchmarks are unaf-

fected due to low coverage. For LI and TWOLF performance is actually degraded slightly: speculative parallelization

has hindered compiler optimization in these cases. The challenge for a real hardware implementation of TLS sup-

port will be to approach these theoretical results, and perhaps to surpass them by further improving the efficiency of

speculative execution.

2.7 Summary

The purpose of this chapter has been to provide a background on thread-level speculation. We introduced our

software interface to TLS (through new instructions) and demonstrated its use. We also discussed the TLS compiler

and the benchmark applications to be used throughout this dissertation. Finally, we observed that TLS shows good

potential for improving the performance by automatically parallelizing sequential programs.

35

Chapter 3

Support for Thread-Level Speculation in a

Chip-Multiprocessor

The goal of this chapter is to design a unified mechanism for supporting thread-level speculation which can handle

arbitrary memory access patterns (i.e. not just array references) and which is appropriate for any scale of architecture

with parallel threads, including: simultaneous-multithreaded processors [70], chip-multiprocessors [55, 68], and more

traditional shared-memory multiprocessors of any size [47]. We evaluate chip-multiprocessor support in this chapter—

other scales are investigated later in Chapter 4.

3.1 Introduction

To support thread-level speculation, we must perform the difficult task of detecting data dependence violations

at run-time, which involves comparing load and store addresses that may have occurred out-of-order with respect

to the sequential execution. These comparisons are relatively straightforward for instruction-level data speculation

(i.e. within a single thread), since there are few load and store addresses to compare. For thread-level data specula-

tion, however, the task is more complicated since there are many more addresses to compare, and since the relative

interleaving of loads and stores from different threads is unknown until run time.

There are three possible ways to track data dependences at run time; for each option, a different entity is responsible

36

for detecting dependence violations. First, a third-party mechanism could observe all memory operations and ensure

that they are properly ordered—similar to the approach taken in the Wisconsin Multiscalar’s address resolution buffer

(ARB) [27, 65]. This centralized approach has the drawback of load hit latencies that are greater than one cycle [7]

which can hinder the performance of non-speculative workloads.1. Second, the producer could detect dependence

violations and notify the consumer. This approach requires the producer to be notified of all addresses consumed

by logically-later epochs, and for the producer to save all of this information until it completes. On every store, the

producer checks if a given address has been consumed by a logically-later epoch and if so notifies that epoch of the

dependence violation. This scheme has the drawback that the logically-earliest epoch must perform the detection—but

we want the logically-earliest epoch to proceed unhindered!

A third approach is to make consumers responsible for detecting data dependence violations—the producer reports

the locations that it has produced to the consumers, and the consumers track which locations have been speculatively

consumed. Our key insight is that this behavior is similar to that of an invalidation-based cache coherence scheme:

whenever a cache line is modified that has recently been read by another processor, an invalidation message is sent to

the cache that has a copy of the line. To extend this behavior to detect data dependence violations, we simply need

to track which locations have been speculatively loaded, and whenever a logically-earlier epoch modifies the same

location (as indicated by an arriving invalidation message), we know that a violation has occurred. Since invalidation-

based coherence already works at a variety of scales (chip-multiprocessors, simultaneously-multithreaded processors,

and larger-scale machines which use these multithreaded processors as building blocks), an approach that builds on

coherence should also work at those scales.

3.1.1 An Example

To illustrate the basic idea behind our scheme, consider an example of how it detects a read-after-write (RAW)

dependence violation. Recall that a given speculative load violates a RAW dependence if its memory location is

subsequently modified by another epoch such that the store should have preceded the load in the original sequential

program. As shown in Figure 3.1, the state of each cache line is augmented to indicate whether the cache line has

been speculatively loaded (SL) and/or speculatively modified (SM). Each cache maintains a logical timestamp (epoch

number) which indicates the sequential ordering of that epoch with respect to all other epochs, and a flag indicating

1Subsequent designs of the ARB were more distributed [7]

37

T T

SL SM

X = 1 −> 2

Epoch # = 5

become_speculative()

LOAD a = *p;
...

attempt_commit()

...

...

STORE *q = 2;

...

...

...

...

Upgrade Request
(epoch #5)

Read
Request

Epoch # = 6

T F

SL SM

X = 1
Speculatively

Speculatively
Loaded?

Modified?

L1 CacheL1 Cache

Epoch 5 Epoch 6

FAILS!

Violation!

6

3

4 2

5

1

Processor 1 Processor 2
(p = q = &X)

Figure 3.1. Using cache coherence to detect a RAW dependence violation.

whether a data dependence violation has occurred.

In the example, epoch 6 performs a speculative load, so the corresponding cache line is marked as speculatively

loaded. Epoch 5 then stores to that same cache line, generating an invalidation containing its epoch number. When the

invalidation is received, three things must be true for this to be a RAW dependence violation. First, the target cache line

of the invalidation must be present in the cache. Second, it must be marked as having been speculatively loaded. Third,

the epoch number associated with the invalidation must be from a logically-earlier epoch. Since all three conditions

are true in the example, a RAW dependence has been violated; and epoch 6 is notified. The full coherence scheme

presented in this chapter handles many other cases, but the overall concept is analogous to this example.

3.1.2 Potential Performance

Before we delve into the details of our design for hardware support for TLS, we first quantify the potential for

success of our scheme using the simple model described in Section 2.5.2. Table 3.1 presents some memory access

statistics for the select benchmarks, to determine whether the first-level data cache can feasibly be used as a speculative

buffer. We report the average and maximum number of unique words and unique 32 byte cache lines accessed by each

epoch. On average across all benchmarks, each epoch accesses 37.2 unique data words. However, five benchmarks

access more than 50 unique words per epoch on average. Hence the performance of these applications would likely be

hindered if we were to use only the load and store queues to buffer speculative modifications. Each epoch accesses only

38

Table 3.1. Memory Access Statistics.
Unique Accesses per Epoch

Word Granularity Line Granularity
Benchmark Average Maximum Average Maximum

BZIP2 20.8 126870.5 8.1 15867.7
GCC 15.7 68.1 8.6 34.5
COMPRESS 127.8 128.0 7.0 17.0
CRAFTY 51.6 99.8 3.4 63.4
GAP 11.9 157.0 8.0 76.0
GO 28.3 110.5 8.4 72.8
IJPEG 40.2 88.9 4.0 29.0
LI 9.2 124.0 7.3 54.0
M88KSIM 15.2 26.8 9.0 17.1
MCF 60.5 64.3 1.8 25.3
PARSER 30.5 119.6 1.5 70.0
PERLBMK 6.3 26.7 4.0 16.7
TWOLF 51.8 94.1 6.0 45.0
VORTEX 56.1 1826.9 9.1 496.4
VPR 29.4 70.4 6.2 35.9

|0

|20

|40

|60

|80

|100

 P
er

ce
n

ta
g

e
E

p
o

ch
s

V
io

la
te

d

W

24
.9

L

47
.3

N

47
.3

bzip
2

W

3.
6

L

3.
8

N

3.
8

gcc
W

0.
0

L

0.
0

N

0.
0

co
m

pre
ss

W

1.
4

L

2.
8

N

2.
8

cr
af

ty
W

0.
0

L

0.
0

N

0.
0

gap
W

26
.2

L

27
.6

N

27
.6

go
W

0.
9

L

1.
0

N

1.
0

ijp
eg

W

0.
1

L

2.
8

N

2.
8

li
W

0.
0

L

11
.7

N

11
.7

m
88

ks
im

W

13
.6

L

15
.0

N

15
.0

m
cf

W

0.
8

L

2.
8

N
2.

8

par
se

r
W

0.
0

L

0.
0

N

0.
0

per
lb

m
k

W

0.
1

L

0.
1

N

0.
1

tw
olf

W

2.
8

L

6.
8

N

6.
8

vo
rte

x
W

0.
0

L

9.
0

N

9.
0

vp
r

Figure 3.2. Percentage of epochs that are violated. W tracks true dependences at a word granularity, L tracks true depen-
dences at a cache line granularity, and N builds on L by dissallowing implicit forwarding.

6.2 unique cache lines on average across all benchmarks, indicating that the data accessed by the average epoch should

easily fit in a reasonable-sized first level data cache. For BZIP2 and VORTEX, the maximum number of unique cache

lines accessed is quite large, and hence the data accessed by some epochs may not fit entirely in the data cache—our

scheme must be able to handle this case.

To estimate the impact of tracking true data dependences more conservatively, Figure 3.2 shows the percentage of

epochs that are violated for three increasingly-conservative approaches to dependence tracking: at a word granularity;

at a cache line granularity; and at a cache line granularity when dissallowing implicit forwarding. Implicit forwarding

allows the result value of a speculative store to automatically propagate between properly-ordered epochs, and is

generally quite complex to implement for distributed dependence tracking mechanisms: speculative modifications

would have to be broadcast to all logically-later epochs, or an epoch would have to poll the caches of all logically-

39

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

W

98
.0

L

99
.1

bzip
2

W

78
.4

L

80
.0

gcc
W

27
.7

L
27

.7

co
m

pre
ss

W

65
.2

L

65
.9

cr
af

ty
W

82
.5

L

82
.5

gap
W

71
.2

L

77
.9

go
W

43
.3

L

43
.3

ijp
eg

W

73
.1

L

74
.8

li
W

30
.4

L

39
.4

m
88

ks
im

W

89
.9

L

91
.8

m
cf

W

34
.1

L

36
.8

par
se

r
W

46
.5

L

46
.5

per
lb

m
k

W

13
5.

5

L

13
5.

8

tw
olf

W

63
.6

L

63
.6

vo
rte

x
W

45
.4

L

51
.0

vp
r

(a) Region execution time.

|0

|50

|100

 N
o

rm
al

iz
ed

 P
ro

g
ra

m
 E

xe
cu

ti
o

n
 T

im
e

W

10
1.

1

L

10
1.

6

bzip
2

W

98
.2

L

98
.5

gcc
W

54
.1

L

54
.1

co
m

pre
ss

W

10
0.

8

L

10
0.

8

cr
af

ty
W

99
.6

L

99
.6

gap
W

96
.7

L

98
.2

go
W

47
.3

L

47
.4

ijp
eg

W

10
2.

9

L
10

2.
9

li
W

59
.6

L

65
.2

m
88

ks
im

W

95
.6

L

96
.6

m
cf

W

85
.7

L

86
.4

par
se

r
W

92
.7

L

92
.7

per
lb

m
k

W

10
9.

1

L

10
9.

1

tw
olf

W

99
.2

L

99
.2

vo
rte

x
W

63
.3

L

67
.4

vp
r

(b) Program execution time.

Figure 3.3. Improvement in (a) region and (b) program execution time of the TLS version of the select benchmarks, according
to the simple simulator—W tracks dependences at a word granularity, L tracks dependences at a cache line granularity.

earlier epochs for the most up-to-date value on every load. We evaluate the benefits of implicit forwarding for a

shared cache implementation later in Section 4.2.1). Many of the regions chosen for the select benchmarks suffer little

from failed speculation. For those that do, only two applications (BZIP2 and VORTEX) show a significant increase in

failed speculation when tracking true data dependences at a cache line granularity. None of the applications show a

significant increase in failed speculation when dissallowing implicit forwarding, indicating that such support may not

be worthwhile.

We also use the simple simulator described in Section 2.5.2 to estimate the potential improvement in execution

time. Figure 3.3(a) shows the potential performance impact of tracking true data dependences at both word and cache

line granularities. In most cases, we can greatly improve the performance of the regions of code that are speculatively

parallelized, and performance is nearly as good when tracking true data dependences at a cache line granularity. Only

BZIP2 and TWOLF perform poorly for this model. Figure 3.3(b) shows the impact on program performance, which is

significant for five of the applications and modest for two others. The remaining applications do not speed up under

this model, and TWOLF performs significantly worse. While these preliminary results are encouraging, the simple

40

simulator used so far does not model many important aspects of the underlying system—hence the the remainder of

this dissertation will only study detailed simulation

3.1.3 Related Work

While there are many approaches to hardware support for TLS [4, 13, 31, 33, 34, 41, 50, 56, 66, 69], there are few

that leverage the compiler while attempting to extend generic hardware. The following describes two closely-related

approaches.

Stanford Hydra

Similar to our approach, the Stanford Hydra architecture [34] adds memory disambiguation support to a general-

purpose, chip-multiprocessor (CMP), and uses software to manage threads and speculation. However, there are two

important distinctions between Hydra and our approach. First, each processor in a Hydra CMP has a special write-

buffer for speculative modifications, while our implementation of TLS uses the first-level caches to buffer speculative

state. Second, to ensure that data dependences are preserved, Hydra employs write-through coherence and snoops

these write buffers on every store, while our approach uses write-back coherence. While such an approach may be

perfectly reasonable within a single chip, it was not designed to scale to larger systems.

I-ACOMA

The Illinois I-ACOMA group has produced three approaches to hardware support for TLS. First, Zhang et al. [78]

proposed a form of TLS within large-scale NUMA multiprocessors. While this approach can potentially scale up to

large machine sizes, it has only been evaluated with matrix-based programs, and its success in handling pointer-based

codes has yet to be demonstrated. In addition, it does not appear to be a good choice for small-scale machines (e.g.,

within a single chip).

Second, Krishnan et al. [41] proposed support for TLS within a chip-multiprocessor (CMP). First, a binary an-

notation pass specifies where to speculate on inner loops, and it also analyzes register dependences. A memory

disambiguation table (MDT)—a fully associative list of tags and speculative state—is used to track data dependences,

and speculative modifications are stored in the write-back first-level data caches. A “synchronizing scoreboard”, a dis-

tributed and shared register communication mechanism designed specifically for TLS, is used to synchronize register

dependences.

41

���
�
���
�

C

P

������������������������
	�		�	
�

�

C

��

C

P

��������������������
������������

���
�
���
�

������������

���
�
���
�

������������

C

C

C C C

M

��
�

M

��
�

M

C

P

!!"
"
##$
$

%%&
&

C

''

C

P

(()
)
**+
+

,,-
-

.�./�/0�01�123

4�44�45�55�56�66�67�77�7889
9

C

C

C C C

M

::;
;

M M

<<=
=

>>

??@
@
A�AA�AB
B
C�CC�CD
D

EEF
F
GGH
H
IIJ
J

Interconnection Network

Physically
Private
Caches

Physically
Shared
Caches

Processor

Actions

External

Actions

KKL
L
MMN
N
OOP
P

Q�QQ�QR�RR�R

(a) General architecture.

External

Actions

PP

STSSTSU
U
VVW
W
XXY
Y

Processor

Actions
ZTZZTZ[
[
\\]
]
^^_
_

`T``T`aTaaTabTbbTbc
c
dde
e

ffg
g

hhii
i
jj
j

C C

P P

Shared Memory

(b) Simplified architecture.

Figure 3.4. Base architecture for the TLS coherence scheme.

Finally, Cintra et al. [12] have proposed using a hierarchy of MDTs to support TLS across a NUMA multiproces-

sor comprised of speculative chip-multiprocessors. While there are many subtle differences between our respective

approaches, perhaps the most striking difference is that their hardware enforces a hierarchical ordering of the threads,

with one level inside each speculative multiprocessor chip and another level across chips. In contrast, our scheme

separates ordering from physical location through explicit software-managed epoch numbers and integrates the track-

ing of dependence violations directly into cache coherence (which may or may not be implemented hierarchically);

hence consecutive epochs may be assigned to non-consecutive processors (although we only evaluate round-robin

assignment in this dissertation).

3.1.4 Overview

The remainder of this chapter is organized as follows. First, we describe and evaluate in detail the invalidation-

based cache coherence scheme for detecting dependence violations and buffering speculative state. Then, we propose

an implementation of this scheme and evaluate its performance and show that it does provide an efficient framework

for scalability. We then investigate the possibilities for further tuning our scheme, we evaluate the sensitivity of our

approach to various architectural parameters, and compare the performance of alternative implementations for various

mechanisms.

42

3.2 Coherence Scheme For Scalable TLS

3.2.1 Underlying Architecture

The goal of our coherence scheme is to be both general and scalable to any size of machine. We want the coher-

ence mechanism to be applicable to any combination of single-threaded or multithreaded processors within a shared-

memory multiprocessor (i.e. not restricted simply to chip-multiprocessors, etc.).

We assume that the shared-memory architecture supports an invalidation-based cache coherence scheme where all

hierarchies enforce the inclusion property. Figure 3.4(b) shows a generalization of the underlying architecture. There

may be a number of processors or perhaps only a single multithreaded processor, followed by an arbitrary number

of levels of physical caching. The level of interest is the first level where invalidation-based cache coherence begins,

which we refer to as the speculation level. We generalize the levels below the speculation level (i.e. further away from

the processors) as an interconnection network providing access to main memory with some arbitrary number of levels

of caching.

The amount of detail shown in Figure 3.4(a) is not necessary for the purposes of describing our cache coherence

scheme. Instead, Figure 3.4(b) shows a simplified model of the underlying architecture. The speculation level de-

scribed above happens to be a physically shared cache and is simply referred to from now on as “the cache”. Above

the caches, we have some number of processors, and below the caches we have an implementation of cache-coherent

shared memory.

Although coherence can be recursive, speculation only occurs at the speculation level. Above the speculation

level (i.e. closer to the processors), we maintain speculative state and buffer speculative modifications. Below the

speculation level (i.e. further from the processors), we simply propagate speculative coherence actions and enforce

inclusion.

3.2.2 Overview of Our Scheme

The remainder of this section provides a summary of the key features of our coherence scheme, which requires

the following key elements: (i) a notion of whether a cache line has been speculatively loaded and/or speculatively

modified; (ii) a guarantee that a speculative cache line will not be propagated to regular memory, and that speculation

will fail if a speculative cache line is replaced; and (iii) an ordering of all speculative memory references (provided by

43

State Description

I Invalid
E Exclusive
S Shared
D Dirty
SpE Speculative (SM and/or SL) and exclusive
SpS Speculative (SM and/or SL) and shared

(a) Cache line states.

Message Description

Read Read a cache line.
ReadEx Read-exclusive: return a copy of the cache

line with exclusive access.
Upgrade Upgrade-request: gain exclusive access to

a cache line that is already present.
Inv Invalidation.
Writeback Supply cache line and relinquish ownership.
Update Supply cache line but maintain ownership.
NotifyShared Notify that the cache line is now shared.

ReadExSp Read-exclusive-speculative: return cache
line, possibly with exclusive access.

UpgradeSp Upgrade-request-speculative: request exclusive
access to a cache line that is already present.

InvSp Invalidation-speculative: only invalidate
cache line if from a logically-earlier epoch.

Condition Description
=Shared The request has returned shared access.
=Excl The request has returned exclusive access.
=Later The request is from a logically-later epoch.
=Earlier The request is from a logically-earlier epoch.

(b) Coherence messages.

StoreSp:ReadExSp=Excl,
LoadSp:Read=Excl

StoreSp:ReadExSp=Shared
LoadSp:Read=Shared,

LoadSp,
StoreSp:UpgradeSp=Shared

StoreSp:UpgradeSp=Shared
LoadSp,

Store,
Load

LoadSp, StoreSp

StoreSpLoadSp,

Store

Load:Read=Excl

Load
Load

SpS

SpE

D

E
S

I

Store:Upgrade

StoreSp:UpgradeSp=Excl

StoreSp:UpgradeSp=Excl

Load:Read=Shared

LoadSp:Update, StoreSp:Update

Store

(c) Responses to processor events.

InvSp=Later,
NotifyShared

InvSp,
NotifyShared

InvSp:Flush
Read:flush,

InvSp

Inv

Inv

InvSp=Earlier, Inv

InvSp=Later

Inv:WriteBack

InvSp=Earlier, Inv

E

D

SpE

SpS

S I

Viol

(d) Responses to external coherence events.

Figure 3.5. Our coherence scheme for supporting thread-level speculation.

44

epoch numbers and the homefree token). The full details of the coherence scheme are available in the Appendix A.

3.2.3 Cache Line States

A cache line in a standard invalidation-based coherence scheme can be in one of the following states: invalid (I),

exclusive (E), shared (S), or dirty (D). The invalid state indicates that the cache line is no longer valid and should not

be used. The shared state denotes that the cache line is potentially cached in some other cache, while the exclusive

state indicates that this is the only cached copy. The dirty state denotes that the cache line has been modified and

must be written back to memory. When a processor attempts to write to a cache line, exclusive access must first be

obtained—if the line is not already in the exclusive state, invalidations must be sent to all other caches which contain

a copy of the line, thereby invalidating these copies.

To detect data dependences and to buffer speculative memory modifications, we extend the standard set of cache

line states as shown in Figure 3.5(a). For each cache line, we need to track whether it has been speculatively loaded

(SL) and/or speculatively modified (SM), in addition to exclusiveness. While our speculative coherence scheme does

track exactly this information, to ease its explanation for now we generalize both speculatively loaded and specula-

tively modified states as simply speculative; i.e., rather than enumerating all possible permutations of SL, SM, and

exclusiveness, we instead summarize by having two speculative states: speculative-exclusive (SpE) and speculative-

shared (SpS). The full details of the coherence scheme (without a generalization of cache-line states) are available in

the Appendix A.

For speculation to succeed, any cache line with a speculative state must remain in the cache until the corresponding

epoch becomes homefree. Speculative modifications may not be propagated to the rest of the memory hierarchy, and

cache lines that have been speculatively loaded must be tracked in order to detect whether data dependence violations

have occurred. If a speculative cache line must be replaced, then this is treated as a violation causing speculation to

fail and the epoch is re-executed—note that this will affect performance but neither correctness nor forward progress.

3.2.4 Coherence Messages

To support thread-level speculation, we also add the three new speculative coherence messages shown in Fig-

ure 3.5(b): read-exclusive-speculative, invalidation-speculative, and upgrade-request-speculative. These new specu-

lative messages behave similarly to their non-speculative counterparts except for two important distinctions. First, the

45

epoch number of the requester is piggybacked along with the messages so that the receiver can determine the logical

ordering between the requester and itself. Second, the speculative messages are only hints and do not compel a cache

to relinquish its copy of the line (whether or not it does is indicated by an acknowledgment message). Note that it is

possible to re-design the speculative coherence scheme so that speculative messages are not used—the performance

impact of this potential design is evaluated in Section 3.5.2.

3.2.5 Baseline Coherence Scheme

Our coherence scheme for supporting TLS is summarized by the two state transition diagrams shown in Fig-

ures 3.5(c) and 3.5(d). The former shows transitions in response to processor-initiated events (i.e. speculative and

non-speculative loads and stores), and the latter shows transitions in response to coherence messages from the external

memory system.

Let us first briefly summarize standard invalidation-based cache coherence. If a load suffers a miss, we issue a read

to the memory system; if a store misses, we issue a read-exclusive. If a store hits and the cache line is in the shared (S)

state, we issue an upgrade-request to obtain exclusive access. Note that read-exclusive and upgrade-request messages

are only sent down into the memory hierarchy by the cache; when the underlying coherence mechanism receives

such a message, it generates an invalidation message (which only travels up to the cache from the memory hierarchy)

for each cache containing a copy of the line to enforce exclusiveness. Having summarized standard coherence, the

following highlights key features of the extended coherence scheme to support TLS.

Key Features of the Speculative Coherence Scheme

When a speculative memory reference is issued, we transition to the speculative-exclusive (SpE) or speculative-

shared (SpS) state as appropriate. For a speculative load we set the SL flag, and for a speculative store we set the SM

flag. When a speculative load misses, we issue a normal read to the memory system. In contrast, when a speculative

store misses, we issue a read-exclusive-speculative containing the current epoch number. When a speculative store hits

and the cache line is in the shared (S) state, we issue an upgrade-request-speculative which also contains the current

epoch number.

When a cache line has been speculatively loaded (i.e. it is in either the SpE or SpS state with the SL flag set), it

is susceptible to a read-after-write (RAW) dependence violation. If a normal invalidation arrives for that line, then

46

speculation fails. In contrast, if an invalidation-speculative arrives, then a violation only occurs if it is from a logically-

earlier epoch (as determined by comparing the epoch numbers).

When a cache line is dirty, the cache owns the only up-to-date copy of the cache line and must preserve it. When a

speculative store accesses a dirty cache line, we generate an update to ensure that the only up-to-date copy of the cache

line is not corrupted with speculative modifications. For simplicity, we also generate an update when a speculative

load accesses a dirty cach line.

Speculative Invalidation of Non-Speculative Cache Lines: A goal of the coherence scheme is to avoid slowing

down non-speculative threads to the extent possible—hence a cache line in a non-speculative state is not invalidated

when an invalidation-speculative arrives from the external memory system. For example, a line in the shared (S)

state remains in that state whenever an invalidation-speculative is received. Alternatively, the cache line could be

relinquished to give exclusiveness to the speculative thread, possibly eliminating the need for that speculative thread

to obtain ownership when it becomes homefree. Since the superior choice is unclear without concrete data, we compare

the performance of both approaches later in Section 3.5.3.

Dirty and Speculatively Loaded State: As described for the baseline scheme, when a speculative load or store

accesses a dirty cache line we generate an update, ensuring that the only up-to-date copy of a cache line is not

corrupted with speculative modifications. Since a speculative load cannot corrupt the cache line, it is safe to delay

writing the line back until a speculative store occurs. This minor optimization is supported with the addition of the

dirty and speculatively loaded state (DSpL), which indicates that a cache line is both dirty and speculatively loaded.

Since it is trivial to add support for this state, we include it in the baseline scheme.

When Speculation Succeeds

Our scheme depends on ensuring that epochs commit their speculative modifications to memory in logical order.

We implement this ordering by waiting for and passing the homefree token at the end of each epoch. When the

homefree token arrives, we know that all logically-earlier epochs have completely performed all speculative memory

operations, and that any pending incoming coherence messages have been processed—hence memory is consistent.

At this point, the epoch is guaranteed not to suffer any further dependence violations with respect to logically-earlier

47

epochs, and therefore can commit its speculative modifications.

Upon receiving the homefree token, any line which has only been speculatively loaded immediately makes one of

the following state transitions: either from speculative-exclusive (SpE) to exclusive (E), or else from speculative-shared

(SpS) to shared (S). We will describe in the next section how these operations can be implemented efficiently.

Whenever an epoch speculatively-modifies a location, and then a logically-later epoch modifies that same location,

both corresponding cache lines will become speculatively-modified (i.e. the SM flag is set) and shared, and hence

both be in the state speculative-shared (SpS). When speculation succeeds, for every such cache line we must issue

an upgrade-request to acquire exclusive ownership. Once it is owned exclusively, the line may transition to the

dirty (D) state—effectively committing the speculative modifications to regular memory. Maintaining the notion of

exclusiveness is therefore important since a speculatively modified line that is exclusive (i.e. SpE with SM set) can

commit its results immediately simply by transitioning directly to the dirty (D) state.

It would obviously take far too long to scan the entire cache for all speculatively modified and shared lines—

ultimately this would delay passing the homefree token and hurt the performance of our scheme. Instead, we propose

that the addresses of such lines be added to an ownership required buffer (ORB) whenever a line becomes both

speculatively modified and shared. Hence whenever the homefree token arrives, we can simply generate an upgrade-

request for each entry in the ORB, and pass the homefree token on to the next epoch once they have all completed.

When Speculation Fails

When speculation fails for a given epoch, any speculatively modified (SM) lines must be invalidated, and any

speculatively loaded (SL) lines make one of the following state transitions: either from speculative-exclusive (SpE)

to exclusive (E), or else from speculative-shared (SpS) to shared (S). In the next section, we will describe how these

operations can also be implemented efficiently.

Forwarding Data Between Epochs

As described in Section 2.3.1, we can avoid violations due to predictable data dependences between epochs through

the forwarding frame and wait–signal synchronization. As defined by the instruction interface, the forwarding frame

and synchronization primitives may be implemented a number of ways, the most simple being through regular memory.

Our coherence scheme can be extended to support value forwarding through regular memory by allowing an epoch to

48

make non-speculative memory accesses while it is still speculative. Hence an epoch can perform a non-speculative

store whose value will be propagated to the logically-next epoch without causing a dependence violation. We will

evaluate several implementations of the forwarding frame and synchronization in Section 3.7.3.

3.3 Implementation

We now describe the implementation of our coherence scheme, beginning with a hardware implementation of epoch

numbers. We then give an encoding for cache line states, and describe the organization of epoch state information.

Finally, we describe how to allow multiple speculative writers and how to preserve correctness.

3.3.1 Epoch Numbers

In previous sections, we have mentioned that epoch numbers are used to determine the relative ordering between

epochs. In the coherence scheme, an epoch number is associated with every speculatively-accessed cache line and

every speculative coherence action. The implementation of epoch numbers must address several issues. First, epoch

numbers must represent a partial ordering (rather than total ordering) since epochs from independent programs or

even from independent chains of speculation within the same program are unordered with respect to each other. We

implement this by having each epoch number consist of two parts: a thread identifier (TID) and a sequence number.

If the TIDs from two epoch numbers do not match exactly, then the epochs are unordered. If the TIDs do match, then

the signed difference between the sequence numbers is computed to determine a logical ordering.

Figure 3.6 defines the principles behind epoch sequence number allocation and comparison. The speculation system

must guarantee that there are twice as many consecutive epoch sequence numbers in the sequence number space

as there are speculative contexts in the system; given this constraint, the sign of the difference between two non-

equal sequence numbers indicates which epoch sequence number is logically earlier. Such a comparison is trivial to

implement, and should only require a small amount of dedicated hardware. This implementation of sequence numbers

is quite similar to the inums implemented in the Alpha 21264 [15].

3.3.2 Implementation of Speculative State

We encode the speculative cache line states given in Figure 3.5(a) using five bits as shown in Figure 3.7(a). Three

bits are used to encode basic coherence state: exclusive (Ex), dirty (Di), and valid (Va). Two bits—speculatively

49

The following implements a system of epoch sequence numbers such that two
properly-allocated, non-equal epoch numbers can be compared even when the
sequence numbers wrap around:

Let c be the current epoch sequence number;
Let i be the incoming epoch sequence number;
Let Nmax be the largest epoch sequence number;
Let Nsc be the number of speculative contexts.

A system that properly allocates epoch sequence numbers guarantees that:

1) Nmax ≥ 2 × Nsc − 1,
2) 0 ≤ c ≤ Nmax,
3) 0 ≤ i ≤ Nmax,
4) c 6= i,
5) | c − i |< Nsc.

We can now decide whether i is logically earlier than c by checking if c − i > 0,
regardless of whether c < i or i < c.

Figure 3.6. Comparing Epoch Sequence Numbers.

loaded (SL) and speculatively modified (SM)—differentiate speculative from non-speculative states. Figure 3.7(b)

shows the state encoding which is designed to have the following two useful properties. First, when an epoch becomes

homefree, we can transition from the appropriate speculative to non-speculative states simply by resetting the SM and

SL bits. Second, when a violation occurs, we want to invalidate the cache line if it has been speculatively modified;

this can be accomplished by setting its valid (Va) bit to the AND of its Va bit with the complement of its SM bit

(i.e. V a = V a ∧ SM).

Figure 3.7(c) illustrates how the speculative state can be arranged. Notice that only a small number of bits are

associated with each cache line, and that only one copy of an epoch number is needed per speculative context. The SL

and SM bit columns are implemented such that they can be flash-reset by a single control signal. The SM bits are also

wired appropriately to their corresponding Va bits such that they can be simultaneously invalidated when an epoch is

squashed. Also associated with the speculative state are an ownership required buffer (ORB), and the address of the

cancel routine.

3.3.3 Preserving Correctness

There are several issues—in addition to observing data dependences—that must be addressed to preserve correct-

ness for TLS. First, speculation must fail whenever any speculative state is lost: if the ORB overflows or if a cache

50

Bit Description

Va valid
Di dirty
Ex exclusive
SL speculatively loaded
SM speculatively modified

(a) Cache line state bits.

State SL SM Ex Di Va

I X X X X 0
E 0 0 1 0 1
S 0 0 0 0 1
D 0 0 X 1 1
DSpL 1 0 X 1 1
SpE 1 0 1 0 1

0 1 1 1 1
1 1 1 1 1

SpS 1 0 0 0 1
0 1 0 1 1
1 1 0 1 1

(b) State encoding.

TagsEx Di Va Data

�����
�
��

����	
	

�

����
�
��

�������
� ����

���
�

ORB

Cancel Handler
Address

Epoch Number

Speculative
Context

SMSL

(c) Hardware support.

Figure 3.7. Encoding of cache line states. In (b), X means “don’t-care”.

51

SM Ex Di Va Data

��

��

��

��

�	

�

�

��

��

ORB

Cancel Handler
Address

Epoch Number

Speculative
Context

��

��

��

��

��

��

��

 !

"#

$%&'&('(

)*+'+,',

SL Tags

(a) State for multiple writers.

G D

00 1

HB

1SM[0..N−1]

Data

SM[0..N−1]

Data A D

10 0

CB

1

A D

00 0

CB

0SM[0..N−1]

Data

SM[0..N−1]

Data G F

00 0

HB

0

Original Cache Line

Epoch i Epoch i+1

Combined Copy

(b) Combining cache lines.

Figure 3.8. Support for multiple writers.

line in a speculative state must be replaced, then speculation must fail for the corresponding epoch. Note that we do

not need special support to choose which cache line to evict from an associative set: the existing LRU (least recently

used) policy ensures that any non-speculative cache line is evicted before a speculative one. Second, as with other

forms of speculation, a speculative thread should not immediately invoke an exception if it dereferences a bad pointer,

divides by zero, etc.; instead, it must wait until it becomes homefree to confirm that the exception really should have

taken place, and for the exception to be precise. Third, if an epoch relies on polling to detect failed speculation and it

contains a loop, a poll must be inserted inside the loop to avoid infinite looping. Finally, system calls generally cannot

be performed speculatively without special support; if a thread attempts to perform a system call, we simply stall it

until it is homefree.

3.3.4 Allowing Multiple Writers

It is often advantageous to allow multiple epochs to speculatively modify the same cache line at the same time.

Supporting a multiple writer scheme requires the ability to merge a modified cache line with a previous copy of that

line; this in turn requires the ability to identify partial modifications. One possibility is to replicate the SM column of

bits so that there are as many SM columns as there are words (or even bytes) in a cache line, as shown in Figure 3.8(a).

We will call these fine-grain SM bits. When a write occurs, the appropriate SM bit is set. If a write occurs which is of

lesser granularity than the SM bits can resolve (e.g. a byte-write when there is only one SM bit per 4-byte word), we

52

must conservatively set the SL bit for that cache line since we can no longer merge this cache line with others—setting

the SL bit ensures that a violation is raised if a logically-earlier epoch writes the same cache line.

Figure 3.8(b) shows an example of how we can combine speculatively modified versions of a cache line with a non-

speculative one. Two epochs speculatively modify the same cache line simultaneously, setting the fine-grain SM bit

for each location modified. A speculatively modified cache line is committed by updating the current non-speculative

version with only the words for which the fine-grain SM bits are set. In the example, both epochs have modified the

first location. Since epoch i+1 is logically-later, its value (G) takes precedence over epoch i’s value (E).

Because dependence violations are normally tracked at a cache line granularity, another potential performance

problem is false violations—i.e. where disjoint portions of a line were read and written. To help reduce this problem,

we observe that a line only needs to be marked as speculatively loaded (SL) when an epoch reads a location that it has

not previously overwritten (i.e. the load is exposed [3]). The fine-grain SM bits allow us to distinguish exposed loads,

and therefore can help avoid false violations. We evaluate the performance benefits of support for multiple writers in

Section 3.5.1, and show that this support has a significant impact.

3.4 Evaluation of Baseline Hardware Support

We now present the performance of our baseline coherence scheme for TLS, and evaluate the overheads of our

approach. In this chapter we focus on chip-multiprocessor architectures—later (in Chapter 4) we evaluate larger-scale

machines that cross chip boundaries, as well as smaller-scale machines that share the first-level data cache.

3.4.1 Performance of the Baseline Scheme

Table 3.2 summarizes the performance of each application on our baseline architecture (as reported by the de-

tailed simulation model described in Chapter 2.5.2), which is a four-processor chip-multiprocessor that implements

our baseline coherence scheme. Throughout this dissertation, all speedups (and other statistics relative to a single

processor) are with respect to the original executable (i.e. without any TLS instructions or overheads) running on a

single processor. Hence our speedups are absolute speedups and not self-relative speedups. As we see in Table 3.2, we

achieve speedups on the speculatively-parallelized regions of code ranging from 4% to 134%, with the exception of

BZIP2 which slows down. The overall program speedups are limited by the coverage (i.e. the fraction of the original

execution time that was parallelized) which ranges from 1% to 93%. Looking at program performance, IJPEG is more

53

Table 3.2. Region and Program Speedups and Coverage.

Program Region Outside-Region
Benchmark Speedup Speedup Speedup Coverage

BZIP2 0.96 0.94 0.98 45%
GCC 0.97 1.29 0.91 18%
COMPRESS 1.21 2.04 0.96 39%
CRAFTY 0.95 1.28 0.92 9%
GAP 0.93 1.44 0.90 10%
GO 0.90 1.18 0.85 21%
IJPEG 2.01 2.34 0.67 93%
LI 0.95 1.04 0.95 01%
M88KSIM 1.06 1.32 0.81 61%
MCF 1.10 1.40 0.96 40%
PARSER 1.02 1.27 0.97 19%
PERLBMK 1.03 1.61 0.96 17%
TWOLF 0.86 1.22 0.79 21%
VORTEX 1.02 1.39 1.01 4%
VPR 1.13 1.44 0.74 70%

than twice as fast, and three other applications improve by at least 10%. Four other applications show more modest

improvement, while the remaining applications perform slightly worse. To simplify our discussion, we will focus only

on the speculatively parallelized regions of code throughout the remainder of this chapter.

Figure 3.9(a) shows execution time normalized to that of the original sequential version for the select benchmark

versions; each of the bars are broken down into eight segments explaining what happened during all potential grad-

uation slots.2 The top segment, idle, represents slots where the pipeline has nothing to execute—this could be due

to either fetch latency, or simply a lack of work. The next three segments represent slots where instructions do not

graduate for the following TLS-related reasons: waiting to begin a new epoch (spawn); waiting for synchronization

for a forwarded value (sync); and waiting for the homefree token to arrive (homefree). The fail segment represents

all slots wasted on failed speculation, including slots where misspeculated instructions graduated. The remaining seg-

ments represent regular execution: the busy segment is the number of slots where instructions graduate; the dcache

segment is the number of non-graduating slots attributed to data cache misses; and the istall segment is all other slots

where instructions do not graduate. Figure 3.9(b) shows aggregate cycles, which is simply the normalized number of

cycles multiplied by the number of processors; it is somewhat easier to directly compare segments in this view where

an increase in the size of a segment means that a problem is becoming worse.

The first bar (S) shows the breakdown for the original sequential version of each benchmark. Some are dominated

2The number of graduation slots is the product of (i) the issue width (4 in this case), (ii) the number of cycles, and (iii) the number of processors.

54

|

0

|

50

|

100

|

150

|

200

 Normalized Region Execution Time

100.0

S

113.8

F

106.0

B

bzip2

100.0

S

115.0

F

77.1

B

gcc

100.0

S

100.5

F

49.0

B

com
press

100.0

S

133.8

F

77.5

B

crafty

100.0

S

116.5

F

69.3

B

gap

100.0

S

111.1

F

84.3

B

go
100.0

S
104.2

F

42.6

B

ijpeg

100.0

S

131.1

F

95.7

B
li

100.0

S

118.3

F

75.7

B

m
88ksim

100.0

S

118.5

F

70.9

B

m
cf

100.0

S

212.8

F

78.4

B

parser

100.0

S

151.5

F

62.1

B

perlbm
k

100.0

S

118.1

F

81.6

B

twolf

100.0

S

111.8

F

71.7

B

vortex

100.0

S

117.9

F

69.2

B

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(a)
R

egion
execution

tim
e

for
the

selectversions.

|

0

|

100

|

200

|

300

|

400

 Normalized Aggregate Region Cycles

100.0

S

113.8

F

424.1

B

bzip2

100.0

S

115.0

F

308.2

B

gcc

100.0

S

100.5

F

196.0

B

com
press

100.0

S

133.8

F

310.2

B

crafty

100.0

S

116.5

F

277.2

B

gap

100.0

S

111.1

F

337.1

B

go

100.0

S

104.2

F

170.5

B

ijpeg

100.0

S

131.1

F

383.0

B
li

100.0

S

118.3

F

302.9

B

m
88ksim

100.0

S

118.5

F

283.7

B

m
cf

100.0

S

212.8

F

313.7

B

parser

100.0

S
151.5
F

248.4
B

perlbm
k

100.0

S

118.1

F

326.4

B

twolf

100.0

S

111.8

F

287.0

B

vortex

100.0

S

117.9

F

276.6

B

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(b)
A

ggregate
cycles

for
the

selectversions.

|

0

|

50

|
100

|

150

 Normalized Region Execution Time

100.0

S

105.1

F

140.7

B

bzip2

100.0

S

107.2

F

114.0

B

gcc

100.0

S

97.8

F

108.1

B

com
press

100.0

S

132.0

F

119.8

B

crafty

100.0

S

100.7

F

101.1

B

gap

100.0

S

100.0

F

115.8

B

go

100.0

S

129.0

F

168.6

B

gzip

100.0

S

105.0

F

55.1

B

ijpeg

100.0

S

108.4

F

109.0

B
li

100.0

S

109.0

F

127.3

B

m
88ksim

100.0

S

113.1

F

86.7

B

m
cf

100.0

S

127.2

F

121.0

B

parser

100.0

S

131.1

F

106.8

B

perlbm
k

100.0

S

105.4

F

156.1

B

twolf

100.0

S

105.2

F

96.4

B

vortex

100.0

S

109.4

F

140.7

B

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(c)
R

egion
execution

tim
e

for
the

m
ax-coverage

versions.

F
ig

u
re

3.9.Im
p

act
o

n
reg

io
n

execu
tio

n
tim

e
o

f
o

u
r

b
aselin

e
h

ard
w

are
su

p
p

o
rt

fo
r

T
L

S
.S

is
th

e
o

rig
in

alseq
u

en
tialversio

n
,F

is
th

e
sp

ecu
lative

versio
n

ru
n

seq
u

en
tially,an

d
B

is
th

e
sp

ecu
lative

versio
n

ru
n

in
p

arallelo
n

fo
u

r
p

ro
cesso

rs.

55

by data cache miss time (dcache), while others are dominated by pipeline stalls (istall). Very little time is lost due

to an empty pipeline (idle) for any application. The next bar (F) shows the performance of the TLS version of each

benchmark when executed on a single processor (in this model, all spawn’s simply fail, resulting in a sequential

execution); this experiment shows the overheads of TLS compilation that must be overcome with parallel execution

for performance to improve. The increase in busy time between the S and F bars is due to the TLS instructions

added to the TLS version of each benchmark, as well as other instruction increases due to compilation differences. In

most cases, data cache miss time (dcache) remains relatively unchanged, while pipeline stalls (istall) increase. Some

overhead is due to inefficient compilation: inserted TLS instructions are encoded as in-line MIPS assembly code

using gcc’s “asm” statements, and the unmodified version of gcc (v2.95.2) that we use as a back-end compiler is

conservative in the presence of these statements (e.g. generating superfluous register spills).

The third bar (B) shows the TLS version executed speculatively in parallel on four processors. Some benchmarks

show a large increase in idle time—for the most part this is caused by a small number of epochs per region instance,

resulting in idle processors. For example, GAP has an average of only 2.6 epochs per region instance (see Table 2.3),

which is not enough parallelism to completely occupy 4 processors. To some extent this is an artifact of our simulation,

since a more sophisticated TLS system could increase the number of speculative threads by allowing speculation

beyond the end of a loop (i.e., the loop continuation could be executed speculatively in parallel with the iterations

of the loop). Looking at Figure 3.9(b), we see that data cache and pipeline stalls (dcache and istall) increase only

modestly, while the most significant bottlenecks are failed speculation (fail), synchronization (sync), and idle time

(idle). It is important to note that the failed speculation component (fail) includes data cache misses, pipeline stalls,

synchronization, etc., for all cycles spent on failed speculation—hence when a bottleneck such as synchronization is

reduced, the failed speculation component may be reduced as well.

At the beginning and end of each epoch we measure the time spent waiting for an epoch to be spawned (spawn,

and the time spent waiting for the homefree token. Spawn time is not a significant bottleneck for any benchmark, but

is most evident in MCF and PERLBMK. Passing the homefree token (homefree) is an insignificant portion of execution

time for every benchmark except LI, indicating that this aspect of our scheme is not a performance bottleneck for most

benchmarks. As we will see later in Section 3.4.2, the large homefree segment for LI is not due to a large number of

ORB entries, but rather load imbalance: when the size of epochs varies greatly, a small epoch ends up waiting to be

56

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
0.

0

1

11
0.

3

2

10
6.

0

4

10
5.

6

6

10
6.

8

8

bzip
2

10
0.

0

1

87
.4

2

77
.1

4

76
.1

6

75
.9

8

gcc

10
0.

0

1

69
.9

2

49
.0

4
50

.1
6

48
.8

8

co
m

pre
ss

10
0.

0

1

94
.0

2

77
.5

4

73
.7

6

72
.6

8

cr
af

ty

10
0.

0

1

84
.0

2

69
.3

4

69
.5

6

69
.7

8

gap

10
0.

0

1

91
.1

2

84
.3

4

84
.5

6

84
.7

8

go

10
0.

0

1

62
.6

2

42
.6

4

38
.1

6

37
.7

8

ijp
eg

10
0.

0

1

10
4.

5

2

95
.7

4

91
.8

6

92
.0

8
li

10
0.

0

1

84
.8

2

75
.7

4

73
.8

6

73
.7

8

m
88

ks
im

10
0.

0

1

97
.4

2

70
.9

4

62
.0

6

58
.9

8

m
cf

10
0.

0

1

13
2.

2

2

78
.4

4

60
.8

6

52
.9

8

par
se

r

10
0.

0

1

10
0.

6

2

62
.1

4

53
.8

6

50
.6

8

per
lb

m
k

10
0.

0

1

78
.9

2

81
.6

4

90
.1

6

88
.5

8

tw
olf

10
0.

0

1

84
.0

2

71
.7

4

70
.1

6

68
.0

8

vo
rte

x

10
0.

0

1

87
.7

2

69
.2

4

65
.7

6

62
.6

8

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Execution time.

|0

|200

|400

|600

|800

 N
o

rm
al

iz
ed

 A
g

g
re

g
at

e
R

eg
io

n
 C

yc
le

s

10
0.

0

1

22
0.

6

2

42
4.

1

4

63
3.

6

6

85
4.

6

8

bzip
2

10
0.

0

1

17
4.

7

2

30
8.

2

4

45
6.

7

6

60
7.

3

8

gcc

10
0.

0

1

13
9.

8

2

19
6.

0

4

30
0.

7

6

39
0.

6

8

co
m

pre
ss

10
0.

0

1

18
8.

1

2

31
0.

2

4

44
2.

0

6

58
0.

6

8

cr
af

ty

10
0.

0

1

16
7.

9

2

27
7.

2

4

41
7.

1

6

55
7.

4

8

gap

10
0.

0

1

18
2.

2

2

33
7.

1

4

50
6.

8

6

67
7.

3

8

go

10
0.

0

1

12
5.

1

2

17
0.

5

4

22
8.

7

6

30
1.

9

8

ijp
eg

10
0.

0

1

20
9.

0

2

38
3.

0

4

55
0.

8

6

73
6.

0

8
li

10
0.

0
1

16
9.

7

2

30
2.

9

4

44
2.

6

6

59
0.

0

8

m
88

ks
im

10
0.

0

1

19
4.

9

2

28
3.

7

4

37
2.

1

6

47
1.

4

8

m
cf

10
0.

0

1

26
4.

4

2

31
3.

7

4

36
5.

1

6

42
3.

4

8

par
se

r

10
0.

0

1

20
1.

2

2

24
8.

4

4

32
3.

1

6

40
5.

1

8

per
lb

m
k

10
0.

0

1

15
7.

7

2

32
6.

4

4

54
0.

7

6

70
8.

0

8

tw
olf

10
0.

0

1

16
8.

0

2

28
7.

0

4

42
0.

8

6

54
3.

6

8

vo
rte

x

10
0.

0

1

17
5.

4

2

27
6.

6

4

39
4.

3

6

50
0.

9

8

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) Aggregate cycles.

Figure 3.10. Varying the number of processors from one through eight. The baseline architecture has four processors.

passed the homefree token from a logically-earlier large epoch.

Turning our attention to the max-coverage version (Figure 3.9(c)), we observe that many of the speculatively-

parallel executions (B) do not speed up, with the exception of IJPEG, MCF, and VORTEX. For a majority of benchmarks,

the bottleneck is failed speculation (fail); this is understandable, since regions for these versions have been chosen

to maximize coverage rather than performance, which in turn leads to larger epochs and a smaller probability of

speculation succeeding. Techniques that increase the independence of epochs and decrease failed speculation will

have a large impact on this version of the benchmarks (as we will see later in Chapter 5).

Figure 3.10 shows how performance for the select benchmarks varies across a number of different processors

from two different perspectives: normalized execution time, and aggregate cycles (similar to Figure 3.9(b)). The

bars in Figure 3.10(b) would remain at the 100% line if we achieved linear speedup; in reality, they increase as the

processors become less efficient. As we increase the number of processors, performance continues to improve through

8 processors for six cases; for seven other cases, performance levels-off prior to 8 processors, indicating a limit to the

amount of available parallelism. For GAP and TWOLF, performance actually degrades as we increase the number of

57

|0

|1

 O
R

B
 E

n
tr

ie
s

1

0.
0

2

0.
1

4

0.
3

6

0.
5

8

0.
7

bzip
2

1

0.
0

2

0.
1

4

0.
1

6

0.
1

8

0.
1

gcc
1

0.
0

2
2.

0
4

2.
0

6
2.

0
8

2.
0

co
m

pre
ss

1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

0.
0

cr
af

ty
1

0.
0

2

0.
0

4

0.
9

6

0.
9

8

0.
9

gap
1

0.
0

2

0.
0

4

0.
1

6

0.
1

8

0.
1

go
1

0.
0

2

0.
6

4

1.
0

6

1.
0

8

1.
0

ijp
eg

1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

0.
0

li
1

0.
0

2

0.
2

4

0.
2

6

0.
2

8

0.
2

m
88

ks
im

1

0.
0

2

0.
1

4

0.
1

6

0.
1

8

0.
1

m
cf

1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

0.
0

par
se

r
1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

0.
0

per
lb

m
k

1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

0.
0

tw
olf

1

0.
0

2

0.
6

4

0.
8

6

0.
8

8

0.
9

vo
rte

x
1

0.
0

2

0.
3

4

0.
5

6

0.
5

8

0.
6

vp
r

(a) Average number of ORB entries per epoch.

|0

|10

|20

 O
R

B
 E

n
tr

ie
s

1

0.
0

2

6.
0

4

8.
0

6

8.
0

8

8.
0

bzip
2

1

0.
0

2

7.
0

4

7.
0

6

7.
0

8

7.
0

gcc
1

0.
0

2

2.
0

4

2.
0

6

2.
0

8

2.
0

co
m

pre
ss

1

0.
0

2

14
.0

4

14
.0

6

13
.0

8

14
.0

cr
af

ty
1

0.
0

2

2.
0

4

3.
0

6

3.
0

8

3.
0

gap
1

0.
0

2

19
.0

4

24
.0

6

23
.0

8

28
.0

go
1

0.
0

2

4.
0

4

4.
0

6

4.
0

8

4.
0

ijp
eg

1
0.

0

2
1.

0
4

2.
0

6
2.

0
8

2.
0

li
1

0.
0

2

1.
0

4

1.
0

6

1.
0

8

1.
0

m
88

ks
im

1

0.
0

2

4.
0

4

7.
0

6

7.
0

8

7.
0

m
cf

1

0.
0

2

7.
0

4

14
.0

6

15
.0

8

15
.0

par
se

r
1

0.
0

2

0.
0

4

1.
0

6

1.
0

8

1.
0

per
lb

m
k

1

0.
0

2

5.
0

4

5.
0

6

4.
0

8

4.
0

tw
olf

1

0.
0

2

5.
0

4

5.
0

6

5.
0

8

5.
0

vo
rte

x
1

0.
0

2

4.
0

4

4.
0

6

4.
0

8

4.
0

vp
r

(b) Maximum number of ORB entries per epoch.

|0

|20

|40

|60

 C
yc

le
s

1

0.
0

2

1.
3

4

3.
3

6

6.
3

8

10
.3

bzip
2

1

0.
0

2

0.
6

4

0.
7

6

0.
7

8

0.
7

gcc
1

0.
0

2

44
.8

4

62
.6

6

64
.6

8

62
.4

co
m

pre
ss

1

0.
0

2

0.
1

4

0.
4

6

0.
4

8

0.
4

cr
af

ty
1

0.
0

2

0.
1

4

7.
5

6

7.
4

8

7.
4

gap
1

0.
0

2

0.
3

4

0.
7

6

0.
8

8

1.
0

go
1

0.
0

2

4.
1

4

7.
9

6

11
.0

8

12
.0

ijp
eg

1

0.
0

2

0.
1

4

0.
3

6

0.
3

8

0.
3

li
1

0.
0

2

1.
8

4

2.
0

6

1.
9

8

1.
8

m
88

ks
im

1

0.
0

2

0.
5

4

1.
0

6

1.
3

8

1.
5

m
cf

1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

0.
0

par
se

r
1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

0.
0

per
lb

m
k

1
0.

0

2
0.

0
4

0.
1

6
0.

1
8

0.
2

tw
olf

1

0.
0

2

3.
8

4

8.
0

6

11
.4

8

15
.1

vo
rte

x
1

0.
0

2

1.
8

4

3.
2

6

3.
7

8

3.
5

vp
r

(c) Average ORB flush latency.

Figure 3.11. Size and flush latency of the ownership required buffer (ORB), as we vary the number of processors.

processors due to increasing idle time, indicating that additional processors are under-utilized. The amount of time

spent waiting for the homefree token increases for both COMPRESS and LI, not because of an increasing number of

ORB entries, but because of increasing load imbalance. For several applications, the amount of failed speculation

increases, indicating a limit to the independence of epochs.

3.4.2 Overheads of Thread-Level Speculation

We now investigate the overheads of our baseline scheme in greater detail. The most significant overheads are the

ORB and passing the homefree token, decreased cache locality, and failed speculation. Recall that the ORB maintains

58

a list of addresses of speculatively-modified cache lines that are in the speculative-shared (SpS) state. When the

homefree token arrives, we must issue and complete upgrade requests to obtain exclusive ownership of these lines

(thereby committing their results to memory) prior to passing the homefree token on to the next logically-later epoch.

In addition, speculation fails if the ORB overflows. For these reasons, we desire the average number of ORB entries

per epoch to be small. Figure 3.11 shows several measurements of the ORB mechanism (see Section 3.2.5) for a

varying number of processors. First, in Figure 3.11(a) we see that the average number of ORB entries per epoch is less

than one for all applications except COMPRESS for which it is roughly two entries. Note that the number of entries for

COMPRESS and LI does not increase as the number of processors increases, indicating that the increase in time spent

waiting for the homefree token observed in Figure 3.10 for those benchmarks is indeed due to load imbalance.

Figure 3.11(b) shows the maximum number of ORB entries per epoch which is less than ten for most applications,

and between 20 and 30 entries for GO and VORTEX. Note also that for these two benchmarks the maximum number

of ORB entries per epoch increases as the number of processors increases, indicating that there are shared cache lines

for which the number of sharers increases with the number of processors; in support of this claim, we look back at

Figure 3.10 and observe that both GO and VORTEX do suffer an increasing amount of failed speculation as the number

of processors increases. From these results we can conclude that an ORB of 10 entries is sufficient for 11 of the 15

benchmarks, and an ORB of 20 entries would capture the requests for 2 additional benchmarks.

Figure 3.11(c) shows the latency in cycles of flushing the ORB. We observe that this latency is related to the average

size of the ORB. For most applications, this latency is negligible; for four applications it is less than 10 cycles with

4 processors; and it is sizable for COMPRESS at 62.5 cycles with 4 processors, which also has more than twice the

average number of ORB entries per epoch than other applications.

Figure 3.12 shows the percentage of execution for each benchmark lost to failed speculation for a varying number of

processors. Each bar is broken down, showing the fraction of speculation that failed for each of five reasons. The first

segment, CHAIN, represents time spent on epochs that were squashed because logically-earlier epochs were previously

squashed. This violation chaining prevents an epoch from using potentially incorrect data that was forwarded from

a logically-earlier epoch. The next two segments (REPL and RINV) represent violations caused by replacement in

either the first-level data caches or the shared unified cache respectively. The last two segments (DINV and DINVSP)

represent violations caused by true data dependences. A DINV violation occurs when an epoch commits and flushes its

59

|0

|20

|40

|60

|80

|100

 F
ai

le
d

 S
p

ec
u

la
ti

o
n

 (
%

)

0.
0

1

3.
6

2

6.
7

4

9.
3

6

11
.5

8

bzip
2

0.
0

1

3.
7

2

7.
2

4

7.
6

6

7.
2

8

gcc

0.
0

1
0.

0
2

0.
0

4
0.

0
6

0.
0

8

co
m

pre
ss

0.
0

1

2.
9

2

5.
9

4

5.
7

6

5.
0

8

cr
af

ty

0.
0

1

0.
2

2

0.
2

4

0.
2

6

0.
1

8

gap

0.
0

1

13
.3

2

30
.6

4

36
.2

6

37
.7

8

go

0.
0

1

0.
5

2

1.
2

4

1.
6

6

1.
4

8

ijp
eg

0.
0

1

1.
6

2

3.
0

4

3.
2

6

3.
9

8
li

0.
0

1

25
.9

2

54
.8

4

63
.3

6

68
.0

8

m
88

ks
im

0.
0

1

3.
6

2

14
.3

4

23
.9

6

32
.1

8

m
cf

0.
0

1

3.
9

2

9.
5

4

14
.2

6

17
.1

8

par
se

r

0.
0

1

0.
0

2

0.
0

4

0.
0

6

0.
0

8

per
lb

m
k

0.
0

1

0.
5

2

0.
7

4

0.
4

6

0.
6

8

tw
olf

0.
0

1

8.
1

2

6.
6

4

7.
7

6

7.
4

8

vo
rte

x

0.
0

1

6.
2

2

13
.7

4

16
.0

6

17
.6

8

vp
r

CHAIN

REPL

RINV

DINV

DINVSP

Figure 3.12. Percentage of execution time wasted on failed speculation, and the breakdown of reasons for violations as we
vary the number of processors.

ORB, generates a read-exclusive request, and invalidates a speculative cache line belonging to a logically-later epoch.

A DINVSP violation is caused by a speculative invalidation which is sent before an epoch commits.

COMPRESS, GAP, IJPEG, PERLBMK, and TWOLF have an insignificant amount of failed speculation, and for BZIP2,

GCC, CRAFTY, and LI the amount of failed speculation is quite small. The amount of failed speculation due to CHAIN

violations increases with the number of processors; for a given violated epoch, the number of CHAIN violations is

equal to the number of logically-later epochs currently in-flight. The portion of failed speculation due to CHAIN

violations is usually greater than the portion due to other reasons, except for the two-processor cases where at any

given time only one epoch is speculative and can be violated (and the other is always non-speculative). Replacement

in the unified cache (RINV) is not significant for any benchmark (since the data sets for these applications fits well

within the 2MB unified secondary cache); replacement from the first-level data caches (REPL) is evident for CRAFTY,

but is not a large component. Speculative invalidations (DINVSP) are preferable over ORB-generated invalidations

(DINV) because they give earlier notification of violations and also help reduce the size of the ORB itself. For five

applications, DINVSP violations are as frequent as DINV violations, while three other applications are dominated by

DINV violations.

Finally, we estimate the impact of speculative parallelization on data cache locality. Figure 3.13 shows the fraction

of cache misses where the cache line in question is currently resident in another first-level cache. A high percentage

indicates that cache locality for the corresponding application has been decreased. We see that this percentage is quite

high for most applications, the average being 75.0%. Looking again at Figure 3.10(b), we observe that there is an

increase in the amount of time spent on data cache misses (dcache) for the speculative versions as compared with the

60

|0

|20

|40

|60

|80

|100

 P
er

ce
n

t
M

is
se

s
T

o
 O

th
er

 C
ac

h
es

bzip2

61
.8

gcc

80
.2

compress

16
.4

crafty

91
.3

gap

99
.2

go

83
.1

ijpeg

85
.5

li

74
.0

m88ksim

82
.5

mcf

52
.9

parser

51
.4

perlbmk

78
.5

twolf

96
.4

vortex

86
.8

vpr

86
.1

Figure 3.13. Percentage of misses where the cache line is resident in another first-level cache, which indicates the impact of
TLS execution on cache locality.

sequential version. This loss of locality, while not prohibitive, is an opportunity for improvement through prefetching

and other techniques for dealing with distributed data access.

In summary, the overheads of TLS remain small enough that we still enjoy significant performance gains for the

speculatively-parallelized regions of code. We now focus on other aspects of our design.

3.5 Tuning the Coherence Scheme

Our performance analysis has shown that TLS is promising, that our scheme for extending cache coherence to track

data dependences and buffer speculative state is efficient and effective, and that it scales well within a single chip. In

this section we evaluate the performance of several implementation alternatives for various aspects of our coherence

scheme including support for multiple writers, support for speculative coherence without speculative messages, and

speculative invalidation of non-speculative cache lines.

3.5.1 Support for Multiple Writers

In this section we evaluate the benefits of support for multiple writers, as described earlier in Section 3.3.4. Recall

that multiple writer support allows us to avoid both violations due to write-after-write dependences as well as violations

due to false dependences where speculative loads are not exposed. Figure 3.14 compares the performance of our

baseline hardware (B) which does support multiple writers, with that of less complex hardware (W) that does not

support multiple writers. For many applications, support for multiple writers drastically reduces the amount of failed

speculation; five select applications only speed up with this support enabled. Support for multiple writers shows

significant impact for the max-coverage benchmarks as well.

61

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
5.

9

W

10
6.

0

B

bzip
2

81
.6

W

77
.1

B

gcc

11
6.

6

W
49

.0

B

co
m

pre
ss

83
.2

W

77
.5

B

cr
af

ty

12
4.

2

W

69
.3

B

gap

84
.2

W

84
.3

B

go

97
.7

W

42
.6

B

ijp
eg

95
.7

W

95
.7

B
li

83
.8

W

75
.7

B

m
88

ks
im

71
.2

W

70
.9

B

m
cf

78
.3

W

78
.4

B

par
se

r

62
.1

W

62
.1

B

per
lb

m
k

83
.3

W

81
.6

B

tw
olf

11
9.

2

W

71
.7

B

vo
rte

x

98
.0

W

69
.2

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) The select versions.

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

21
0.

4

W

14
0.

7

B

bzip
2

11
6.

1

W

11
4.

0

B

gcc

13
5.

5

W

10
8.

1

B

co
m

pre
ss

12
9.

4

W

11
9.

8

B

cr
af

ty

10
1.

2

W

10
1.

1

B

gap

11
5.

8

W

11
5.

8

B

go

17
7.

0

W

16
8.

6

B

gzip

11
4.

1

W

55
.1

B

ijp
eg

10
9.

0

W
10

9.
0

B
li

14
3.

3

W

12
7.

3

B

m
88

ks
im

86
.9

W

86
.7

B

m
cf

12
6.

8

W

12
1.

0

B

par
se

r

11
1.

2

W

10
6.

8

B

per
lb

m
k

15
9.

6

W

15
6.

1

B

tw
olf

11
1.

0

W

96
.4

B

vo
rte

x

14
1.

5

W

14
0.

7

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) The max-coverage versions.

Figure 3.14. Impact of support for multiple writers. W does not model support for multiple writers while B (our baseline
architecture) does.

All speculatively-parallelized loops have been unrolled to maximize performance as described in Section 2.5.1.

However, these unrollings were chosen assuming hardware support for multiple writers. For some applications, un-

rolling can reduce the need for multiple-writers support [66] by ensuring that multiple epochs do not write to the same

cache line.

In Figure 3.15 we measure the impact of re-selecting unrollings assuming that multiple-writers are not supported.

The B experiment is our baseline (which supports multiple writers), while the W and U experiments do not support

multiple writers. In the U experiment, we re-select unrollings assuming that multiple writers is not supported. Note

that results may differ from Figure 3.14 since they are measured from benchmark versions where all loops have been

speculatively parallelized with unrollings of 2, 4, and 8 (as described in Chapter 2.4). For the select benchmarks

we observe that re-selecting unrollings can partially compensate for multiple writers support: GCC, GAP, IJPEG,

and M88KSIM improve significantly with alternate unrollings, while COMPRESS, VORTEX, and VPR do not. Most

of the max-coverage benchmarks (12 of 15) improve when unrollings are re-selected, although performance is still

significantly worse than when multiple writers is supported for bzip2, compress, and ijpeg. In general, the performance

62

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

B

94
.6

W

96
.6

U

96
.6

bzip
2

B

78
.9

W

86
.1

U

83
.6

gcc
B

48
.6

W

11
6.

6

U

11
6.

6

co
m

pre
ss

B

80
.6

W

86
.3

U

86
.3

cr
af

ty
B

69
.3

W

12
4.

2

U

92
.7

gap
B

83
.7

W

83
.7

U

83
.7

go
B

42
.9

W

10
2.

4

U

92
.3

ijp
eg

B

95
.6

W

95
.6

U
95

.6

li
B

68
.4

W

82
.6

U

74
.8

m
88

ks
im

B

72
.1

W

72
.4

U

72
.3

m
cf

B

75
.8

W

75
.0

U

75
.0

par
se

r
B

62
.8

W

62
.6

U

62
.6

per
lb

m
k

B

77
.4

W

79
.7

U

79
.6

tw
olf

B

71
.7

W

11
9.

3

U

11
5.

1

vo
rte

x
B

68
.8

W

98
.0

U

97
.9

vp
r

(a) The select versions.

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

B

13
0.

8

W

20
4.

1

U

18
1.

1

bzip
2

B

11
6.

6

W

11
8.

3

U

11
6.

6

cc
1

B

11
0.

3

W

13
7.

8

U

13
7.

8

co
m

pre
ss

95
B

11
4.

0

W

12
3.

5

U

11
7.

8

cr
af

ty
B

10
0.

3

W

10
5.

5

U

10
4.

5

gap
B

11
6.

2

W

11
6.

3

U

11
6.

2

go
B

16
5.

7

W

17
3.

7

U

17
0.

9

gzip
B

53
.7

W

11
3.

7

U

10
3.

6

ijp
eg

B

10
9.

4

W

10
9.

4

U

10
9.

4

li
B

12
0.

1

W

13
9.

5

U

13
4.

3

m
88

ks
im

B

87
.7

W

88
.0

U

87
.9

m
cf

B

12
2.

1

W

12
7.

6

U

12
2.

8

par
se

r
B

10
7.

4

W

10
9.

1

U

10
7.

5

per
lb

m
k

B

16
0.

7

W

16
6.

0

U

16
5.

1

tw
olf

B
95

.2
W

10
9.

7
U

10
8.

2

vo
rte

x
B

13
8.

6

W

13
9.

5

U

13
9.

5

vp
r

(b) The max-coverage versions.

Figure 3.15. Impact of re-selecting unrollings when multiple-writers is not supported. B is our baseline (which does support
multiple writers), W and U do not support multiple writers, and U re-selects unrollings. Note that results may differ from
Figure 3.14 since they are measured from benchmark versions where all loops and all unrollings have been speculatively
parallelized.

63

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
7.

2

E

10
6.

0

B

bzip
2

77
.4

E

77
.1

B

gcc

52
.7

E
49

.0

B

co
m

pre
ss

77
.7

E

77
.5

B

cr
af

ty

69
.2

E

69
.3

B

gap

85
.3

E

84
.3

B

go

44
.1

E

42
.6

B

ijp
eg

97
.3

E

95
.7

B
li

75
.0

E

75
.7

B

m
88

ks
im

76
.0

E

70
.9

B

m
cf

79
.6

E

78
.4

B

par
se

r

62
.2

E

62
.1

B

per
lb

m
k

81
.3

E

81
.6

B

tw
olf

73
.3

E

71
.7

B

vo
rte

x

80
.3

E

69
.2

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

14
2.

0

E

14
0.

7

B

bzip
2

11
4.

6

E

11
4.

0

B

gcc

10
7.

0

E

10
8.

1

B

co
m

pre
ss

12
1.

0

E

11
9.

8

B

cr
af

ty

10
1.

1

E

10
1.

1

B

gap

11
6.

5

E

11
5.

8

B

go

16
1.

9

E

16
8.

6

B

gzip

56
.2

E

55
.1

B

ijp
eg

10
9.

0

E
10

9.
0

B
li

12
1.

8

E

12
7.

3

B

m
88

ks
im

90
.2

E

86
.7

B

m
cf

12
1.

9

E

12
1.

0

B

par
se

r

10
8.

1

E

10
6.

8

B

per
lb

m
k

15
0.

7

E

15
6.

1

B

tw
olf

96
.4

E

96
.4

B

vo
rte

x

13
8.

2

E

14
0.

7

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) The max-coverage versions.

Figure 3.16. Impact of support for speculative coherence messages. E has no speculative coherence messages while B (our
baseline) does.

of multiple writers support cannot be achieved through unrolling alone for these applications.

3.5.2 Speculative Coherence without Speculative Messages

It is possible to re-design the speculative coherence scheme so that speculative messages are not used—this has the

advantage that the underlying coherence mechanisms are not modified in any way, and that only the cache state and

cache controllers must be extended to support TLS. In the baseline version of the coherence scheme, the speculative

messages read-exclusive-speculative and upgrade-request-speculative attempt to obtain exclusive access to the corre-

sponding cache line. We can replace those requests with non-speculative read requests while maintaining coherence,

but potentially degrading performance; without speculative coherence messages, exclusive access will be obtained less

frequently, the ORB will have more entries on average, and hardware support that can react instantly to violations will

be less agile (as will be described in Section 3.7.4).

Figure 3.16 shows performance both with (B) and without (E) support for speculative coherence messages. Per-

formance is improved for 9 of 15 select benchmarks, but only 5 of 15 max-coverage benchmarks. Of the improved

64

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
7.

2

D

10
6.

0

B

bzip
2

77
.1

D

77
.1

B

gcc

52
.2

D
49

.0

B

co
m

pre
ss

77
.5

D

77
.5

B

cr
af

ty

68
.1

D

69
.3

B

gap

85
.6

D

84
.3

B

go

43
.1

D

42
.6

B

ijp
eg

97
.0

D

95
.7

B
li

72
.3

D

75
.7

B

m
88

ks
im

73
.7

D

70
.9

B

m
cf

78
.5

D

78
.4

B

par
se

r

62
.2

D

62
.1

B

per
lb

m
k

81
.2

D

81
.6

B

tw
olf

72
.3

D

71
.7

B

vo
rte

x

72
.0

D

69
.2

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

13
7.

1

D

14
0.

7

B

bzip
2

11
4.

5

D

11
4.

0

B

gcc

10
6.

5

D

10
8.

1

B

co
m

pre
ss

11
9.

9

D

11
9.

8

B

cr
af

ty

10
1.

1

D

10
1.

1

B

gap

11
6.

3

D

11
5.

8

B

go

15
7.

9

D

16
8.

6

B

gzip

55
.0

D

55
.1

B

ijp
eg

10
9.

0

D
10

9.
0

B
li

12
1.

0

D

12
7.

3

B

m
88

ks
im

88
.9

D

86
.7

B

m
cf

12
0.

9

D

12
1.

0

B

par
se

r

10
5.

6

D

10
6.

8

B

per
lb

m
k

15
1.

6

D

15
6.

1

B

tw
olf

96
.6

D

96
.4

B

vo
rte

x

14
0.

1

D

14
0.

7

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) The max-coverage versions.

Figure 3.17. Impact of speculative invalidation of non-speculative cache lines. B (our baseline) models speculative invalidation
of non-speculative cache lines while D does not.

applications, most show a decrease in the amount of failed speculation and time spent waiting for the homefree token.

Since the homefree token cannot be passed until all ORB requests are satisfied, minimizing the number of ORB entries

allows the homefree token to be passed more quickly. Speculative coherence messages decrease the latency of flushing

the ORB significantly for the select benchmarks: from 9.9 cycles to 6.6 cycles on average across all applications. The

average size of the ORB across all applications is also significantly reduced—the average size decreasing from 1.92 to

0.42 entries and the maximum size from 46.2 to 8.2 entries. However, it is interesting to note that good performance

can be obtained without support for speculative coherence messages, so long as the size of the ORB is large enough

to accommodate the increase in addresses requiring ownership.

3.5.3 Speculative Invalidation of Non-Speculative Cache Lines

As discussed earlier in Section 3.2.5, one design choice is whether a speculative invalidation should invalidate a

cache line in a non-speculative state. Recall that our baseline scheme does speculatively invalidate non-speculative

cache lines. As we see in Figure 3.17, this design decision leads to better performance for seven of the 15 benchmarks,

65

most notably VPR which improves by 4%. This option reduces the average number of ORB entries, and hence the

latency of flushing the ORB and passing the homefree token. In some cases, such as M88KSIM, performance is better

without speculative invalidation of non-speculative cache lines: in such cases, the progress of the homefree epoch is

hindered because a cache line that it was about to access was invalidated by a speculative epoch. Overall, allowing

speculative invalidation of non-speculative cache lines (as is the case for our baseline scheme) improves performance

by 0.6% on average (across all applications), indicating that this is not a crucial design decision.

3.6 Sensitivity to Architectural Parameters

To better understand the bottlenecks of TLS execution, it is important to know the performance impact of various

architectural parameters. Since many architectural mechanisms can be made larger and faster for an increased cost, we

want to understand which features have a significant impact on performance. In this section we explore the sensitivity

of TLS execution to the size and complexity of several architectural features including inter-processor communication

mechanisms, the memory system, and the pipeline.

3.6.1 Inter-Processor Communication Latencies

Our TLS simulation model allows us to independently modify the latency between processors for several TLS

communication events, allowing us to model a range of latencies from the slower speeds of the regular memory system

to faster mechanisms such as a dedicated or shared register file. There are three important types of communication

event in TLS execution. First, there is the latency to spawn a child thread. In our execution model, this is the latency

from when a spawn instruction is executed on one processor until the child thread begins executing on the target

processor. Since the state for the child thread (the speculative context) has been pre-allocated, it is possible for this

mechanism to be quite fast. Second, there is the latency for forwarding a value between speculative threads. This

latency is measured from the time a signal instruction executes on one processor until the corresponding wait

instruction on the receiving processor may proceed. Finally, we can independently vary the latency of passing the

homefree token from one epoch to the next.

In Figure 3.18 we investigate the potential impact of improving each of these latencies independently. Comparing

with our baseline (B) for which all inter-processor latencies for TLS events are 10 cycles, we independently set the

latency for each of the three types of TLS communication event to zero: the S experiment has no spawn latency, the F

66

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

B

10
5.

7

S

10
5.

9

F

10
5.

8

H

10
5.

2

N

bzip
2

77
.1

B

75
.4

S

75
.3

F

76
.2

H

71
.2

N

gcc

49
.0

B

49
.0

S

49
.0

F

47
.1

H

47
.1

N

co
m

pre
ss

77
.5

B

73
.7

S

75
.3

F

76
.5

H

68
.4

N

cr
af

ty

69
.3

B

68
.6

S

69
.3

F

65
.8

H

64
.9

N

gap

84
.3

B

85
.9

S

83
.8

F

83
.1

H

83
.0

N

go

42
.6

B

42
.2

S

42
.5

F

42
.0

H

40
.9

N

ijp
eg

95
.7

B

94
.2

S

94
.5

F

95
.3

H

90
.4

N
li

75
.7

B
83

.1
S

70
.0

F
71

.5

H

73
.7

N

m
88

ks
im

70
.9

B

69
.3

S

65
.6

F

69
.9

H

61
.8

N

m
cf

78
.4

B

78
.2

S

77
.7

F

78
.9

H

77
.6

N

par
se

r

62
.1

B

58
.7

S

57
.4

F

60
.3

H

50
.6

N

per
lb

m
k

81
.6

B

81
.8

S

77
.9

F

81
.0

H

77
.6

N

tw
olf

71
.7

B

71
.3

S

71
.0

F

71
.7

H

70
.5

N

vo
rte

x

69
.2

B

67
.6

S

68
.8

F

68
.5

H

65
.1

N

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Normalized region execution time.

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

B

10
5.

7

S

10
5.

9

F

10
5.

8

H

10
5.

2

N

bzip
2

77
.1

B

75
.4

S

75
.3

F

76
.2

H

71
.2

N

gcc

49
.0

B

49
.0

S

49
.0

F

47
.1

H

47
.1

N

co
m

pre
ss

77
.5

B

73
.7

S

75
.3

F

76
.5

H

68
.4

N

cr
af

ty

69
.3

B

68
.6

S

69
.3

F

65
.8

H

64
.9

N

gap

84
.3

B

85
.9

S

83
.8

F

83
.1

H

83
.0

N

go

42
.6

B

42
.2

S

42
.5

F

42
.0

H

40
.9

N

ijp
eg

95
.7

B

94
.2

S

94
.5

F

95
.3

H

90
.4

N
li

75
.7

B

83
.1

S

70
.0

F

71
.5

H

73
.7

N

m
88

ks
im

70
.9

B

69
.3

S

65
.6

F

69
.9

H

61
.8

N

m
cf

78
.4

B

78
.2

S

77
.7

F

78
.9

H

77
.6

N

par
se

r

62
.1

B

58
.7

S

57
.4

F

60
.3

H

50
.6

N

per
lb

m
k

81
.6

B

81
.8

S

77
.9

F

81
.0

H

77
.6

N

tw
olf

71
.7

B

71
.3

S
71

.0
F

71
.7

H
70

.5
N

vo
rte

x
69

.2

B

67
.6

S

68
.8

F

68
.5

H

65
.1

N

vp
r

idle
spawn
sync
homefree
istall
dcache
busy

(b) Normalized region execution time with failed speculation incorporated.

Figure 3.18. Impact of various communication latencies on the select benchmarks. B is our baseline which models 10 cycle
interprocessor communication latency, S modifies B to have a zero-cycle spawn latency, F modifies B to have a zero-cycle
forwarding latency, H modifies B to pass the homefree token in zero cycles, and N has no interprocessor communication
latency.

67

experiment has no forwarding latency, and the H experiment has no latency for forwarding the homefree token.

When spawn latency is zero (S), the remaining spawn segment for nearly all applications is negligible, indicating

that spawn latency is not a bottleneck. For GO and M88KSIM, performance is slightly worse when we eliminate spawn

latency: since there is more parallel overlap, there is also a greater incidence of violated data dependences and hence

a larger failed speculation segment.

When the forwarding latency is set to zero (F), the sync portion is reduced for most applications. However, this

component of execution time is not removed completely, and in some cases it is only slightly reduced—this indicates

that the actual communication of signal messages (once they are ready) is not a bottleneck.

When the latency of sending the homefree token is set to zero (H), performance improves slightly in eight cases.

However, for the application which is the most constrained by the homefree mechanism (LI), this decreased latency

shrinks the homefree segment only slightly, and does not have much impact on overall performance—further support-

ing the claim that the homefree segment for this application is the result of load imbalance. These results indicate that

the communication latency for passing the homefree token is not a bottleneck.

Finally, we measure the impact of zero-cycle latency for all three communication events at once (N). Interestingly,

for all but one case (M88KSIM) this results in better performance than for any of the previous experiments, indicating

that all three communication latencies must be improved in order to achieve an overall performance benefit. Intuitively,

since all three communication events are potential serialization points for parallel execution, lowering the latency for

just one in isolation results simply in spending more time waiting for another. For 11 of the 15 benchmarks, however,

lowering all three latencies did not have a large impact on overall region performance—hence a more expensive inter-

processor communication mechanism is likely not worth the cost.

An inter-processor communication latency of 10 cycles is itself quite fast. Can speedups be achieved with larger

communication latencies? Figure 3.19 shows the impact of varying all three communication latencies simultaneously

from zero to thirty cycles. About six of the fifteen applications are extremely sensitive to the communication latencies.

Spawn time is the component that increases the most: since it is the first latency to occur for each epoch, it receives a

majority of the blame. The increase in the sync segment is less pronounced, while the homefree segment only increases

slowly for COMPRESS. One application (LI) no longer speeds up when communication latency is 20 cycles, while five

applications (CRAFTY, LI, MCF, PARSER, and PERLBMK) no longer speed up when communication latency is 30

68

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
5.

2
0

10
6.

0
10

10
7.

0
20

10
8.

7
30

bzip
2

71
.2

0
77

.1
10

84
.6

20
93

.2
30

gcc

47
.1

0
49

.0
10

51
.2

20
53

.7
30

co
m

pre
ss

68
.4

0
77

.5
10

90
.2

20
10

5.
1

30
cr

af
ty

64
.9

0
69

.3
10

73
.9

20
78

.6
30

gap

83
.0

0
84

.3
10

87
.7

20
92

.5
30

go

40
.9

0
42

.6
10

46
.4

20
50

.3
30

ijp
eg

90
.4

0
95

.7
10

10
7.

2
20

11
9.

0
30

li

73
.7

0
75

.7
10

75
.6

20
84

.1
30

m
88

ks
im

61
.8

0
70

.9
10

84
.7

20
10

3.
7

30

m
cf

77
.6

0
78

.4
10

86
.6

20
98

.7
30

par
se

r

50
.6

0
62

.1
10

92
.1

20
11

8.
8

30

per
lb

m
k

77
.6

0
81

.6
10

84
.9

20
90

.2
30

tw
olf

70
.5

0
71

.7
10

74
.5

20
79

.3
30

vo
rte

x

65
.1

0
69

.2
10

75
.1

20
82

.7
30

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Normalized region execution time.

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
5.

2
0

10
6.

0
10

10
7.

0
20

10
8.

7
30

bzip
2

71
.2

0
77

.1
10

84
.6

20
93

.2
30

gcc

47
.1

0
49

.0
10

51
.2

20
53

.7
30

co
m

pre
ss

68
.4

0
77

.5
10

90
.2

20
10

5.
1

30

cr
af

ty

64
.9

0
69

.3
10

73
.9

20
78

.6
30

gap

83
.0

0
84

.3
10

87
.7

20
92

.5
30

go

40
.9

0
42

.6
10

46
.4

20
50

.3
30

ijp
eg

90
.4

0
95

.7
10

10
7.

2
20

11
9.

0
30

li

73
.7

0
75

.7
10

75
.6

20
84

.1
30

m
88

ks
im

61
.8

0
70

.9
10

84
.7

20
10

3.
7

30

m
cf

77
.6

0
78

.4
10

86
.6

20
98

.7
30

par
se

r

50
.6

0
62

.1
10

92
.1

20
11

8.
8

30

per
lb

m
k

77
.6

0
81

.6
10

84
.9

20
90

.2
30

tw
olf

70
.5

0
71

.7
10

74
.5

20
79

.3
30

vo
rte

x

65
.1

0
69

.2
10

75
.1

20
82

.7
30

vp
r

idle
spawn
sync
homefree
istall
dcache
busy

(b) Normalized region execution time failed speculation incorporated.

Figure 3.19. Impact of varying communication latency (by tens of cycles).

cycles. These results suggest that an inter-processor communication latency of no more than 20 cycles is necessary

for good performance on general-purpose programs.

3.6.2 Memory System

Our scheme for TLS uses the caches and coherence scheme to implement data dependence tracking and buffering

speculative state, and hence requires an efficient underlying memory system. In this section we investigate the sensi-

tivity of TLS execution to three aspects of the memory system’s design: the bandwidth of the interconnection network

between processors, the number of data references handlers processor, and the size and associativity of the first-level

data caches.

Figure 3.20 shows the impact of varying the crossbar bandwidth from 8 to 32 bytes per cycle—for our baseline

architecture it is 8 bytes per cycle. Since we model a fully-connected crossbar, each processor may be connected to

one bank of the unified, second-level cache at a time. Recall that we do model the extra overhead of piggybacking

epoch numbers along with speculative coherence messages. According to the figure, increasing crossbar bandwidth has

only a small impact on performance which is similar for both sequential and speculative executions; the exception is

69

|

0

|

20

|

40

|

60

|

80

|

100

 Normalized Region Execution Time

100.08
96.416
95.832

bzip2

100.08
98.116
97.832

gcc

100.08
88.816
88.632

com
press

100.08
97.816
96.632

crafty

100.08
99.016

97.432

gap

100.08
97.216
96.232

go
100.08
99.716
99.732

ijpeg

100.08
92.716

90.832

li

100.08
99.516
99.232

m
88ksim

100.08
91.416

89.432

m
cf

100.08
98.116
97.732

parser

100.08
97.716
98.932

perlbm
k

100.08
99.516
99.632

twolf

100.08
97.116
96.432

vortex

100.08
99.016
98.532

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(a)
T

he
sequentialversion

relative
to

the
8

byte
per

cycle
sequentialversion.

|

0

|

50

|

100

 Normalized Region Execution Time

106.08
107.816
107.232

bzip2

77.18
73.616
72.732

gcc

49.08
30.016

27.732

com
press

77.58
72.516
71.332

crafty

69.38
63.016
61.932

gap

84.38
76.416

74.432

go

42.68
41.316
41.132

ijpeg

95.78
90.716

87.832

li

75.78
69.616
71.032

m
88ksim

70.98
63.216

61.232

m
cf

78.48
73.716
72.232

parser

62.18
60.416
60.032

perlbm
k

81.68
78.216
77.732

twolf

71.78
68.016
67.332

vortex

69.28
62.816
61.532

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(b)
T

he
T

L
S

version
relative

to
the

8
byte

per
cycle

sequentialversion.

|

0

|

50

|

100

 Normalized Region Execution Time

106.08
111.816
111.932

bzip2

77.18
75.016
74.432

gcc

49.08
33.816

31.232

com
press

77.58
74.216
73.832

crafty

69.38
63.716
63.532

gap

84.38
78.616
77.332

go

42.68
41.416
41.232

ijpeg

95.78
97.916
96.732

li

75.78
70.016
71.632

m
88ksim

70.98
69.216
68.432

m
cf

78.48
75.116
74.032

parser

62.18
61.916
60.732

perlbm
k

81.68
78.516
78.132

twolf

71.78
70.016
69.832

vortex

69.28
63.516
62.432

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(c)
T

he
T

L
S

version
relative

to
the

corresponding
sequentialversion

(for
each

bandw
idth).

F
ig

u
re

3.20.
V

aryin
g

cro
ssb

ar
b

an
d

w
id

th
fro

m
8

to
32

bytes
p

er
cycle

(fo
r

th
e

select
b

en
ch

m
arks).

N
o

te
th

at
o

u
r

b
aselin

e
arch

itectu
re

h
as

a
cro

ssb
ar

b
an

d
w

id
th

o
f

8
bytes

p
er

cycle.

70

COMPRESS which improves significantly when bandwidth is increased from 8 to 16 bytes per cycle—this indicates that

much of the large dcache component for COMPRESS is due to crossbar transfer time, as opposed to bank contention

or other memory system bottleneck.

Figure 3.21 shows the impact of varying the number of data reference handlers from 4 to 32—for our baseline

architecture it is 16. This experiment has almost no performance impact for the sequential versions, indicating that

4 data reference handlers is sufficient for sequential execution. For the speculative versions, other than for VORTEX,

increasing the number of data reference handlers does not have a significant performance impact—4 data reference

handlers per processor are sufficient for speculative execution as well.

In Figure 3.22 we vary the size of the data caches from 8KB to 64KB—our baseline architecture has a 32KB

data cache per processor. This experiment has a significant impact on both the sequential and TLS versions of the

applications, with larger caches performing better. As is evident in Figure 3.22(d) for the TLS versions, larger caches

also reduce the amount of failed speculation due to replacement. For the 8KB caches, CRAFTY, GO, IJPEG, PARSER,

and VORTEX all suffer a significant amount of failed speculation due to replacement, indicating that 8KB caches alone

are insufficient. Performance improves for 16KB caches, while 64KB caches do not offer a significant improvement

over 32KB caches.

Finally, in Figure 3.23 we evaluate the impact of having direct-mapped first-level data caches, as opposed to the

two-way set-associative data caches used in our baseline architecture. We observe that with direct-mapped caches there

is an increase in failed speculation for many benchmarks, due to an increase in violations related to the replacement

of cache lines in speculative states. This effect could be mitigated by the addition of a victim cache [37]: a small,

fully associative buffer which saves recently evicted cache lines. We note that decent speedup is still possible with

direct-mapped caches, but that 2-way set-associative caches perform significantly better (an average of 6.6% better

when measured relative to the sequential execution with the corresponding associativity, as shown in Figure 3.23(c)).

3.6.3 Reorder Buffer Size and Complexity

Another important architectural feature is the size and complexity of the pipeline. In this section we investigate the

impact on TLS execution of two aspects of issue logic design: support for out-of-order execution, and the size of the

instruction window.

71

|

0

|

20

|

40

|

60

|

80

|

100

 Normalized Region Execution Time

100.04
100.08
100.016
100.032

bzip2

100.04
100.08
100.016
100.032

gcc

100.04
100.08
100.016
100.032

com
press

100.04
100.08
100.016
100.032

crafty

100.04
100.08
100.016
100.032

gap

100.04
100.08
100.016
100.032

go
100.04
100.08
100.016
100.032

ijpeg

100.04
100.08
100.016
100.032

li

100.04
100.08
100.016
100.032

m
88ksim

100.04
100.08
100.016
100.032

m
cf

100.04
100.08
100.016
100.032

parser

100.04
100.08
100.016
100.032

perlbm
k

100.04
99.58
100.016
100.032

twolf

100.04
100.08
100.016
100.032

vortex

100.04
100.08
100.016
100.032

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(a)
T

he
sequentialversion

relative
to

the
sequentialversion

w
ith

16
data

reference
handlers.

|

0

|

50

|

100

 Normalized Region Execution Time

113.84
105.78
106.016
106.032

bzip2

77.84
77.28
77.116
77.032

gcc

50.14
51.18

49.016
54.832

com
press

77.74
77.68
77.516
77.432

crafty

69.94
69.38
69.316
69.332

gap

84.44
84.28
84.316
84.232

go

42.74
42.68
42.616
42.632

ijpeg

96.44
95.88
95.716
95.832

li

76.64
75.78
75.716
75.732

m
88ksim

70.94
70.98
70.916
70.832

m
cf

78.84
78.68
78.416
78.632

parser

62.24
62.48
62.116
62.832

perlbm
k

81.24
80.98
81.616
81.032

twolf

73.24
71.78
71.716
71.732

vortex

70.74
69.28
69.216
69.132

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(b)
T

he
T

L
S

version
relative

to
the

sequentialversion
w

ith
16

data
reference

handlers.

|

0

|

50

|

100

 Normalized Region Execution Time

113.84
105.78
106.016
106.032

bzip2

77.84
77.28
77.116
77.032

gcc

50.14
51.18

49.016
54.832

com
press

77.74
77.68
77.516
77.432

crafty

69.94
69.38
69.316
69.332

gap

84.44
84.28
84.316
84.232

go

42.74
42.68
42.616
42.632

ijpeg

96.44
95.88
95.716
95.832

li

76.64
75.78
75.716
75.732

m
88ksim

70.94
70.98
70.916
70.832

m
cf

78.84
78.68
78.416
78.632

parser

62.24
62.48
62.116
62.832

perlbm
k

81.24
81.38
81.616
81.032

twolf

73.24
71.78
71.716
71.732

vortex

70.74
69.28
69.216
69.132

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(c)
T

he
T

L
S

version
relative

to
the

corresponding
sequentialversion

(for
each

num
ber

of
handlers).

F
ig

u
re

3.21.V
aryin

g
th

e
n

u
m

b
er

o
f

d
ata

referen
ce

h
an

d
lers

fro
m

4
to

32
(fo

r
th

e
select

b
en

ch
m

arks).
N

o
te

th
at

o
u

r
b

aselin
e

arch
itectu

re
h

as
16

d
ata

referen
ce

h
an

d
lers

p
er

p
ro

cesso
r.

72

|

0

|

50

|

100

 Normalized Region Execution Time

102.58K
102.016K

100.032K
102.664K

bzip2

102.98K
101.016K
100.032K
99.364K

gcc

100.18K
99.916K
100.032K
100.064K

com
press

106.48K
102.816K

100.032K
99.164K

crafty

103.48K
101.716K

100.032K
101.164K

gap

107.08K
102.616K

100.032K
97.164K

go

100.98K
100.316K
100.032K
100.064K

ijpeg

112.98K
111.516K

100.032K
90.364K

li

97.78K
100.216K
100.032K
102.464K

m
88ksim

109.28K
103.916K

100.032K
95.764K

m
cf

102.28K
101.016K
100.032K
98.964K

parser

107.28K
102.416K

100.032K
100.464K

perlbm
k

115.38K
105.416K

100.032K
99.364K

twolf

107.98K
101.816K

100.032K
98.564K

vortex

106.88K
103.916K

100.032K
98.564K

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(a)
T

he
sequentialversion

relative
to

the
32K

B
sequentialversion.

|

0

|

50

|

100

 Normalized Region Execution Time

107.78K
107.416K
106.032K
107.764K

bzip2

81.28K
78.316K
77.132K
76.364K

gcc

49.78K
49.716K
49.032K
50.864K

com
press

93.68K
84.016K

77.532K
73.264K

crafty

76.98K
71.016K

69.332K
69.664K

gap

97.98K
88.416K

84.332K
82.764K

go

47.18K
43.516K
42.632K
42.364K

ijpeg

98.88K
98.716K

95.732K
95.764K

li

73.28K
73.216K
75.732K

71.464K

m
88ksim

74.88K
72.316K
70.932K
69.864K

m
cf

81.08K
79.116K
78.432K
78.564K

parser

66.98K
65.016K

62.132K
61.664K

perlbm
k

92.08K
84.316K

81.632K
79.264K

twolf

89.98K
78.316K

71.732K
70.164K

vortex

75.38K
71.516K

69.232K
68.164K

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(b)
T

he
T

L
S

version
relative

to
the

32K
B

sequentialversion.

|

0

|

50

|

100

 Normalized Region Execution Time

105.18K
105.416K
106.032K
104.964K

bzip2

78.98K
77.516K
77.132K
76.864K

gcc

49.78K
49.716K
49.032K
50.764K

com
press

88.08K
81.816K

77.532K
73.964K

crafty

74.48K
69.816K
69.332K
68.964K

gap

91.58K
86.116K

84.332K
85.264K

go

46.78K
43.416K
42.632K
42.364K

ijpeg

87.58K
88.516K

95.732K
105.964K

li

74.98K
73.116K
75.732K

69.864K

m
88ksim

68.58K
69.616K
70.932K
72.964K

m
cf

79.28K
78.316K
78.432K
79.464K

parser

62.48K
63.516K
62.132K
61.464K

perlbm
k

79.88K
79.916K
81.632K

79.864K

twolf

83.38K
76.916K

71.732K
71.164K

vortex
70.58K

68.816K
69.232K
69.164K

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(c)
T

he
T

L
S

version
relative

to
the

corresponding
sequentialversion

(for
each

size).

|

0

|

20

|

40

|

60

|

80

|

100

 Failed Speculation (%)

7.18K
6.716K
6.732K
6.564K

bzip2

8.28K
7.416K
7.232K
7.264K

gcc

0.08K
0.016K
0.032K
0.064K

com
press

13.08K
8.616K

5.932K
3.664K

crafty

2.18K
0.316K
0.232K
0.164K

gap

36.88K
32.316K

30.632K
30.964K

go

6.98K
2.016K
1.232K
1.064K

ijpeg

4.28K
4.216K
3.032K
2.964K

li

51.68K
52.416K
54.832K

52.664K

m
88ksim

15.08K
14.516K
14.332K
14.564K

m
cf

11.18K
9.716K
9.532K
9.464K

parser

0.08K
0.016K
0.032K
0.064K

perlbm
k

0.88K
0.616K
0.732K
0.464K

twolf

16.28K
12.216K

6.632K
6.364K

vortex

15.98K
14.216K
13.732K
13.864K

vpr

C
H

A
IN

R
E

P
L

R
IN

V

D
IN

V

D
IN

V
S

P

(d)
Percentfailed

speculation
for

the
T

L
S

version.

F
ig

u
re

3.22.V
aryin

g
d

ata
cach

e
size

fro
m

8K
B

to
64K

B
(fo

r
th

e
select

b
en

ch
m

arks).
N

o
te

th
at

o
u

r
b

aselin
e

arch
itectu

re
h

as
a

32K
B

d
ata

cach
e

p
er

p
ro

cesso
r.

73

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e 10
0.

0

1

10
1.

8

2

bzip
2

10
0.

0

1

98
.7

2

gcc

10
0.

0

1

99
.1

2

co
m

pre
ss

10
0.

0

1

96
.7

2

cr
af

ty

10
0.

0

1

97
.9

2

gap

10
0.

0

1

97
.9

2

go
10

0.
0

1
99

.8

2

ijp
eg

10
0.

0

1

97
.8

2
li

10
0.

0

1

98
.3

2

m
88

ks
im

10
0.

0

1

98
.4

2

m
cf

10
0.

0

1

99
.4

2

par
se

r

10
0.

0

1

97
.3

2

per
lb

m
k

10
0.

0

1

96
.6

2

tw
olf

10
0.

0

1

97
.7

2

vo
rte

x

10
0.

0

1

98
.0

2

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) The sequential version relative to the direct-mapped sequential version.

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

11
5.

1

1

10
8.

0

2

bzip
2

81
.1

1

76
.1

2

gcc

52
.0

1

48
.6

2

co
m

pre
ss

85
.0

1

75
.0

2

cr
af

ty

77
.2

1

67
.8

2

gap

93
.3

1

82
.5

2

go

53
.4

1

42
.5

2

ijp
eg

93
.7

1

93
.7

2
li

71
.9

1

74
.4

2

m
88

ks
im

72
.5

1

69
.8

2

m
cf

80
.9

1

77
.9

2

par
se

r

64
.3

1
60

.5

2

per
lb

m
k

81
.1

1

78
.8

2

tw
olf

89
.7

1

70
.1

2

vo
rte

x

77
.3

1

67
.8

2

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) The TLS version relative to the direct-mapped sequential version.

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

11
5.

1

1

10
6.

0

2

bzip
2

81
.1

1

77
.1

2

gcc

52
.0

1

49
.0

2

co
m

pre
ss

85
.0

1

77
.5

2

cr
af

ty

77
.2

1

69
.3

2

gap

93
.3

1

84
.3

2

go

53
.4

1

42
.6

2

ijp
eg

93
.7

1

95
.7

2
li

71
.9

1

75
.7

2

m
88

ks
im

72
.5

1

70
.9

2

m
cf

80
.9

1

78
.4

2

par
se

r

64
.3

1

62
.1

2

per
lb

m
k

81
.1

1

81
.6

2

tw
olf

89
.7

1

71
.7

2

vo
rte

x

77
.3

1

69
.2

2

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(c) The TLS version relative to the corresponding sequential version (for each associativity).

Figure 3.23. Varying data cache associativity from direct-mapped (1) to 2-way (for the select benchmarks). Note that our
baseline architecture is 2-way set-associative.

74

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

18
1.

9

I

10
0.

0

B

bzip
2

13
5.

9

I

10
0.

0

B

gcc

10
0.

4

I

10
0.

0

B

co
m

pre
ss

14
7.

5

I

10
0.

0

B

cr
af

ty

11
2.

9

I

10
0.

0

B

gap

14
1.

4

I

10
0.

0

B

go
18

1.
3

I
10

0.
0

B

ijp
eg

12
6.

5

I

10
0.

0

B
li

13
9.

2

I

10
0.

0

B

m
88

ks
im

14
3.

9

I

10
0.

0

B

m
cf

23
9.

5

I

10
0.

0

B

par
se

r

14
0.

0

I

10
0.

0

B

per
lb

m
k

82
.5

I

10
0.

0

B

tw
olf

14
4.

6

I

10
0.

0

B

vo
rte

x

15
2.

7

I

10
0.

0

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) The sequential version relative to the out-of-order sequential version (B).

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

19
9.

9

I

10
6.

0

B

bzip
2

12
7.

1

I

77
.1

B

gcc

49
.2

I

49
.0

B

co
m

pre
ss

13
7.

3

I

77
.5

B

cr
af

ty

82
.8

I

69
.3

B

gap

12
3.

3

I

84
.3

B

go

90
.9

I

42
.6

B

ijp
eg

11
3.

5

I

95
.7

B
li

11
9.

0

I

75
.7

B

m
88

ks
im

16
1.

4

I

70
.9

B

m
cf

10
8.

8

I

78
.4

B

par
se

r

81
.0

I
62

.1
B

per
lb

m
k

13
2.

8

I

81
.6

B

tw
olf

11
5.

9

I

71
.7

B

vo
rte

x

10
0.

4

I

69
.2

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) The TLS version relative to the out-of-order sequential version.

|0

|50

|100
|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
9.

9

I

10
6.

0

B

bzip
2

93
.5

I

77
.1

B

gcc

49
.0

I

49
.0

B

co
m

pre
ss

93
.1

I

77
.5

B

cr
af

ty

73
.3

I

69
.3

B

gap

87
.2

I

84
.3

B

go

50
.1

I

42
.6

B

ijp
eg

89
.7

I

95
.7

B
li

85
.5

I

75
.7

B

m
88

ks
im

11
2.

2

I

70
.9

B

m
cf

45
.4

I

78
.4

B

par
se

r

57
.8

I

62
.1

B

per
lb

m
k

16
1.

0

I

81
.6

B

tw
olf

80
.2

I

71
.7

B

vo
rte

x

65
.7

I

69
.2

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(c) The TLS version relative to the corresponding sequential version (for each pipeline type).

Figure 3.24. Impact of issuing memory references out-of-order. I models an in-order-issue pipeline, and B (our baseline)
models an out-of-order-issue pipeline.

75

Figure 3.24 compares the speedup of TLS execution on an in-order-issue pipeline (I) to that of an out-of-order-

issue pipeline (B), which is our baseline architecture. We observe that the out-of-order issue machine enhances TLS

execution more so than sequential execution for 10 of the 15 applications. It is apparent that the biggest gain of

out-of-order execution is in reducing synchronization (sync), most notably in MCF. When out-of-order execution is

supported, the pipeline may issue around any stalled reference to the forwarding frame, thus decreasing the impact of

the synchronization mechanisms on execution. This result emphasizes the complementary behavior of TLS techniques

and out-of-order superscalar techniques.

Each generation of microprocessor tends to have an increasingly-large reorder buffer, so it is important to under-

stand whether this trend benefits or hinders TLS execution. Figure 3.25 shows the impact of varying the size of the

reorder buffer from 64 to 256 entries—our baseline architecture has a reorder buffer of 128 entries. Surprisingly, vary-

ing the size of the reorder buffer beyond 64 entries does not impact the performance of the sequential benchmarks,

indicating that instruction issue is not a bottleneck for the speculative regions in those applications. Varying the reorder

buffer size impacts performance for the TLS applications in three different ways. First, there are nine applications that

are not affected—this indicates that the additional reorder buffer entries are not utilized by the TLS executions of

the speculative regions that are parallelized. Second, for two applications (M88KSIM and MCF) the amount of failed

speculation increases—this is due to a greater number of memory references that are issued out-of-order, which in

turn can increase the odds of a data dependence violation. Third, in several cases performance improves for the TLS

execution more than for the sequential execution (BZIP2, GCC, IJPEG, and VORTEX). These applications mostly ben-

efit from decreased sync segments, which indicates less time spent stalled waiting for forwarded values. The larger

reorder buffer size allows more instructions to be issued around such stalled waits, therefore decreasing the impact of

that potential serialization. This important result demonstrates that increasing reorder buffer sizes and TLS execution

are also complementary, and that the performance benefits of TLS cannot be achieved solely by increasing the size of

the reorder buffer.

3.7 Implementation Alternatives

In this section we investigate design alternatives for some features of TLS hardware support. First, we compare the

performance of designs with less aggressive hardware support than ours. Second, we discuss the issues involved in

76

|

0

|

50

|

100

 Normalized Region Execution Time

100.064
100.096
100.0128

bzip2

100.064
100.096
100.0128

gcc

100.064
100.096
100.0128

com
press

100.064
100.096
100.0128

crafty

100.064
100.096
100.0128

gap

100.064
100.096
100.0128

go
100.064
100.096
100.0128

ijpeg

100.064
100.096
100.0128

li

100.064
100.096
100.0128

m
88ksim

100.064
100.096
100.0128

m
cf

100.064
100.096
100.0128

parser

100.064
100.096
100.0128

perlbm
k

99.564
100.096
100.0128

twolf

100.064
100.096
100.0128

vortex

100.064
100.096
100.0128

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(a)
T

he
sequentialversion

relative
to

the
128-entry

sequentialversion.

|

0

|

50

|

100

 Normalized Region Execution Time

118.664
109.796

106.0128

bzip2

81.164
78.496
77.1128

gcc

49.064
49.096
49.0128

com
press

77.564
77.696
77.5128

crafty

72.164
70.096
69.3128

gap

85.164
84.596
84.3128

go

47.364
43.396
42.6128

ijpeg

96.364
96.296
95.7128

li

73.164
67.096

75.7128

m
88ksim

69.064
70.596
70.9128

m
cf

78.564
78.896
78.4128

parser

62.264
62.496
62.1128

perlbm
k

81.764
81.696
81.6128

twolf

83.064
77.896

71.7128

vortex

69.864
69.396
69.2128

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(b)
T

he
T

L
S

version
relative

to
the

128-entry
sequentialversion.

|

0

|

50

|

100

 Normalized Region Execution Time

118.664
109.796

106.0128

bzip2

81.164
78.496
77.1128

gcc

49.064
49.096
49.0128

com
press

77.564
77.696
77.5128

crafty

72.164
70.096
69.3128

gap

85.164
84.596
84.3128

go

47.364
43.396
42.6128

ijpeg

96.364
96.296
95.7128

li

73.164
67.096

75.7128

m
88ksim

69.064
70.596
70.9128

m
cf

78.564
78.896
78.4128

parser

62.264
62.496
62.1128

perlbm
k

82.164
81.696
81.6128

twolf

83.064
77.896

71.7128

vortex

69.864
69.396
69.2128

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(c)
T

he
T

L
S

version
relative

to
the

corresponding
sequentialversion

(for
each

reorder
buffer

size).

F
ig

u
re

3.25.
Im

p
act

o
f

varyin
g

th
e

reo
rd

er
bu

ffer
size,

fro
m

64
to

256
en

tries.
N

o
te

th
at

o
u

r
b

aselin
e

arch
itectu

re
h

as
a

128-en
try

reo
rd

er
bu

ffer.

77

tracking data dependences by extending a snoopy, write-through coherence scheme (as opposed to our invalidation-

based, write-back coherence scheme). Second, we examine implementation alternatives for the forwarding frame.

Third, we take a closer look at violation detection—whether violations should be detected by poll or interrupt, and

whether it is beneficial to suspend an epoch rather than suffer from a violation due to loss of speculative state. Finally,

we determine whether the homefree token should be a mechanism that is visible to the hardware, or whether a software-

only implementation is sufficient.

3.7.1 Less Aggressive Designs

Here we briefly attempt to justify our point in the design space of TLS hardware support. While a range of complex-

ity is possible, our scheme attempts to minimize the size and complexity of TLS-specific structures while maximizing

performance. While more complex hardware support such as the highly specialized Multiscalar [27, 65] would likely

provide improved performance at a higher cost, it is important to understand the performance advantages of our ap-

proach over schemes that are less complex. At the simplest end of this design space is deep uniprocessor speculation

supported by a large instruction window. Another scheme that is less complex than ours is to simply use the load and

store queues to buffer speculative data. In this section, we show that neither of these less-complex schemes is sufficient

to obtain the performance improvements of our baseline scheme.

One of the biggest potential performance advantages of TLS is the exploitation of control independence [44]: in

contrast to a single, extremely-large instruction window with deep uniprocessor speculation, the independent specu-

lative threads of a TLS architecture allow logically-later threads to be sheltered from branch mispredicts in logically-

earlier threads. But is there really a performance advantage to this inter-thread control independence? Figure 3.26

shows an approximation of the benefits of control independence. In the D experiment, any branch mispredict causes

speculation to fail for all currently-running, logically-later epochs. Control-dependence (D) results in an overwhelming

amount of failed speculation for every application except COMPRESS, while control-independence (I) shows an enor-

mous improvement. Figure 3.26(b) shows the breakdown of time spent on failed speculation (similar to Figure 3.12),

with the additional violation reason of CTRL, which represents those caused by control dependences. We observe

that in every case, control dependences overwhelm every other form of violation, and only in one case (COMPRESS)

is speedup achieved under this restricted model (because the speculative region in COMPRESS has highly-predictable

78

|0

|100

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

I

12
0.

3

D

bzip
2

77
.1

I

14
4.

0

D

gcc

49
.0

I
49

.4

D

co
m

pre
ss

77
.5

I

17
4.

0

D

cr
af

ty

69
.3

I

12
4.

0

D

gap

84
.3

I

14
8.

9

D

go

42
.6

I

10
2.

5

D

ijp
eg

95
.7

I

22
7.

1

D
li

75
.7

I

12
4.

6

D

m
88

ks
im

70
.9

I

18
2.

6

D

m
cf

78
.4

I

25
7.

2

D

par
se

r

62
.1

I

19
9.

8

D

per
lb

m
k

81
.6

I

10
1.

8

D

tw
olf

71
.7

I

14
6.

2

D

vo
rte

x

69
.2

I

14
7.

9

D

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Execution time.

|0

|20

|40

|60

|80

|100

 F
ai

le
d

 S
p

ec
u

la
ti

o
n

 (
%

)

6.
7

I

21
.9

D

bzip
2

7.
2

I

44
.3

D

gcc

0.
0

I

1.
0

D

co
m

pre
ss

5.
9

I

49
.5

D

cr
af

ty

0.
2

I

24
.9

D

gap

30
.6

I

61
.6

D

go

1.
2

I

50
.0

D

ijp
eg

3.
0

I

81
.0

D
li

54
.8

I

68
.4

D

m
88

ks
im

14
.3

I

80
.5

D

m
cf

9.
5

I

75
.7

D

par
se

r

0.
0

I

75
.4

D

per
lb

m
k

0.
7

I

21
.4

D

tw
olf

6.
6

I

48
.3

D

vo
rte

x

13
.7

I

55
.7

D

vp
r

CHAIN

REPL

RINV

DINV

DINVSP

CTRL

(b) Failed speculation.

Figure 3.26. Benefits of control independence. I is control independent (our baseline) and D is control dependent.

branches). Hence control independence is an extremely important feature of TLS.

Another design that requires less hardware support than ours is to simply extend the load and store queues to buffer

speculative state, rather than extending the first-level data caches. While the data caches can hold a greater amount of

state, extending them to support TLS does require a non-trivial amount of real-estate. But are reasonably-sized load

and store queues sufficient to capture all of the necessary speculative state?

Recall that we need to track which memory locations have been speculatively loaded, as well as buffer speculative

modifications from memory. We can extend the load queue to track which loads are speculative (or extend the store

queue to also buffer loads if there is no load queue), and extend the store queue to buffer speculative stores. Both

queues need to retain this speculative state until the corresponding epoch receives the homefree token and commits.

Should an epoch completely fill one of these queues, it can simply stall until it is homefree. Thus the comparison of

our approach with this queue-based approach is solely a matter of cost versus performance.

We estimate the performance of such a queue-based approach by modeling a limited version of our speculative

coherence scheme: the number of speculative loads and stores per epoch are limited to model reasonable-sized load

79

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

11
8.

2
16

11
7.

6
32

10
6.

0
B

bzip
2

11
0.

7
16

98
.7

32
77

.1
B

gcc

10
8.

2
16

98
.1

32
49

.0
B

co
m

pre
ss

12
3.

1
16

10
8.

6
32

77
.5

B
cr

af
ty

10
6.

6
16

96
.6

32
69

.3
B

gap

11
5.

5
16

10
3.

5
32

84
.3

B

go

10
0.

6
16

92
.2

32
42

.6
B

ijp
eg

11
0.

6
16

10
6.

7
32

95
.7

B

li

73
.6

16
10

8.
0

32
75

.7
B

m
88

ks
im

10
8.

9
16

82
.1

32
70

.9
B

m
cf

20
1.

5
16

16
9.

0
32

78
.4

B

par
se

r

99
.0

16
79

.5
32

62
.1

B

per
lb

m
k

85
.1

16
83

.7
32

81
.6

B

tw
olf

10
8.

7
16

94
.8

32
71

.7
B

vo
rte

x

13
1.

9
16

12
2.

4
32

69
.2

B

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

Figure 3.27. Comparison with hardware support that only uses the load/store queues as speculative buffers. 16 models
16-entry load and store speculative buffers, 32 models 32-entry load and store speculative buffers, and B is our baseline
hardware support (using the first-level data caches as speculative buffers).

and store queues. Figure 3.27 compares the performance of our baseline hardware support (B) with that of two queue-

based approaches, one with 16-entry load and store queues and one with 32-entry load and store queues. With 16-entry

queues, 12 of the 15 applications slow down. Note that when any queue becomes full, the corresponding epoch stalls

until it receives the homefree token, which enlarges the homefree segment in the result performance bar. Only in

one case, M88KSIM, does the queue-based approach out-perform our baseline: the queue-based approach indirectly

synchronizes dependences between epochs, drastically reducing the amount of failed speculation. With 32-entry

queues, 7 of the 15 applications still slow down, and another 4 simply break even. For the remaining 4 applications,

speedup is significantly less than that of our baseline architecture. These results indicate that a queue-based approach

is not sufficient to capture interesting performance benefits for most applications.

3.7.2 Snoopy, Write-Through Coherence

In our approach to hardware support for tracking data dependences and buffering speculative state, we extend

invalidation-based cache coherence. An alternative approach would be to extend a snoopy, write-through, update-

based coherence scheme—an example of such a scheme is that used in the Hydra [34], which introduces speculative

buffers between the write-through first-level caches and the unified second-level cache. In keeping with the philosophy

of minimizing speculation-specific structures (such as the speculative buffers in Hydra), we instead propose that the

second-level unified cache is itself extended to have speculative states and to buffer speculative modifications from

regular memory. While a thorough evaluation of such an implementation of snoopy, write-through coherence is beyond

the scope of this dissertation, the following discusses some of the challenges of such an approach.

80

The nature of an update-based coherence scheme with write-through first-level data caches is such that every write

is propagated to the second-level cache and all other processors snoop the bus to update their own caches. To extend

this behavior for TLS, we would piggy-back the epoch number along with each update. This way, only processors

executing epochs that are logically-later than that of the originator of the update message would update their caches.

This implementation would also facilitate implicit forwarding, as defined in Section 3.1.2 and evaluated later in Sec-

tion 4.2.1.

There are three main challenges with the update-based approach. The first is that the commit operation must now be

performed in both the first-level cache and also the unified, second-level cache. The second is the fact that the second-

level cache is polluted with speculative data which must be invalidated when speculation fails, and fresh copies of

those cache lines must be re-loaded from memory. The third difficulty is with supporting multiple speculative writers

of the same cache line: in this case the second-level cache must support replication of cache lines, as will be described

and evaluated for a first-level cache later in Section 4.2.3. The final difficulty is with the scalability of such a scheme.

Sending updates to every processor in a multi-node system when there are a large number of nodes is not feasible.

However, some combination of using snoopy, write-through coherence within each node and invalidation-based, write-

back coherence between nodes is more reasonable.

3.7.3 Implementing the Forwarding Frame

Our scheme for TLS support provides an architected forwarding frame where, as explained in Section 2.3.1, a

certain portion of the stack is designated for synchronizing and forwarding values between epochs. Since the interface

to the forwarding frame is fairly simple, we are free to explore alternatives for its actual implementation. Potential

designs cover a spectrum of hardware complexity, ranging from shared register files to simple forwarding through the

regular memory system. In this section, we explore some of these alternatives and their impact on performance.

Before we evaluate implementation alternatives, it is important to know some statistics on forwarding frame usage.

First, the size of the forwarding frame is set by the compiler on a region-by-region basis, and can vary quite widely.

According to the statistics in Table 3.7.3, any design with a fixed-size structure for forwarding values between epochs

(such as a shared register file) should provide at least 30 entries, as well as a strategy for handling the case of overflow.

One could imagine a design that includes several mechanisms for forwarding of varying complexity and speed, with a

81

Table 3.3. Forwarding Frame Sizes (in 8-byte words)
select max-coverage

Application Avg Max Avg Max

BZIP2 6.0 8 4.9 8
GCC 6.2 20 7.0 32
COMPRESS 8.0 8 9.0 16
CRAFTY 7.3 8 9.3 20
GAP 8.0 8 4.8 8
GO 5.5 12 5.4 16
IJPEG 10.3 28 9.7 28
LI 4.0 4 8.0 8
M88KSIM 6.0 12 6.7 12
MCF 6.0 8 7.5 28
PARSER 5.6 8 6.2 24
PERLBMK 5.0 8 7.8 16
TWOLF 4.7 8 6.0 36
VORTEX 9.0 16 10.7 24
VPR 10.0 12 16.0 16

All 6.5 28 9.5 36

P

FF_loadFF_store

P

FF_loadFF_store

Memory

(a) Through memory.

P

FFB

FF_load

FF_store

P

FFB

FF_load

FF_store

Memory

(b) With a forwarding frame buffer (FFB).

Shared
RegistersP

FF_load

FF_store

P

FF_load

FF_store

Memory

(c) With a shared register file.

Figure 3.28. Implementation alternatives for the forwarding frame, where forwarding frame loads (FF load) and stores
(FF store) are managed by different mechanisms.

smaller number of architected locations for fast communication as well as a slower method (such as regular memory)

that is effectively unlimited in size (similar to procedure calling conventions).

Figure 3.28 illustrates the three implementation alternatives for the forwarding frame that we evaluate. Our baseline

architecture assumes that the forwarding frame is implemented by the cache coherence scheme such that forwarding

frame entries are stored in the first-level data cache, and are forwarded between epochs through the regular memory

system (as shown in Figure 3.28(a)). Our compiler ensures that each forwarding frame entry is allocated to its own

cache line to facilitate forwarding through regular coherence mechanisms which communicate at a cache line granu-

larity. While this simple approach is somewhat wasteful of space in the first-level caches, we will show that it is quite

effective.

Since forwarding frame values may be referenced frequently (especially since gcc, our back-end compiler, does

not register allocate forwarding frame entries), the additional loads and stores may put a strain on the mechanisms for

handling memory references. We evaluate the impact of two increasingly complex mechanisms for implementing the

82

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

B

10
5.

7

F

10
5.

7

R

bzip
2

77
.1

B

76
.4

F

75
.5

R

gcc

49
.0

B
49

.0

F
49

.0
R

co
m

pre
ss

77
.5

B

76
.1

F

74
.8

R

cr
af

ty

69
.3

B

68
.3

F

66
.2

R

gap

84
.3

B

83
.7

F

83
.3

R

go

42
.6

B

42
.3

F

42
.1

R

ijp
eg

95
.7

B

95
.6

F

93
.8

R
li

75
.7

B

72
.7

F

68
.0

R

m
88

ks
im

70
.9

B

70
.4

F

69
.9

R

m
cf

78
.4

B

77
.9

F

76
.7

R

par
se

r

62
.1

B

62
.2

F

61
.7

R

per
lb

m
k

81
.6

B

82
.5

F

81
.8

R

tw
olf

71
.7

B

72
.0

F

70
.6

R

vo
rte

x

69
.2

B

68
.9

F

68
.7

R

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

Figure 3.29. Impact of special hardware support for the forwarding frame. For B, all forwarding frame references are through
regular memory (our baseline); for F, forwarding frame references are first loaded from regular memory but then saved in a
forwarding frame buffer; and for R, all forwarding frame references are to a shared register file.

forwarding frame. First, as shown in Figure 3.28(b), we can use a forwarding frame buffer (FFB) to cache forwarding

frame values. For this alternative, the forwarding frame is allocated in memory as it is for our baseline. However, the

result of the first load of a forwarding frame location is cached in the FFB, and subsequent loads to the same location

are satisfied by the FFB. Second, as shown in Figure 3.28(c), we can implement a shared register file for forwarding

frame references, saving the data caches and memory from the burden of supporting forwarding frame accesses. In

this case, we assume that the inter-processor communication latency for the register file is also 10 cycles.

In Figure 3.29, we evaluate several alternative implementations of the forwarding frame. In our baseline scheme

(B), the forwarding frame is implemented using the memory system. Next, we measure the performance impact

of a forwarding frame buffer (F). Looking at the figure, we see that the use of the forwarding frame buffer does

improve execution time by decreasing the dcache portion of execution for several applications, although this gain is

not dramatic. Finally, we evaluate the performance of a shared register file (R). We observe that again performance is

improved slightly by reducing the dcache segment for many applications, but that the gain over our baseline scheme is

not significant. These results are important since they indicate that allocating the forwarding frame in regular memory

and having it reside in the first-level data caches does not cause conflicts, and does not have a significant negative

impact on performance.

3.7.4 Handling Violations

A key aspect of TLS hardware support is the detection of data dependence violations. Once a violation is detected,

there are several possibilities for how to proceed. In some cases, the violation itself can be avoided by immediately

83

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

B

10
6.

0

S

bzip
2

77
.1

B

77
.1

S

gcc

49
.0

B

49
.0

S

co
m

pre
ss

77
.5

B

75
.3

S

cr
af

ty

69
.3

B

69
.0

S

gap

84
.3

B

84
.5

S

go

42
.6

B

42
.6

S

ijp
eg

95
.7

B

95
.9

S
li

75
.7

B

71
.9

S

m
88

ks
im

70
.9

B

70
.9

S

m
cf

78
.4

B

78
.7

S

par
se

r

62
.1

B

62
.1

S

per
lb

m
k

81
.6

B

81
.6

S

tw
olf

71
.7

B

71
.4

S

vo
rte

x

69
.2

B

69
.3

S

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

Figure 3.30. Impact of support for avoiding any violation due to cache line replacement by immediately suspending the
offending epoch until it becomes homefree. B is our baseline hardware support, and S suspends any epoch that attempts to
replace a speculative cache line until it becomes homefree.

suspending execution until the epoch becomes homefree. When a violation cannot be avoided, there are still several

options for how to notify the software that recovery is necessary and for when recovery should begin. We evaluate

several of these alternatives in this section.

Recall that if a speculatively accessed cache line is replaced, speculation must fail because we can no longer track

dependence violations. In our baseline scheme, if an epoch is about to evict a speculative line from the cache, we

simply let it proceed and signal a dependence violation. Since one epoch is always guaranteed to be non-speculative,

this scheme will not deadlock (since the non-speculative or homefree epoch always makes forward progress). Alter-

natively, we could suspend the epoch that triggered the replacement until it becomes homefree, at which point we can

safely allow the replacement to occur since the cache line is no longer speculative and we are not losing any speculative

state.

In Figure 3.30, we compare the performance impact of support for suspending (S) with that of our baseline (B).

Recall from Figure 3.12 that only CRAFTY and VORTEX suffer from a significant number of violations due to cache

line replacement, although these are responsible for only a small portion of overall execution time. As expected,

they both benefit slightly from this suspend feature. While not visible in Figure 3.30, M88KSIM does suffer from

replacement violations (which account for 0.003% of cycles wasted on failed speculation for that application), and

hence also benefits from this support—although some of the observed benefit is from fortuitous changes in timing that

result in less overall failed speculation. Overall, the ability to avoid violations by suspending is not a big performance

win. We will discuss further uses of the suspend feature later in Chapter 4.

84

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

B

10
6.

0

I

10
1.

8

F

10
2.

9

G

10
4.

5

E

bzip
2

77
.1

B

77
.1

I

75
.4

F

75
.4

G

75
.6

E

gcc

49
.0

B

49
.0

I

49
.0

F

49
.0

G

52
.7

E

co
m

pre
ss

77
.5

B

77
.5

I

76
.0

F

75
.9

G

76
.1

E

cr
af

ty

69
.3

B

69
.3

I

69
.3

F

69
.3

G

68
.9

E

gap

84
.3

B

84
.9

I

83
.2

F

84
.3

G

85
.7

E

go

42
.6

B

42
.6

I

42
.4

F

42
.5

G

43
.8

E

ijp
eg

95
.7

B

95
.7

I

95
.2

F

95
.2

G

96
.9

E
li

75
.7

B
75

.8
I

79
.5

F
78

.9

G

78
.8

E

m
88

ks
im

70
.9

B

71
.0

I

68
.5

F

68
.1

G

74
.0

E

m
cf

78
.4

B

78
.3

I

76
.4

F

77
.1

G

77
.5

E

par
se

r

62
.1

B

62
.1

I

62
.1

F

62
.1

G

62
.2

E

per
lb

m
k

81
.6

B

81
.6

I

81
.4

F

81
.4

G

81
.9

E

tw
olf

71
.7

B

71
.8

I

68
.9

F

69
.2

G

70
.1

E

vo
rte

x

69
.2

B

69
.2

I

64
.9

F

64
.7

G

75
.7

E

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

14
0.

7

B

13
9.

2

I

11
3.

8

F

11
5.

9

G

11
0.

5

E

bzip
2

11
4.

0

B

11
4.

0

I

10
7.

4

F

10
7.

5

G

10
8.

2

E

gcc

10
8.

1

B

10
8.

4

I

83
.0

F

83
.0

G

85
.3

E

co
m

pre
ss

11
9.

8

B

11
9.

9

I

11
7.

5

F

11
7.

6

G

11
8.

0

E

cr
af

ty

10
1.

1

B

10
1.

1

I

10
0.

8

F

10
0.

8

G

10
0.

8

E

gap

11
5.

8

B

11
5.

9

I

10
8.

1

F

10
8.

3

G

10
9.

0

E

go

16
8.

6

B

15
9.

7

I

12
8.

5

F

12
7.

9

G

13
1.

2

E

gzip

55
.1

B

54
.9

I

54
.7

F

54
.6

G

55
.9

E

ijp
eg

10
9.

0

B

10
9.

0

I

10
9.

0

F

10
9.

0

G

10
9.

0

E
li

12
7.

3

B

12
6.

4

I

10
7.

3

F

10
7.

0

G

10
7.

0

E

m
88

ks
im

86
.7

B

86
.7

I

83
.7

F

83
.7

G

87
.7

E

m
cf

12
1.

0

B

12
0.

9

I

10
7.

1

F

10
7.

1

G

10
8.

7

E

par
se

r

10
6.

8

B

10
6.

5

I

94
.9

F

95
.1

G

96
.7

E

per
lb

m
k

15
6.

1

B

15
6.

7

I

11
3.

4

F

11
3.

2

G

11
2.

9

E

tw
olf

96
.4

B
96

.6
I

94
.7

F
94

.5
G

94
.5

E

vo
rte

x

14
0.

7

B

14
0.

6

I

11
0.

8

F

11
1.

1

G

11
1.

8

E

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) The max-coverage versions.

Figure 3.31. Impact of various violation notification and recovery strategies. B is our baseline strategy which polls for a
violation at the end of an epoch, and squashed epochs re-spawn; I modifies B such that squashed epochs store their initial
state and restart independently, without having to respawn; F modifies B such that violations are notified immediately by an
interrupt; G combines both I and F; and E modifies G by not having speculative coherence messages.

85

Next, we evaluate several different implementations for the notification of violations and recovery. In our baseline

scheme, an epoch is notified of any violation at the end of its execution through a polling mechanism. Alternatively,

a violated epoch could be squashed immediately through a user-level interrupt. Such an interrupt would not invoke

the operating system, but simply trigger the mechanisms which recover from failed speculation as well as a user-level

handler for indicating to software that speculation has failed. One design issue is whether an epoch should store its

initial parameters (either in memory or in some special structure) or instead be re-spawned by its parent epoch and

have its initial parameters re-sent.

We examine these possibilities in Figure 3.31. The first experiment (B) shows the performance of our baseline

hardware support—with polling violation detection and re-spawn recovery. The next experiment (I) modifies our

baseline by allowing epochs to store initial state locally; this way, violated epochs can restart independently without

having to re-spawn. Surprisingly, this support does not have a large impact on performance—only for the max-

coverage version of GZIP is the improvement substantial. Next we measure the impact of instant violation notification

through interrupts both in isolation (F) and also when combined with local storage for initial state (G). For the select

versions, five applications are improved significantly by interrupt violation detection, but do not improve further with

the local storage for initial state. For seven of the max-coverage benchmarks the improvement is dramatic, likely

due to the large amount of failed speculation in this version of the applications. This result indicates that interrupt-

based violation notification is important for limiting the negative performance impact of frequent failed speculation.

However, we have not included this support as part our baseline since its complexity is non-trivial, requiring a new

form of interrupt and support for restoring initial state when recovering from failed speculation.

Finally, recall from Section 3.5.2 that one purpose of speculative coherence messages is to provide early notification

of violations. In the final experiment (E), we further modify the previous experiment (G) by eliding speculative

messages from our coherence scheme. For the select benchmarks we observe that most of the benefit of early detection

is lost when speculative coherence messages are unsupported. The performance of the max-coverage benchmarks also

suffers, but to a lesser extent. Hence interrupt-based violation detection and speculative coherence messages are only

beneficial when implemented in tandem.

86

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

B

10
5.

1

E

bzip
2

77
.1

B

76
.3

E

gcc

49
.0

B

47
.5

E

co
m

pre
ss

77
.5

B

77
.4

E

cr
af

ty

69
.3

B

67
.8

E

gap

84
.3

B

83
.2

E

go

42
.6

B

42
.7

E

ijp
eg

95
.7

B

95
.7

E
li

75
.7

B

60
.2

E

m
88

ks
im

70
.9

B

70
.2

E

m
cf

78
.4

B

78
.4

E

par
se

r

62
.1

B

68
.4

E

per
lb

m
k

81
.6

B

80
.9

E

tw
olf

71
.7

B

70
.0

E

vo
rte

x

69
.2

B

68
.3

E

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

Figure 3.32. Benefits of a hardware-visible homefree token. B (our baseline) models a software-only homefree token, while
E models a hardware-visible homefree token.

3.7.5 Implementation of the Homefree Token

Another important design issue is whether the homefree token should be visible to hardware, or simply be im-

plemented with normal software-based synchronization in regular memory. More specifically, a hardware-visible

homefree token implies that hardware is aware of the arrival of the homefree token and at that point can begin com-

mitting the current epoch’s speculative modifications to memory, further hiding the latency of the commit operation.

Figure 3.32 quantifies the performance impact of a hardware-visible homefree token. This feature will only be ben-

eficial if the homefree token frequently arrives before the current epoch is complete—allowing an early commit to

effectively hide the latency of committing speculative modifications to memory. This technique provides a significant

benefit for M88KSIM, and provides a slight improvement for ten other applications. For COMPRESS, this technique

eliminates all time spent waiting for the homefree token to arrive. For the other applications that improve, the im-

provement is mainly in reduced failed speculation—since speculative modifications are being committed to memory

earlier, there are fewer violated data dependences between epochs and hence less failed speculation in those cases.

Only one other application (PERLBMK) performs moderately worse due to an increase in instruction stall time (istall).

3.8 Chapter Summary

We have introduced a speculative cache coherence scheme that allows the compiler to automatically parallelize

general-purpose applications and to exploit an arbitrary number of processors on a single chip. Our approach extends

the architecture of a generic chip-multiprocessor without adding any large or centralized TLS-specific structures,

and without hindering the performance of non-speculative workloads. Of 15 benchmark applications, our baseline

87

architecture and coherence scheme improves program performance for one application by two-fold, for three other

applications by more than 10%, and provides more modest improvements for four other applications. A deep analysis

of our scheme shows that our implementation of TLS support is efficient, and that our mechanisms for supporting

speculation are not a bottleneck.

A closer look at our hardware support and speculative coherence scheme resulted in many important observations.

We found that support for multiple writers is necessary for good performance for most general-purpose applications

studied, and that a simplified version of the coherence scheme without speculative coherence messages is nearly as

effective as the original. Analyzing the sensitivity of our scheme to various architectural parameters, we found an

expensive inter-processor communication mechanism to be unnecessary so long as a less-expensive mechanism with

a latency of no more than 20 cycles can be implemented. We also discovered that TLS execution is sensitive to

neither crossbar bandwidth nor the number of data reference handlers, indicating that the the memory system is not

a bottleneck. However, varying the sizes of the data caches demonstrated that 8KB caches are insufficient, although

64KB caches do not offer a significant improvement over 32KB caches. Finally, we showed that TLS techniques are

complementary to out-of-order superscalar techniques, and that performance benefits of control independence enjoyed

by TLS cannot be achieved simply by increasing the reorder buffer size of a uniprocessor.

We explored alternative designs for many aspects of our TLS hardware support. We showed that less aggressive

designs, namely deep uniprocessor speculation and TLS support using only the load/store-queues, are insufficient to

capture the same performance improvements as our approach. We demonstrated that it is sufficient to allocate the

forwarding frame in regular memory and having it reside in the first-level data caches, rather than adding new local

or shared register files. While examining various violation notification techniques, we discovered that interrupt-based

violation notification is important for exploiting TLS in applications that do not actually contain much parallelism,

and that this support increases the importance of speculative coherence messages. Finally, we demonstrated that a

software-only implementation of the homefree token is sufficient, although a hardware-visible homefree token does

yield additional benefit.

In the next chapter, we will evaluate the ability of our speculative coherence scheme to scale both down and up: from

a chip-multiprocessor where the first-level data cache is shared, to large machines that use many chip-multiprocessors

as building blocks.

88

Chapter 4

Support for Scalable Thread-Level

Speculation

4.1 Introduction

The previous chapter introduced a speculative coherence scheme that empowers the compiler to automatically-

parallelize general-purpose programs to exploit chip-multiprocessors. This implementation scales well within a chip

from two to at least eight processors; performance is primarily limited by the amount of parallelism that is actually

available in the benchmark applications. However, our original goal was to support TLS in any scale of machine.

Since our scheme is built on top of standard invalidation-based cache coherence, it scales both up to large-scale

multiprocessors as well as down to multithreaded processors. Given this scalable foundation for supporting TLS

execution, what are the key issues for improving the efficiency of speculative execution at these different scales?

The goals of this chapter are twofold. First, we will evaluate how well our cache coherence scheme scales down by

evaluating its performance within a chip for processors that share a cache; we also explore possibilities for enhancing

the performance of TLS with these architectures. Second, we evaluate how well our cache coherence scheme scales

up to high-end multiprocessor systems (e.g., the SGI Origin [47]) composed of traditional processors or perhaps using

chip-multiprocessors as building blocks. Similarly, we explore ways to improve the performance of TLS for these

larger-scale machines.

89

��
��

��
��
�	

ORB

Cancel Handler
Address

Epoch Number

Speculative
Context

SMSL

�
���
����
������

��
��
��

ORB

Cancel Handler
Address

Epoch Number

Speculative
Context

SMSL

�� �� ������

�� � !�!"�"

#$ %& '�'(�(

TagsEx Di Va Data

))*
*

++,
,

-.

//0
0

112
2

34

556
6

778
8

9:
;<

Figure 4.1. Hardware support for multiple epoch contexts in a single cache.

4.2 Support for a Shared Data Cache

In this section we describe and evaluate support for TLS in a shared data cache. This support for multiple speculative

contexts within a single cache is valuable for three reasons. First, support for multiple speculative contexts allows us

to implement TLS with simultaneous multithreading (SMT) [70] and other shared-cache multithreaded architectures.

Second, we can use multiple speculative contexts to allow a single processor to switch to a new epoch when the current

epoch is suspended (e.g., when waiting for the homefree token). Finally, we may want to maintain speculative state

across OS-level context switches so that we can support TLS in a multiprogramming environment.1

We begin by describing how our implementation of speculative state from Section 3.3 can be extended to support

multiple speculative contexts. We then evaluate this support and then explore ways to avoid failed speculation due to

conflicts in the shared cache.

4.2.1 Implementation

In our basic coherence scheme, two epochs from the same program may both access the same cache line except

in two cases: (i) two epochs must not modify the same cache line, and (ii) an epoch must not read from a cache line

that has been speculatively-modified by a logically-later epoch. We can trivially enforce these constraints by simply

squashing the logically-later epoch whenever a constraint is about to be violated.

Figure 4.1 shows how we can support TLS in a shared cache by implementing multiple speculative contexts. The

1For now we assume that any system interrupt will cause all speculation to fail—evaluation of OS-level context-switching is beyond the scope
of this thesis.

90

Logically-

0

0

0

0

���
�
���
�
���
�

�� �	
�

� ������

0

Violation
Flags

0 1

1

1

0

1

1SL Bits

Mask
Later

(a) Data dependence violation detection.

Logically- �� ��

�� �� ��
0

0

1

0SM Bits

True

1

0 1

0
Mask
Later ��

(b) Read-conflict detection.

SM Bits � �! !" "# # $%

True

0 10 1

(c) Write-conflict detection.

Figure 4.2. Support for efficient epoch number comparison.

exclusive (Ex), dirty (Di), and valid (Va) bits for each cache line are shared between all speculative contexts, but each

speculative context has its own speculatively-loaded (SL) and speculatively-modified (SM) bits. This state allows us

to track which epochs have speculatively loaded or modified any cache line, and allows us to track data dependences

between epochs as well as check for conflicts.

Since epoch contexts in a shared-cache architecture are implemented in a common structure (as opposed to the

distributed implementation for private caches), it is wasteful to frequently recompute their relative ordering by com-

paring epoch numbers on every memory reference. Instead we can precompute and store the relative ordering between

all active local epochs. A convenient method of storing this information is in a logically-later mask. This mask has

one bit per local speculative context, and each bit is set if the corresponding speculative context is currently executing

an epoch that is logically-later than the epoch in question. We maintain a logically-later mask for each speculative

context and update it whenever an epoch is spawned or exits.

As shown in Figure 4.2(a), we can use the logically-later mask to detect data dependence violations. If the active

epoch stores to a location, then any logically-later epoch which has already speculatively loaded that same location

has committed a violation. We can detect a violation by taking the bit-wise AND of the logically-later mask with the

SL bits for the appropriate cache line and OR’ing the result with the violation flag for each epoch.

In addition to detection of data dependence violations, we also need to track read and write conflicts in the shared

cache. A conflict occurs when two epochs access the same cache line in an incompatible way, and is resolved by

squashing the logically-later epoch (a conflict violation). For our initial shared-cache implementation, the following

two access patterns are incompatible (these are formalized in the full description of our speculative coherence scheme

given in Appendix A).

91

Shared Memory

signal

St
al

l

wait

E2
E1

load XT
im

e store X

(a) Explicit forwarding.

Shared Memory

E2
E1

store X

load X

(b) Implicit forwarding.

Figure 4.3. Explicit vs implicit forwarding.

1. If an epoch speculatively modifies a cache line, only that epoch or a logically-later epoch may read that cache

line afterwards. If a logically-earlier epoch attempts to read the cache line, a read-conflict violation results.

2. Only one epoch may speculatively modify a given cache line. If an epoch attempts to speculatively modify a

cache line that has already been speculatively modified by a different epoch, a write-conflict violation results.

We can use the logically-later masks to determine whether any load or store will result in a read or write-conflict

violation, as illustrated in Figures 4.2(b) and 4.2(c). Recall that a read-conflict miss occurs when the active epoch

attempts to execute a speculative load but a logically-later epoch has already modified that same cache line. This

condition may be checked by taking the AND of the logically-later mask with the speculatively-modified (SM) bits for

the appropriate cache line and checking the OR of the results. A write-conflict miss occurs when the active epoch

executes a speculative store and any other epoch has already speculatively stored that cache line. We can check for this

case by taking the OR of the speculatively-modified (SM) bits (excluding the bit belonging to the epoch in question) as

shown in Figure 4.2(b), and proceed by squashing the logically-later epoch.

The data dependence tracking implemented by our shared-cache support for TLS differs from the private-cache

support described in Chapter 3 in the following two ways. First, our shared-cache support allows us to implicitly

forward speculative modifications between two properly ordered epochs. In Figure 4.3, we differentiate between

explicit and implicit forwarding. With explicit forwarding, as is supported in our private-cache scheme, the compiler

inserts explicit wait and signal primitives which communicate a value between epochs through the forwarding

92

frame. In contrast, implicit forwarding (which is not supported in our private-cache scheme) allows a value to be

communicated between a store from one epoch and a load from a logically-later epoch that happen to execute in order.

Our private-cache design supports only explicit forwarding because its distributed nature makes implicit forwarding

extremely difficult to implement.2 However, implicit forwarding is trivial to support in a shared cache: we simply allow

an epoch to speculatively load from a cache line that has been speculatively-modified by a logically-earlier epoch. Note

that if the logically-earlier epoch then speculatively modifies that cache line again, a write-conflict violation will result.

Since support for implicit forwarding is trivial to implement in a shared cache, we include implicit forwarding in our

baseline design.

The second major difference between shared and private-cache architectures is that we cannot easily allow two

epochs to modify the same cache line—in this respect, our shared-cache design is less aggressive than our private-

cache design which has such support for multiple writers (see Section 3.5.1). We will describe how our baseline

shared-cache design can be extended to support multiple writers in Section 4.2.3.

As we will demonstrate next, these simple extensions provide effective support for TLS in shared-cache architec-

tures.

4.2.2 Performance of Shared Data Cache Support for TLS

We begin our evaluation by comparing the performance of both private-cache and shared-cache support for TLS,

as shown in Figure 4.4(a). P shows speculative execution on a 4-processor CMP with private caches, and S shows

speculative execution on a 4-processor CMP with a shared first-level data cache. To facilitate comparison, the shared

cache is the same size and associativity as one of the private caches (32KB, 2-way set associative). For 10 of the 15

applications, the performance with a shared cache is similar to the performance with private caches; the remaining

5 applications (COMPRESS, GAP, IJPEG, VORTEX, and VPR) perform significantly worse with a shared cache due to

increased failed speculation.

Figure 4.4(b) shows the percentage of time wasted on failed speculation for each application, broken down into the

reasons why speculation failed. The first three segments are similar to those from the breakdown for private-cache

architectures (e.g., Figure 3.12): CHAIN violations represent time spent on epochs that were squashed because a

2Speculative modifications would have to be broadcast to all logically-later epochs, or an epoch would have to poll the caches of all logically-
earlier epochs for the most up-to-date value on every load

93

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

P

10
6.

9

S

bzip
2

77
.1

P

81
.4

S

gcc

49
.0

P
20

1.
9

S

co
m

pre
ss

77
.5

P

80
.8

S

cr
af

ty

69
.3

P

11
9.

9

S

gap

84
.3

P

80
.9

S

go

42
.6

P

92
.7

S

ijp
eg

95
.7

P

10
0.

0

S
li

75
.7

P

82
.3

S

m
88

ks
im

70
.9

P

72
.5

S

m
cf

78
.4

P

75
.1

S

par
se

r

62
.1

P

61
.9

S

per
lb

m
k

81
.6

P

79
.1

S

tw
olf

71
.7

P

13
8.

1

S

vo
rte

x

69
.2

P

91
.2

S

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Normalized Region Execution Time.

|0

|20

|40

|60

|80

|100

 F
ai

le
d

 S
p

ec
u

la
ti

o
n

 (
%

)

6.
2

S

bzip
2

12
.2

S

gcc

73
.2

S

co
m

pre
ss

13
.3

S

cr
af

ty

24
.4

S

gap

33
.7

S

go

47
.3

S

ijp
eg

9.
3

S
li

58
.7

S

m
88

ks
im

18
.9

S

m
cf

9.
4

S

par
se

r

0.
0

S

per
lb

m
k

3.
2

S

tw
olf

42
.6

S

vo
rte

x

39
.7

S

vp
r

CHAIN

REPL

RINV

RAW

R_CONF

W_CONF

(b) Percentage of time wasted on failed speculation for a shared-cache.

Figure 4.4. Region performance of the select benchmarks on both private-cache and shared-cache architectures. P is
speculatively executed on a 4-processor CMP with private caches, and S is speculatively executed on a 4-processor CMP
with a shared cache.

logically-earlier epoch was previously squashed, while (REPL and RINV) represent violations caused by replacement

in either the first-level data caches or the shared unified cache respectively.3 The remaining segments represent viola-

tions raised by the new shared-cache TLS mechanisms: the RAW segment represents read-after-write data dependence

violations, and the R CONF and W CONF segments represent read and write conflicts respectively. It is apparent that

write conflicts (W CONF) account for the vast majority of the failed speculation in the shared-cache TLS support.

Even though the set-associative first-level data cache is only 2-way set-associative, CRAFTY, GO, and VORTEX are the

only three applications for which replacement (REPL) is a significant component of time lost to failed speculation.

For most applications, our baseline shared-cache hardware support is sufficient to maintain the performance of

private caches; however, for several applications the impact of conflict violations is severe. We will investigate ways

to tolerate these conflicts later in Section 4.2.3.

94

|

0

|

50

|

100

 Normalized Region Execution Time

100.0

1

110.3

2

106.0

4

105.6

6

106.8

8

bzip2

100.0

1

87.4

2

77.1

4

76.1

6

75.9

8

gcc

100.0

1

69.9

2

49.0

4

50.1

6

48.8

8

com
press

100.0

1

94.0

2

77.5

4

73.7

6

72.6

8

crafty

100.0

1

84.0

2

69.3

4

69.5

6

69.7

8

gap

100.0

1

91.1

2

84.3

4

84.5

6

84.7

8

go
100.0

1
62.6

2

42.6

4

38.1

6

37.7

8

ijpeg

100.0

1

104.5

2

95.7

4

91.8

6

92.0

8
li

100.0

1

84.8

2

75.7

4

73.8

6

73.7

8

m
88ksim

100.0

1

97.4

2

70.9

4

62.0

6

58.9

8

m
cf

100.0

1

132.2

2

78.4

4

60.8

6

52.9

8

parser

100.0

1

100.6

2

62.1

4

53.8

6

50.6

8

perlbm
k

100.0

1

78.9

2

81.6

4

90.1

6

88.5

8

twolf

100.0

1

84.0

2

71.7

4

70.1

6

68.0

8

vortex

100.0

1

87.7

2

69.2

4

65.7

6

62.6

8

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(a)
E

xecution
tim

e
for

a
private-cache

architecture.

|

0

|

100

|

200

 Normalized Region Execution Time

100.0

1

110.3

2

106.9

4

110.5

6

114.1

8

bzip2

100.0

1

90.1

2

81.4

4

81.2

6

81.8

8

gcc

100.0

1

164.5

2

201.9

4

224.2

6

288.6

8

com
press

100.0

1

94.7

2

80.8

4

78.9

6

78.7

8

crafty

100.0

1

115.5

2

119.9

4

119.8

6

119.6

8

gap

100.0

1

87.0

2

80.9

4

80.9

6

81.6

8

go

100.0

1

101.3

2

92.7

4

90.9

6

91.9

8

ijpeg

100.0

1

104.6

2

100.0

4

98.2

6

99.5

8
li

100.0

1

97.7

2

82.3

4

90.8

6

83.6

8

m
88ksim

100.0

1

96.0

2

72.5

4

65.1

6

62.8

8

m
cf

100.0

1

124.6

2

75.1

4

58.7

6

51.7

8

parser

100.0
1
100.0

2
61.9

4
54.2

6

51.1

8

perlbm
k

100.0

1

80.3

2

79.1

4

80.0

6

80.2

8

twolf

100.0

1

110.7

2

138.1

4

137.5

6

134.4

8

vortex

100.0

1

95.4

2

91.2

4

90.0

6

90.8

8

vpr

id
le

sp
aw

n
syn

c
h

o
m

efree
fail
istall
d

cach
e

b
u

sy

(b)
E

xecution
tim

e
for

a
shared-cache

architecture.

|

0

|

20

|

40

|
60

|

80

|

100

 Failed Speculation (%)

0.01

2.32

6.24

9.96

14.28

bzip2

0.01

9.72

12.24

12.06

11.88

gcc

0.01

52.22

73.24

81.16

84.18

com
press

0.01

7.62

13.34

11.86

9.98

crafty

0.01

32.52

24.44

16.36

12.18

gap

0.01

15.82

33.74

37.46

39.68

go

0.01

37.42

47.34

49.06

47.68

ijpeg

0.01

4.22

9.34

10.06

10.78
li

0.01

36.42

58.74

71.06

72.68

m
88ksim

0.01

4.42

18.94

28.96

36.98

m
cf

0.01

3.72

9.44

14.66

18.08

parser

0.01

0.02

0.04

0.06

0.08

perlbm
k

0.01

2.62

3.24

3.16

2.98

twolf

0.01

29.02

42.64

42.46

41.88

vortex

0.01

23.32

39.74

40.36

36.98

vpr

C
H

A
IN

R
E

P
L

R
IN

V

R
A

W

R
_C

O
N

F

W
_C

O
N

F

(c)
Failed

speculation
for

the
shared-cache

architecture.

F
ig

u
re

4.5.V
aryin

g
th

e
n

u
m

b
er

o
f

p
ro

cesso
rs

fo
r

b
o

th
p

rivate
an

d
sh

ared
-cach

e
arch

itectu
res.

N
o

te
th

at
th

e
sh

ared
cach

e
is

th
e

sam
e

size
as

each
o

f
th

e
p

rivate
cach

es
(32K

B
).

95

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
7.

0

N

10
6.

9

S

bzip
2

81
.4

N

81
.4

S

gcc

20
1.

9

N

20
1.

9

S

co
m

pre
ss

80
.8

N

80
.8

S

cr
af

ty

11
9.

9

N

11
9.

9

S

gap

82
.0

N

80
.9

S

go

92
.6

N

92
.7

S

ijp
eg

10
0.

0

N

10
0.

0

S
li

82
.3

N

82
.3

S

m
88

ks
im

73
.9

N

72
.5

S

m
cf

75
.0

N

75
.1

S

par
se

r

61
.9

N

61
.9

S

per
lb

m
k

79
.1

N

79
.1

S

tw
olf

13
9.

0

N

13
8.

1

S

vo
rte

x

91
.7

N

91
.2

S

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

Figure 4.6. Benefits of implicit forwarding in a shared cache. N does not support implicit forwarding, while S (our shared-cache
baseline) does.

Scaling Within a Chip for a Shared-Cache Architecture

Next we compare how both private-cache and shared-cache architectures scale within a chip by varying the number

of processors from 2 to 8, as shown in Figure 4.5. The scaling behavior of the benchmarks is similar for the two

different architectures except for COMPRESS, GAP, IJPEG, VORTEX and VPR—for these applications failed speculation

prevents scaling for shared-cache architectures. To investigate further, Figure 4.5(c) shows the percentage of time

wasted on failed speculation for the shared-cache design. Again, we observe that write conflicts (W CONF) are the

main cause of failed speculation for most applications—we will further investigate conflicts in Section 4.2.3.

Impact of Implicit Forwarding

In Section 3.1.2 we estimated that support for implicit forwarding was not worth the implementation complexity

for private-cache architectures. For shared-cache designs, providing this support is relatively straightforward since

the speculative state is implemented in a common structure (as opposed to the distributed implementation for private

caches). However, it is interesting to quantify the benefits of such support. In the shared-cache experiments in Fig-

ure 4.6, the N experiment does not include support for implicit forwarding while the S experiment (our shared-cache

baseline) does. It is apparent that support for implicit forwarding does not have a significant impact on performance

other than for MCF, which improves slightly due to a decrease in failed speculation. Hence our estimate that support

for implicit forwarding is not worth the complexity was correct.

We have shown how to implement support for TLS in a shared data cache architecture , and that performance for

3Recall that we do not need special support to choose which cache line to evict from an associative set: the existing LRU (least recently used)
mechanism ensures that any non-speculative cache line is evicted before a speculative one.

96

HF

Shared Memory

Suspended
Store

store X

T
im

e
E2

E1

store X

St
al

l
(a) Suspend.

Violation!

Shared Memory

E2

store X

store X

E1

(b) Write conflict violation.

Figure 4.7. Two epochs that store the same cache line. In (a), suspension of epoch 2 allows it to proceed later. In (b),
suspension cannot help, and epoch 2 is violated due to the write conflict.

most applications is comparable to that of a private-cache architecture, although generally not as good. We observed

that an increase in failed speculation due to read and write conflicts negates the potential performance improvement

from the increased locality of the shared cache architecture (as compared with the private-cache architecture); hence

we next investigate ways to tolerate these conflicts.

4.2.3 Tolerating Read and Write Conflicts

In this section, we evaluate two methods for tolerating read and write conflicts in a shared-cache design. First,

we investigate support for suspending an epoch that is about to cause a conflict. Second, we evaluate support for

cache line replication; this support is more costly but allows speculative execution to proceed. Third, we analyze the

performance of these two techniques when combined. Finally, we measure the impact of increasing the associativity

of the shared cache.

Suspending Epochs

Rather than handling read or write conflicts by squashing the logically-later epoch, we can instead suspend that

epoch until it becomes homefree. Only in certain cases can an epoch be suspended. For example, consider two epochs

that both attempt to write to the same cache line as shown in Figure 4.7. In Figure 4.7(a) epoch 1 (E1) writes first,

then epoch 2 (E2) is suspended when it attempts to write until it is passed the homefree token, at which point it can

proceed. In contrast, in Figure 4.7(b) epoch 2 writes first, and when epoch 1 writes a a write conflict is triggered and

97

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

9

S

10
4.

0

U

10
5.

6

R

10
4.

0

Q

bzip
2

81
.4

S

80
.5

U

78
.2

R

77
.3

Q

gcc

20
1.

9

S

20
1.

9

U
11

9.
2

R
10

9.
9

Q

co
m

pre
ss

80
.8

S

77
.0

U

77
.1

R

72
.4

Q

cr
af

ty

11
9.

9

S

11
9.

3

U

89
.5

R

87
.7

Q

gap

80
.9

S

75
.2

U

77
.5

R

74
.1

Q

go

92
.7

S

90
.0

U

71
.1

R

67
.0

Q

ijp
eg

10
0.

0

S

96
.0

U

97
.5

R

93
.5

Q
li

82
.3

S

95
.0

U

91
.3

R

89
.1

Q

m
88

ks
im

72
.5

S

63
.6

U

69
.3

R

63
.2

Q

m
cf

75
.1

S

75
.0

U

75
.1

R

75
.2

Q

par
se

r

61
.9

S

61
.9

U

61
.9

R

61
.9

Q

per
lb

m
k

79
.1

S

79
.0

U

78
.9

R

78
.8

Q

tw
olf

13
8.

1

S

11
5.

7

U

11
1.

2

R

98
.7

Q

vo
rte

x

91
.2

S

88
.8

U

70
.2

R

68
.1

Q

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Execution time.

|0

|20

|40

|60

|80

|100

 F
ai

le
d

 S
p

ec
u

la
ti

o
n

 (
%

)

6.
2

S

2.
8

U

5.
5

R

2.
8

Q

bzip
2

12
.2

S

11
.1

U

10
.7

R

9.
4

Q

gcc

73
.2

S

73
.2

U

14
.8

R

2.
1

Q

co
m

pre
ss

13
.3

S

9.
7

U

10
.7

R

5.
2

Q

cr
af

ty

24
.4

S

24
.3

U

18
.8

R

17
.8

Q

gap

33
.7

S

26
.5

U

31
.3

R

25
.4

Q

go

47
.3

S

45
.8

U

35
.6

R

33
.2

Q

ijp
eg

9.
3

S

7.
1

U

5.
1

R
2.

4

Q
li

58
.7

S

63
.2

U

62
.7

R

61
.1

Q

m
88

ks
im

18
.9

S

5.
5

U

15
.6

R

5.
1

Q

m
cf

9.
4

S

9.
1

U

9.
3

R

9.
0

Q

par
se

r

0.
0

S

0.
0

U

0.
0

R

0.
0

Q

per
lb

m
k

3.
2

S

3.
2

U

3.
1

R

3.
0

Q

tw
olf

42
.6

S

33
.9

U

36
.7

R

27
.2

Q

vo
rte

x

39
.7

S

38
.4

U

24
.2

R

21
.7

Q

vp
r

CHAIN

REPL

RINV

RAW

R_CONF

W_CONF

(b) Failed speculation.

Figure 4.8. Impact of suspending violations for replacement and conflicts. S is the baseline 4-processor shared-cache
architecture, U builds on S by tolerating conflicts and replacement through suspension of the logically-later epoch, R builds
on S by tolerating conflicts through replication, and Q supports both suspension and replication.

epoch 2 is squashed. There are two requirements to avoid deadlock when suspending an epoch: (i) that exactly one

epoch is always homefree, and (ii) any suspended epoch that receives the homefree token is unsuspended at that point.

In Figure 4.8, we evaluate performance when both replacement and certain read/write conflicts cause the logically-

later epoch to be suspended rather than squashed. We show performance on our shared-cache baseline architecture

(S), and an augmented baseline where epochs are suspended rather than squashed whenever possible (U). Suspen-

sion eliminates a significant amount of failed speculation due to replacement and conflicts for several applications,

including BZIP2, CRAFTY, GO, MCF, and VORTEX;the resulting improvement in performance is significant for GO,

MCF, and VORTEX. Only M88KSIM performs worse: write-conflict violations have merely exposed read-conflict and

read-after-write (RAW) violations. Overall, this support is worthwhile and also straightforward to implement.

Cache Line Replication

Another technique for tolerating read and write conflicts is cache line replication. Rather than squashing the con-

flicting epoch, the epoch can proceed by replicating the appropriate cache line: if the cache line is not yet speculatively-

98

0

store X = a

0 0
0
0

1
0

1
0

0
0

1
0

0 X
0{

E2E1

Associative
Set

TagsEx Di VaSMSL

T
im

e

SMSL

(a) Epoch 2 executes a speculative store to location X

0 1
0

1
1

0
0

1
1

00 X
X{

E2E1

store X = a

Associative
Set

load b = X

Replication

1 0 0

T
im

e

SMSL SMSL TagsEx Di Va

(b) Epoch 1 then executes a speculative load from location X , invoking replication

Figure 4.9. Example of cache line replication.

SM[0..N-1]

��
��

����
����
	�	

ORB

Cancel Handler
Address

Epoch Number

Speculative
Context

SMSL

���
�
�
�
������������

���
�
���
�
������������

���
�
���
�
������������

��
�
!"

#$
%&
'(

ORB

Cancel Handler
Address

Epoch Number

Speculative
Context

)*
+,
-.

/�//�/0�00�0112
2
334
4

5�56�6789:

;<
=>
?@

TagsEx Di Va Data

AB
CD
EF

GH
IJ
KL

M�MN�N
O�OP�P
Q�QR�R

ST

SMSL

Figure 4.10. Hardware support for multiple writers in a shared cache that also supports replication.

modified, then it may be copied directly; if the cache line is speculatively-modified, then the replicated copy is obtained

from the external memory system. Once replicated, both copies of the cache line are kept in the same associative set

of the shared cache. The owner of a given cache line can be determined by checking the SM and SL bits—in other

words, the SM and SL bits are considered part of the tag match. If all entries in an associative set are consumed, then

replication fails and the logically-latest epoch owning a cache line in that set is suspended or squashed.

Figure 4.9 shows an example of cache line replication. In the figure, only the speculative state of the appropriate

associative set is shown. In Figure 4.9(a), epoch 2 (E2) executes a speculative store to location X , and the SM bit for

that cache line is set. Next, in Figure 4.9(b), epoch 1 executes a speculative load from the same location (X) resulting

99

in a read conflict (since epoch 1 must not read the speculative modifications of epoch 2). Rather than squashing

epoch 2, we can use the available entry in the associative set to store a replicated copy of location X . Once replication

is supported, we can also extend our implementation to support multiple writers by adding fine-grain SM bits [66]—as

shown in Figure 4.10, only one group of fine-grain SM bits is necessary per cache line since only one epoch may

modify a given cache line.

In Figure 4.8 the R experiment builds on the baseline S with support for cache line replication. This support has

a significant positive impact on the performance of, GAP, IJPEG, VORTEX, VPR, and especially on COMPRESS for

which performance improves by 82.7%. In all of these cases the amount of failed speculation has been significantly

reduced. From Figure 4.8(b), which shows the percentage of execution time wasted on failed speculation and the

corresponding breakdown, we see that replication does increase tolerance of write conflicts (W CONF) and read

conflicts (R CONF). Reducing the occurrence of write conflicts significantly lowers the amount of failed speculation

for COMPRESS, CRAFTY, GAP, IJPEG, LI, VORTEX and VPR, but merely exposes more true data dependence violations

(RAW) for GO and M88KSIM. Although this support is relatively costly to implement (since we need to be able to store

multiple versions of the same cache line in a single associative set), the benefits are significant.

Combining the Techniques

In the Q experiment in Figure 4.8, we evaluate the combination of both the suspension of epochs and cache line

replication. Although replication (R) is more effective than suspension (U) for most benchmarks, compared with

either technique in isolation we observe that the combination of the two techniques (Q) captures the best performance

of either in every case. Furthermore, for 7 applications (COMPRESS, CRAFTY, GAP, IJPEG, LI, VORTEX, and VPR) this

combination is complementary, achieving better performance than either technique alone.

4.2.4 Impact of Increasing Associativity

Increased associativity is usually desirable for shared-cache architectures, although there is a point where the in-

crease in hit latency negates further benefit. Hence we want to ensure that our scheme for supporting TLS in a

shared cache can also benefit from increased associativity—in particular, whether support for cache line replication

can capitalize on the increased opportunity for storing replicated copies. In Figure 4.11 we repeat the experiments

for suspension and replication (shown in Figure 4.8) for a shared cache with an associativity of 4 ways (as opposed

100

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
5.

6

S

10
3.

3

U

10
1.

9

R

10
3.

3

Q

bzip
2

79
.5

S

79
.0

U

73
.7

R

73
.2

Q

gcc

18
1.

2

S

18
1.

2

U
10

8.
1

R
10

8.
1

Q

co
m

pre
ss

75
.8

S

74
.9

U

68
.4

R

67
.8

Q

cr
af

ty

11
5.

3

S

11
5.

7

U

63
.4

R

63
.3

Q

gap

76
.1

S

72
.7

U

71
.1

R

70
.8

Q

go

92
.5

S

89
.9

U

45
.6

R

44
.2

Q

ijp
eg

99
.8

S

96
.4

U

96
.8

R

93
.7

Q
li

81
.6

S

88
.4

U

87
.6

R

68
.8

Q

m
88

ks
im

72
.3

S

63
.2

U

69
.3

R

62
.9

Q

m
cf

75
.1

S

75
.1

U

74
.8

R

74
.8

Q

par
se

r

62
.5

S

62
.5

U

62
.5

R

62
.5

Q

per
lb

m
k

79
.2

S

79
.2

U

78
.4

R

78
.1

Q

tw
olf

12
5.

7

S

11
0.

4

U

78
.1

R

75
.4

Q

vo
rte

x

91
.0

S

88
.9

U

61
.5

R

61
.5

Q

vp
r

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Execution time.

|0

|20

|40

|60

|80

|100

 F
ai

le
d

 S
p

ec
u

la
ti

o
n

 (
%

)

5.
3

S

2.
5

U

2.
5

R

2.
5

Q

bzip
2

11
.3

S

10
.7

U

7.
6

R

6.
7

Q

gcc

71
.8

S

71
.8

U

0.
0

R

0.
0

Q

co
m

pre
ss

10
.4

S

9.
8

U

3.
6

R

2.
7

Q

cr
af

ty

23
.9

S

23
.9

U

0.
4

R

0.
2

Q

gap

29
.3

S

25
.9

U

25
.1

R

24
.8

Q

go

47
.4

S

46
.0

U

9.
6

R

6.
5

Q

ijp
eg

9.
9

S

8.
0

U

4.
1

R
1.

8

Q
li

58
.7

S

62
.3

U

61
.2

R

49
.5

Q

m
88

ks
im

18
.9

S

5.
4

U

15
.3

R

4.
9

Q

m
cf

9.
2

S

9.
0

U

9.
0

R

9.
0

Q

par
se

r

0.
0

S

0.
0

U

0.
0

R

0.
0

Q

per
lb

m
k

3.
3

S

3.
3

U

2.
3

R

1.
9

Q

tw
olf

37
.8

S

32
.6

U

10
.4

R

6.
6

Q

vo
rte

x

39
.4

S

38
.4

U

15
.3

R

15
.3

Q

vp
r

CHAIN

REPL

RINV

RAW

R_CONF

W_CONF

(b) Failed speculation.

Figure 4.11. Impact of suspending violations for replacement and conflicts when the the shared data cache is 4-way set-
associativity (as opposed to 2-ways). S is the baseline 4-processor shared-cache architecture, U builds on S by tolerating
conflicts and replacement through suspension of the logically-later epoch, R builds on S by tolerating conflicts through
replication, and Q supports both suspension and replication.

to 2 ways, as used until this point): we maintain the original hit latency, and re-evaluate the sequential execution (to

which all experiments are normalized) on a 4-way set-associative cache as well. Comparing with Figure 4.8, we ob-

serve that the performance of the baseline (S) with increased associativity is improved in most cases. Suspension and

replacement are even more effective at tolerating conflicts and reducing failed speculation for most applications. With

support for both suspension and replication (Q), failed speculation is nearly or entirely eliminated for COMPRESS and

GAP. These results confirm that our shared-cache support for TLS can benefit from increased associativity.

We now understand how to support TLS effectively within a single chip, whether the underlying architecture is

a chip-multiprocessor where each speculative thread has a corresponding private first-level data cache, or a chip-

multiprocessor or simultaneously-multithreaded processor where threads share a cache. We now turn our attention to

the problem of supporting TLS on larger scale machines composed of multiple processor chips, where each chip itself

may have one or more processors.

101

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
0.

0

1

62
.1

2

59
.0

4

56
.2

6

59
.0

8
ammp

10
0.

0
1

73
.1

2

42
.0

4

33
.4

6

28
.9

8
art

10
0.

0

1

10
7.

0

2

58
.6

4

45
.7

6

41
.9

8
buk

10
0.

0

1

95
.1

2

62
.7

4

57
.9

6

57
.0

8
equake

10
0.

0

1

53
.2

2

27
.8

4

19
.5

6

16
.1

8
mesa

10
0.

0

1

11
1.

1

2

76
.4

4

76
.6

6

85
.5

8
mgrid

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Full detail.

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
0.

0

1

62
.1

2

59
.0

4

56
.2

6

59
.0

8
ammp

10
0.

0

1

73
.1

2

42
.0

4

33
.4

6

28
.9

8
art

10
0.

0

1

10
7.

0

2

58
.6

4

45
.7

6

41
.9

8
buk

10
0.

0

1

95
.1

2
62

.7
4

57
.9

6

57
.0

8
equake

10
0.

0

1

53
.2

2

27
.8

4

19
.5

6

16
.1

8
mesa

10
0.

0

1

11
1.

1

2

76
.4

4

76
.6

6

85
.5

8
mgrid

idle
spawn
sync
homefree
istall
dcache
busy

(b) Incorporating failed speculation.

Figure 4.12. Region performance of the select version of the floating point benchmarks when scaling (varying the number of
processors) within a chip.

4.3 Scaling Beyond Chip Boundaries

Our scheme as described in Chapter 3 provides a framework for scaling to large machines since it is built upon

invalidation-based cache coherence which itself works on a wide-variety of distributed architectures. In this section

we evaluate the ability of our coherence scheme for TLS to scale up to multiprocessor systems composed of chip-

multiprocessors.

4.3.1 Performance of Floating Point Benchmark Applications

In Chapter 3 we observed that our support for TLS allows many speculatively-parallelized general-purpose ap-

plications to scale within a single chip. However, these programs generally do not exhibit the coarse-grain par-

allelism required to scale well beyond chip boundaries. To evaluate the performance of our hardware support for

TLS when scaling beyond a single chip, we use the SPECfp2000 [16] floating point benchmarks described and an-

alyzed in Section 2.5.1. Compared with general-purpose codes, these scientific applications have greater available

parallelism and can potentially scale well beyond a single chip. They also tend to have more computation and less

102

complex control flow than general-purpose applications, allowing parallel execution to hide more latency. To the best

of our knowledge, floating point benchmarks are used in the evaluation of all related work on scalable support for

TLS [12, 24, 32, 59, 60, 63, 77, 79].

Before we evaluate the performance of multi-chip architectures, we first measure the scalability of the floating point

applications within a single chip. Figure 4.12 shows region execution time as we vary the number of processors from

one to eight. ART, BUK, and MESA scale very well within a single chip showing continually improved performance

as we increase the number of processors; ART suffers from both failed speculation and synchronization overheads,

and BUK is mostly limited by data cache misses (dcache). While AMMP does not suffer from failed speculation, the

increasing synchronization (sync) and idle segments indicate limited available parallelism for that application. Both

EQUAKE and MGRID suffer from large amounts of failed speculation; while speedup for EQUAKE reaches a limit at 6

processors, MGRID actually performs worse beyond 4 processors. While not all of these applications are well suited

to multi-chip execution, they demonstrate a wide variety of behaviors that will aid in a thorough evaluation of the

scalability of our hardware support.

4.3.2 Scaling Up to Multi-Node Architectures

Given a fixed total number of processors, there are both advantages and disadvantages to splitting those processors

across multiple nodes. One advantage is that the total amount of secondary cache storage increases (since there is a

fixed amount per chip). On the other hand, disadvantages include an increase in the average cost of inter-processor

communication, and decreased data locality. Figure 4.13 shows the region performance of the floating point bench-

marks on multiprocessor architectures with varying numbers of processors and nodes. For each benchmark we simu-

late 1, 2, and 4 nodes (N) with a varying number of processors per node. Each bar is normalized to the execution time

of the the sequential version (1 node with 1 processor). Each chip-multiprocessor node is part of a cache-coherent

non-uniform memory access (CC-NUMA), distributed shared memory (DSM) mesh network with 2 kilobyte pages

that are distributed in a round-robin fashion across the memories in the DSM network. The communication latency

between nodes for all speculative events (spawning an epoch, explicit forwarding, passing the homefree token) is 100

processor cycles. All other configuration parameters are identical to those described in Table 2.6.

The results for a single node are similar to those from Figure 4.12; any slight differences are due to the addition

103

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
0.

0

1

61
.5

2

58
.4

4

58
.3

8
N=1

71
.4

1

70
.4

2

67
.1

4

62
.8

8
N=2

80
.2

1

72
.3

2

69
.1

4

66
.6

8
N=4

ammp

10
0.

0
1

73
.2

2
42

.0
4

28
.9

8
N=1

24
4.

3

1

14
6.

3

2

98
.8

4

82
.6

8
N=2

23
5.

1

1

14
6.

9

2

11
1.

6

4

90
.4

8
N=4

art

10
0.

0

1

10
7.

3

2

58
.6

4

41
.4

8
N=1

19
7.

9

1

11
6.

7

2

90
.2

4

83
.7

8
N=2

13
1.

5

1

96
.0

2

74
.5

4

67
.8

8
N=4

buk

10
0.

0

1

94
.9

2

61
.7

4

55
.8

8
N=1

11
8.

9

1

63
.0

2

48
.1

4

43
.8

8
N=2

79
.7

1

59
.4

2

47
.0

4

42
.3

8
N=4

equake

10
0.

0

1

53
.3

2

27
.9

4

16
.2

8
N=1

79
.1

1

47
.9

2

28
.4

4

18
.6

8
N=2

73
.9

1

51
.8

2

31
.5

4

20
.7

8
N=4

mesa

10
0.

0

1

11
1.

1

2

74
.2

4

83
.3

8
N=1

17
5.

0

1

82
.5

2

62
.2

4

63
.6

8
N=2

14
7.

3

1

12
0.

8

2

10
1.

6

4

93
.8

8
N=4

mgrid

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Full detail.

|0

|50

|100

|150

|200

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
0.

0

1

61
.5

2

58
.4

4

58
.3

8
N=1

71
.4

1

70
.4

2

67
.1

4

62
.8

8
N=2

80
.2

1

72
.3

2

69
.1

4

66
.6

8
N=4

ammp

10
0.

0

1

73
.2

2

42
.0

4

28
.9

8
N=1

24
4.

3

1

14
6.

3

2

98
.8

4

82
.6

8
N=2

23
5.

1

1

14
6.

9

2

11
1.

6

4

90
.4

8
N=4

art

10
0.

0

1

10
7.

3

2

58
.6

4

41
.4

8
N=1

19
7.

9

1

11
6.

7

2

90
.2

4

83
.7

8
N=2

13
1.

5

1

96
.0

2

74
.5

4

67
.8

8
N=4

buk

10
0.

0

1
94

.9
2

61
.7

4
55

.8
8

N=1
11

8.
9

1

63
.0

2

48
.1

4

43
.8

8
N=2

79
.7

1

59
.4

2

47
.0

4

42
.3

8
N=4

equake

10
0.

0

1

53
.3

2

27
.9

4

16
.2

8
N=1

79
.1

1

47
.9

2

28
.4

4

18
.6

8
N=2

73
.9

1

51
.8

2

31
.5

4

20
.7

8
N=4

mesa

10
0.

0

1

11
1.

1

2

74
.2

4

83
.3

8
N=1

17
5.

0

1

82
.5

2

62
.2

4

63
.6

8
N=2

14
7.

3

1

12
0.

8

2

10
1.

6

4

93
.8

8
N=4

mgrid

idle
spawn
sync
homefree
istall
dcache
busy

(b) Incorporating failed speculation.

Figure 4.13. Region performance of the select version of the floating point benchmarks on multiprocessor architectures with
varying numbers of processors and nodes. For each benchmark we simulate 1, 2, and 4 nodes (N) of 1, 2, 4, and 8 processors
per node.

of the DSM model. For architectures with two nodes and one processor per node, only AMMP and MESA speed up,

indicating that only certain applications—when speculatively parallelized—can exploit conventional multiprocessors

possessing only one processor per node. As we increase the number of processors for two-node architectures, perfor-

mance improves for all six applications; only with 8 processors does ART speed up on a two-node machine.

Performance on four-node architectures is similar to that of two-node architectures for all applications except for

MGRID, which no longer speeds up due to an overwhelming amount of failed speculation and idle time. In most cases,

the four-node machines do not perform as well as machines with fewer nodes. However, these results indicate that

applications respond well to an increase in the number of processors per node: to exploit speculative parallelism across

multiple chips, we need a certain amount of parallelism per node to tolerate the high inter-node communication laten-

cies. For EQUAKE, the best overall performance is achieved with a multi-node architecture (4 nodes of 8 processors).

For a fixed number of processors per node, both MESA and MGRID benefit from the addition of a second node. This

result is important, since current chip multiprocessors such as the IBM Power4 [38] can be packaged in clusters of

104

2-processor nodes (chips) with up to 4 nodes incorporated in a multi-chip module.

Several factors limit parallelism for these applications. First, AMMP and MGRID only have 11.2 and 18.2 epochs

per region instance on average (see Table 2.3); this means that they will not benefit from additional processors beyond

11 and 18 respectively. As evidence of this, both applications exhibit an increasing amount of idle time when the

number of processors is greater than the average number of epochs per region instance. Second, AMMP and ART

spend a significant amount of time stalled on synchronization (sync), while BUK,EQUAKE, and MGRID suffer from

large amounts of failed speculation (fail). Third, ART has the most difficulty tolerating inter-chip latency since it has

relatively small epochs (176.4 instructions per epoch on average, as seen earlier in Table 2.6) compared to the other

applications (MESA has the second smallest epochs, with 291.4 instructions per epoch on average); ART may benefit

from unrolling more than 8 times, which is the maximum unrolling that we considered. Neither flushing the ORB nor

passing the homefree token are bottlenecks for any application. However, from Figure 4.13(b) we observe that the

memory system (dcache) is a performance bottleneck for ART, EQUAKE, and MGRID.

In the next two sections we investigate the sensitivity of TLS to inter-node communication latency for multinode

architectures, and then explore ways to improve the memory system behavior of multi-node architectures through

improved page management.

4.3.3 Sensitivity to Inter-Node Communication Latency

In Section 3.6.1, we investigated the sensitivity of TLS execution to the communication latency between processors

within a single node or chip, and found that some general-purpose applications are quite sensitive. For multi-node ar-

chitectures, it is important to understand the sensitivity of TLS execution to the communication latency between nodes.

While multi-chip module technology (as used in the IBM Power4 [38]) can provide fast inter-chip communication by

incorporating several processor chips in a single package, it is not always cost-effective to do so. Figure 4.14 shows

the impact of varying the communication latency between nodes for TLS events (spawn, forwarding values, passing

the homefree token) from 50 to 200 cycles. Our baseline architecture has an inter-node communication latency of

100 cycles. We observe that ART and MESA are somewhat sensitive to communication latency, while the other three

benchmarks are not. In Figure 4.14(b), the performance of MGRID actually improves as the communication latency

increases: in this case, the increased latency decreases parallel overlap and indirectly synchronizes some of the data

105

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

65
.0

50

67
.1

100

68
.9

150

70
.9

200
ammp

95
.3

50

98
.8

100

10
3.

8

150

11
0.

3

200
art

87
.5

50

90
.2

100

93
.5

150

96
.9

200
buk

47
.6

50

48
.1

100

47
.6

150

48
.2

200
equake

25
.5

50

28
.4

100

31
.5

150

34
.1

200
mesa

61
.3

50

62
.2

100

61
.5

150

59
.0

200
mgrid

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Two nodes with four processors per node.

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

67
.0

50

69
.1

100

70
.9

150

72
.8

200
ammp

10
6.

4

50

11
1.

6

100

11
8.

4

150

12
6.

6

200
art

87
.3

50

91
.8

100

96
.0

150

99
.8

200
buk

57
.9

50

59
.1

100
58

.4
150

59
.9

200
equake

30
.4

50

33
.7

100

36
.9

150

40
.2

200
mesa

13
0.

4

50

12
6.

4

100

13
0.

9

150

12
1.

0

200
mgrid

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) Four nodes with four processors per node.

Figure 4.14. Impact of varying the communication latency between nodes (chips) from 50 to 200 cycles; note that for our
baseline architecture it is 100 cycles.

dependences that cause speculation to fail for this benchmark. Overall, these results suggest that an inter-node com-

munication latency of up to 200 cycles would still allow TLS to improve the performance of numeric applications on

multi-node architectures.

4.3.4 Impact of Page Layout

Looking at Figure 4.13(b), we see that time spent servicing data cache misses (dcache) represents a significant por-

tion of execution time for every benchmark, especially for those that do not scale well for certain configurations (ART,

EQUAKE, and MGRID). Although other communication-related components are also significant (such as spawn and

synchronization (sync) times), we cannot easily adjust the communication latency between nodes in a real system—

however, in Chapter 5, we investigate ways to improve the efficiency of value communication between speculative

threads. Hence, in this section we instead focus on the performance of the memory system when scaling up to multi-

node architectures.

In Figure 4.15 we show the breakdown of all cycles spent servicing misses (in the memory system) for the floating

106

|0

|20

|40

|60

|80

|100

 C
yc

le
s

S
er

vi
ci

n
g

 M
is

se
s

1248
N=1

1248
N=2

1248
N=4

ammp

1248
N=1

1248
N=2

1248
N=4

art

1248
N=1

1248
N=2

1248
N=4

buk

1248
N=1

1248
N=2

1248
N=4

equake

1248
N=1

1248
N=2

1248
N=4

mesa

1248
N=1

1248
N=2

1248
N=4

mgrid

DSM

Ucache

Dcache

Icache

Figure 4.15. Breakdown of cycles spent servicing misses (in the memory system) for varying numbers of nodes (N) and
processors per node. DSM represents cycles spent on accessing both local and remote memory in the distributed shared
memory system; Ucache represents cycles spent on contention and transmission in the inter-connection network (crossbar)
between the data and instruction caches and the unified cache, as well as cycles spent on fill and contention in the unified
cache itself; Dcache represents cycles spent for fill and contention in the data cache while servicing data cache misses; and
Icache represents cycles spent on both filling cache lines and contention in the instruction cache while servicing instruction
cache misses.

point benchmarks. Note that this is different than the dcache segment measured in previous breakdown graphs. Each

bar is broken into four segments: cycles spent on both filling cache lines and contention in the instruction cache

while servicing instruction cache misses (Icache); cycles spent for fill and contention in the data cache while servicing

data cache misses (Dcache); cycles spent on contention and transmission in the inter-connection network (crossbar)

between the data and instruction caches and the unified cache, as well as cycles spent on fill and contention in the

unified cache itself (Ucache); and cycles spent on accessing both local and remote memory in the distributed shared

memory system (DSM). Since the total number of cycles spent servicing misses can vary widely as we increase the

number of processors and nodes, each bar is normalized to 100% so that we can more easily observe the underlying

trends.

We note that the instruction cache time (Icache) is negligible, while each application spends close to half of all

memory system cycles in the data cache (Dcache). For each benchmark, the fraction of cycles spent in the data cache

(Dcache for a given number of processors is nearly constant as we vary the number of nodes. In contrast, the fraction

of cycles spent in the distributed shared memory system (DSM) increases significantly for every benchmark as the

number of nodes increases, indicating that this is a limitation on scalability. One way to attack this problem is in the

layout of pages in the DSM system.

In Figure 4.16, we investigate the impact of the layout of pages in memory. For brevity we analyze only two and

four node architectures, each with four processors per node. The B bar represents the “baseline” data layout from

Figure 4.13 where pages are assigned in a round-robin fashion amongst the DSM nodes. To evaluate the potential for

107

|0

|20

|40

|60

|80

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

67
.1

B

66
.0

O
ammp

98
.8

B

79
.3

O
art

90
.2

B

79
.7

O
buk

48
.1

B

44
.8

O
equake

28
.4

B

22
.8

O
mesa

62
.2

B

52
.6

O
mgrid

idle
spawn
sync
homefree
fail
istall
dcache
busy

(a) Two nodes with four processors per node.

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

69
.1

B

62
.0

O
ammp

11
1.

6

B

77
.9

O
art

74
.5

B

58
.7

O
buk

47
.0

B
41

.1
O

equake

31
.5

B

18
.6

O
mesa

10
1.

6

B

58
.5

O
mgrid

idle
spawn
sync
homefree
fail
istall
dcache
busy

(b) Four nodes with four processors per node.

Figure 4.16. Impact of the DSM page layout. B is the “baseline” data layout from Figure 4.13, and O models an oracle
migration strategy to estimate the maximum potential benefit of improved page allocation.

improvement, the O experiment models an oracle page migration strategy where each page migrates to the appropriate

node just in time to be referenced, such that data is always found in local rather than remote memory. This experi-

ment indicates that there is still significant room for improvement in page allocation for every application except for

AMMP. These results indicate that TLS execution prefers a page allocation mechanism that supports frequent page

migration [73]—such techniques can be implemented simply through extra support in the operating system as well as

performance counters that monitor cache misses.

4.4 Chapter Summary

While previous approaches to TLS hardware support one of the two levels of scaling (either within a chip or in a

system composed of multiple chips), our hardware support for TLS is unique because it scales seamlessly both within

and beyond chip boundaries. This ability to scale both up and down allows our scheme to apply to a wide variety of

multithreaded processors and larger systems that use those processors as building blocks.

Our evaluation of support for TLS in shared-cache architectures showed that performance is similar to that of

108

private-cache architectures, since the increased cache locality of a shared-cache architecture is balanced with an in-

crease in failed speculation due to conflicts. We supported our previous claim that support for implicit forwarding

does not have a large impact on performance, although it is trivial to support in a shared-cache approach. We also

showed that two techniques for tolerating read and write conflicts—suspending conflicting epochs and replicating

cache lines—can significantly lower the amount of failed speculation in the benchmark applications.

Through an analysis of SPECfp2000 floating point benchmarks we demonstrated that some applications can speed

up on multi-node architectures, by as much as 4.8 on a 4-node system with 8 processors per node. However, the

resulting performance for other applications is limited by (i) the number of epochs per region instance (i.e. the amount

of parallel work), (ii) synchronization and failed speculation, and (iii) the layout of data in the DSM system. We found

that TLS can tolerate an inter-node communication latency of up to 200 cycles for multi-node architectures. We also

showed that a simple page migration scheme can improve performance, and that further improvement is possible.

In the next chapter we investigate ways to further improve the efficiency of speculative execution by attacking one

of the most significant performance bottlenecks: the communication of values between speculative threads.

109

Chapter 5

Improving Value Communication

5.1 Introduction

For thread-level speculation, a key bottleneck to good performance lies in the three different ways to communicate

a value between speculative threads: speculation, synchronization, and prediction. The difficult part is deciding how

and when to apply each method. In this chapter we show how to apply value prediction, dynamic synchronization, and

hardware instruction prioritization to improve value communication and hence performance for TLS.

5.1.1 The Importance of Value Communication for Thread-Level Speculation

In the context of TLS, value communication refers to the satisfaction of any true (read-after-write) dependence

between epochs (sequential chunks of work performed speculatively in parallel). From the compiler’s perspective,

there are two ways to communicate the value of a given variable. First, the compiler may speculate that the variable

is not modified (Figure 5.1(a)). However, if at run-time the variable actually is modified then the underlying hardware

ensures that the misspeculated epoch is re-executed with the proper value. This method only works well when the vari-

able is modified infrequently, since the cost of misspeculation is high. Second, if the variable is frequently modified,

then the compiler may instead synchronize and forward the value1 between epochs (Figure 5.1(b)). Since a parallelized

region of code contains many variables, the compiler employs a combination of speculation and synchronization as

appropriate.

1This is also known as DOACROSS [17, 57] parallelization.

110

T
im

e

Memory

E1

store *p

E2

load *q

good when p != q

(a) Speculate.

E2

Memory

E2

St
al

l

store *p
signal

E1

wait

load *q

good when p == q and *q
is unpredictable

(b) Synchronize.

Memory

E1

store *p

Value
Predictor

E2

load *q

good when p == q and *q is
predictable

(c) Predict.

Figure 5.1. A memory value may be communicated between two epochs (E1 and E2) through (a) speculation, (b) synchro-
nization, or (c) prediction.

To further improve upon static compile-time choices between speculating or synchronizing for specific memory

accesses, we can exploit dynamic run-time behavior to make value communication more efficient. For example, we

might exploit a form of value prediction [4, 28, 49, 51, 62, 64, 74], as illustrated in Figure 5.1(c). To get a sense of

the potential upside of enhancing value communication under TLS, let us briefly consider the ideal case. From a

performance perspective, the ideal case would correspond to a value predictor that could perfectly predict the value

of any inter-thread dependence. In such a case, speculation would never fail and synchronization would never stall.

While this perfect-prediction scenario is unrealistic, it does allow us to quantify the potential impact of improving

value communication in TLS. Figure 5.2 shows the impact of perfect prediction on the performance of both the

select and max-coverage benchmarks (described in Chapter 2), evaluated on a 4-processor CMP that implements our

TLS scheme as described in Chapter 3. Each bar shows the total execution time of all speculatively-parallelized

regions of code, normalized to that of the corresponding original sequential versions of these same codes. As we

see in Figure 5.2, efficient value communication often makes the difference between speeding up and slowing down

relative to the original sequential code. Hence this is clearly an important area for applying compiler and hardware

optimizations.

111

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

11
5.

1

U

10
1.

3

P

bzip
2

10
9.

3

U

65
.7

P

gcc

56
.6

U
42

.9
P

co
m

pre
ss

12
1.

7

U

67
.0

P

cr
af

ty

10
6.

6

U

69
.9

P

gap

11
2.

0

U

58
.1

P

go

89
.4

U

49
.1

P

ijp
eg

95
.7

U

91
.0

P
li

93
.2

U

40
.1

P

m
88

ks
im

77
.9

U

52
.3

P

m
cf

17
9.

9

U

71
.0

P

par
se

r

78
.7

U

55
.6

P

per
lb

m
k

84
.2

U

65
.3

P

tw
olf

10
5.

1

U

58
.3

P

vo
rte

x

11
5.

2

U

62
.0

P

vp
r

(a) The select versions

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

12
1.

9

U

12
8.

2

P

bzip
2

11
6.

2

U

78
.6

P

gcc

11
6.

0

U

63
.3

P

co
m

pre
ss

13
9.

2

U

10
6.

0

P

cr
af

ty

10
5.

6

U

10
5.

4

P

gap

11
6.

4

U

90
.9

P

go

16
9.

4

U

11
7.

7

P

gzip

88
.7

U

61
.1

P

ijp
eg

10
9.

9
U

10
9.

0

P
li

12
9.

2

U

53
.7

P

m
88

ks
im

92
.5

U

61
.3

P

m
cf

13
5.

6

U

91
.4

P

par
se

r

11
0.

4

U

83
.1

P

per
lb

m
k

15
8.

7

U

39
.8

P

tw
olf

92
.2

U

88
.4

P

vo
rte

x

12
9.

6

U

38
.5

P

vp
r

(b) The max-coverage versions

Figure 5.2. Potential impact of optimizing value communication. Relative to the normalized, original sequential version, U
shows the unoptized speculative version and P shows perfect prediction of all inter-thread data dependences.

5.1.2 Techniques for Improving Value Communication

Given the importance of efficient value communication in TLS, what solutions can we implement to approach the

ideal results of Figure 5.2? Figure 5.1 shows the spectrum of possibilities: i.e. speculate, synchronize, or predict. In our

baseline scheme, the compiler synchronizes dependences that it expects to occur frequently (by explicitly “forwarding”

their values between successive epochs) [76], and speculates on everything else. How can we use hardware to improve

on this approach? Hardware support for efficient speculation is addressed in Chapters 3 and 4. Therefore our focus in

this chapter is how to exploit and enhance the remaining spectrum of possibilities (i.e. prediction and synchronization)

such that they are complementary to speculation within TLS. In particular, we explore the following techniques:

Value Prediction: We can exploit value prediction by having the consumer of a potential dependence use a predicted

value instead, as illustrated in Figure 5.1(c). After the epoch completes, it will compare the predicted value

with the actual value; if the values differ, then the normal speculation recovery mechanism will be invoked to

squash and restart the epoch with the correct value. We explore using value prediction as a replacement for both

112

...=X
X=...
signal

...=X
X=...
signal

...=X
X=...
signal

signal

wait...=X

X=...

signal
X=...

...=X

wait

...=X

X=...
signal

wait wait

st
al

l

st
al

l

st
al

l

st
al

l

T
im

e

cr
itc

al
 p

at
h

E2 E3 E1 E2 E3E1

Figure 5.3. Reducing the critical forwarding path.

speculation and synchronization. In the former case (which we refer to later as “memory value prediction”),

successful value prediction avoids the cost of recovery from an unsuccessful speculative load. In the latter case

(which we refer to later as “forwarded value prediction”), successful prediction avoids the need to stall waiting

for synchronization. Because the implementation issues and performance impact differ for these two cases, we

evaluate them separately.

Silent Stores: An interesting program phenomenon is that many stores have no real side-effect since they overwrite

memory with the same value that is already there. These stores are called silent stores [48], and we can exploit

them when they occur to avoid failed speculation. Although one can view silent stores as a form of value

prediction, the mechanism to exploit them is radically different from what is shown in Figure 5.1(c) since the

changes occur at the producer of a communicated value, rather than the consumer.

Hardware-Inserted Dynamic Synchronization: In cases where the compiler decided to speculate that a potential

true (read-after-write) dependence between speculative threads was not likely to occur, but where the depen-

dence does in fact occur frequently and the communicated value is unpredictable, the best option would be to

explicitly synchronize the threads (Figure 5.1(b)) to avoid the full cost of failed speculation. However, since

the compiler did not recognize that such synchronization would be useful, another option is for the hardware to

automatically switch from speculating to synchronizing when it dynamically detects such bad cases.

Reducing the Critical Forwarding Path: Once synchronization is introduced to explicitly forward values across

epochs, it creates a dependence chain across the threads that may ultimately limit the parallel speedup. We

113

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
0.

0

S

10
9.

5

T

11
5.

1

U

10
6.

0

B

bzip
2

10
0.

0

S

11
3.

1

T

10
9.

3

U

77
.1

B

gcc

10
0.

0

S

10
1.

9

T
56

.6

U
49

.0
B

co
m

pre
ss

10
0.

0

S

13
2.

5

T

12
1.

7

U

77
.5

B

cr
af

ty

10
0.

0

S

11
4.

0

T

10
6.

6

U

69
.3

B

gap

10
0.

0

S

11
1.

6

T

11
2.

0

U

84
.3

B

go

10
0.

0

S

97
.1

T

89
.4

U

42
.6

B

ijp
eg

10
0.

0

S

12
4.

9

T

95
.7

U

95
.7

B
li

10
0.

0

S

11
2.

1

T

93
.2

U

75
.7

B

m
88

ks
im

10
0.

0

S

10
9.

0

T

77
.9

U

70
.9

B

m
cf

10
0.

0

S

18
4.

9

T

17
9.

9

U

78
.4

B

par
se

r

10
0.

0

S

13
3.

7

T

78
.7

U

62
.1

B

per
lb

m
k

10
0.

0

S

11
9.

0

T

84
.2

U

81
.6

B

tw
olf

10
0.

0

S

11
3.

5

T

10
5.

1

U

71
.7

B

vo
rte

x

10
0.

0

S

11
6.

3

T

11
5.

2

U

69
.2

B

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
0.

0

S

10
5.

1

T

12
1.

9

U

14
0.

7

B

bzip
2

10
0.

0

S

10
6.

8

T

11
6.

2

U

11
4.

0

B

gcc

10
0.

0

S

98
.2

T

11
6.

0

U

10
8.

1

B

co
m

pre
ss

10
0.

0

S

13
0.

2

T

13
9.

2

U

11
9.

8

B

cr
af

ty

10
0.

0

S

10
4.

9

T

10
5.

6

U

10
1.

1

B

gap

10
0.

0

S

10
0.

0

T

11
6.

4

U

11
5.

8

B

go

10
0.

0

S

12
1.

3

T

16
9.

4

U

16
8.

6

B

gzip

10
0.

0

S

97
.5

T

88
.7

U

55
.1

B

ijp
eg

10
0.

0

S
10

8.
7

T
10

9.
9

U
10

9.
0

B
li

10
0.

0

S

10
0.

0

T

12
9.

2

U

12
7.

3

B

m
88

ks
im

10
0.

0

S

10
8.

4

T

92
.5

U

86
.7

B

m
cf

10
0.

0

S

12
3.

8

T

13
5.

6

U

12
1.

0

B

par
se

r

10
0.

0

S

13
9.

9

T

11
0.

4

U

10
6.

8

B

per
lb

m
k

10
0.

0

S

10
4.

9

T

15
8.

7

U

15
6.

1

B

tw
olf

10
0.

0

S

92
.3

T

92
.2

U

96
.4

B

vo
rte

x

10
0.

0

S

10
2.

3

T

12
9.

6

U

14
0.

7

B

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.4. Performance impact of our TLS compiler. For each experiment, we show normalized region execution time scaled
to the number of processors multiplied by the number of cycles (smaller is better). S is the sequential version, T is the
TLS version run sequentially. There are two versions of TLS code run in parallel: U and B are without and with compiler
scheduling of the critical forwarding path, respectively. Each bar shows a breakdown of how time is being spent.

can potentially improve performance in such cases by using scheduling techniques to reduce the critical path

between the first use and last definition of the dependent value, as illustrated in Figure 5.3. We implement both

compiler and hardware methods for reducing the critical forwarding path.

5.2 A Closer Look at Improving Value Communication

In this section, we evaluate the impact of compiler optimization on performance and then show the potential for

further improvement by hardware techniques.

5.2.1 Impact of Compiler Optimization

We begin by analyzing the performance impact of our compiler on TLS execution. Figure 5.4 shows the perfor-

mance on a 4-processor chip-multiprocessor. For each application in Figure 5.4, the leftmost bar (S) is the original

sequential version of the code, and the next bar (T) is the TLS version of the code run on a single processor. For each

experiment, we show region execution time normalized to the sequential case (S); hence bars that are less than 100

114

are speeding up, and bars that are larger than 100 are slowing down, relative to the sequential version. Comparing the

TLS version run sequentially (T) with the original sequential version (S) isolates the overhead of TLS transformation;

across all select benchmarks, this overhead averages 20.0%. When we run the TLS code in parallel, it must overcome

this overhead in order to achieve an overall speedup.

Each bar in Figure 5.4 is broken down into four segments explaining what happened during all potential graduation

slots.2 The fail segment represents all slots wasted on failed thread-level speculation, and the remaining three segments

represent slots spent on successful speculation. The busy segment is the number of slots where instructions graduate;

the sync portion represents slots spent waiting for synchronization for a forwarded location; the other segment is all

other slots where instructions cannot graduate (including the slots where the reorder buffer is empty, data cache misses,

and pipeline hazards). While this breakdown is less detailed than that used in previous chapters, it allows us to focus

on the two sources of overhead that we attack in this chapter: synchronization (sync) and failed speculation (fail).

We consider two versions of TLS code running in parallel: the B case includes all of the compiler optimizations

described earlier in Section 2.4, and the U case is the same minus the aggressive compiler scheduling to reduce

the critical forwarding path. In nearly every case, the “unoptimized”3 version (U) slows down with respect to the

sequential version. The additional impediments include decreased data cache locality, synchronization, and failed

speculation. Many benchmarks spend a significant amount of time synchronizing on forwarded values (as shown by

the sync portion). If the compiler optimizes forwarded values by removing dependences due to certain loop induction

variables and scheduling the critical path (B, our baseline), we observe that the performance of every select benchmark

except for BZIP2, LI, and TWOLF improves substantially through decreased synchronization (sync), indicating that this

is a crucial optimization.

5.2.2 Importance of Issuing Around Wait Instructions

For standard consistency models (such as release consistency [18]) a synchronization operation normally stalls fur-

ther memory operations (i.e. through a memory barrier) until the synchronization operation is complete. However,

for TLS support (which implements uniprocessor consistency with respect to ordered speculative threads) synchro-

nization operations are quite different. TLS hardware associates each wait (i.e. wait for value()) instruction

2The number of graduation slots is the product of: (i) the issue width (4 in this case), (ii) the number of cycles, and (iii) the number of processors.
3Note that the “unoptimized” case still includes the gcc “-O3” flag, and is optimized in every way except for the aggressive critical forwarding

path scheduling.

115

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

11
7.

8

W

10
6.

0

B

bzip
2

92
.1

W

77
.1

B

gcc

49
.0

W
49

.0

B

co
m

pre
ss

86
.3

W

77
.5

B

cr
af

ty

69
.3

W

69
.3

B

gap

84
.9

W

84
.3

B

go

46
.7

W

42
.6

B

ijp
eg

96
.3

W

95
.7

B
li

78
.7

W

75
.7

B

m
88

ks
im

10
2.

7

W

70
.9

B

m
cf

78
.9

W

78
.4

B

par
se

r

68
.6

W

62
.1

B

per
lb

m
k

81
.4

W

81
.6

B

tw
olf

82
.6

W

71
.7

B

vo
rte

x

70
.6

W

69
.2

B

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

13
7.

6

W

14
0.

7

B

bzip
2

11
4.

5

W

11
4.

0

B

gcc

10
8.

4

W

10
8.

1

B

co
m

pre
ss

12
8.

3

W

11
9.

8

B

cr
af

ty

10
6.

1

W

10
1.

1

B

gap

11
4.

9

W

11
5.

8

B

go

15
1.

7

W

16
8.

6

B

gzip

58
.7

W

55
.1

B

ijp
eg

10
9.

0

W

10
9.

0

B
li

12
7.

1

W

12
7.

3

B

m
88

ks
im

10
5.

8

W

86
.7

B

m
cf

11
9.

3

W

12
1.

0

B

par
se

r

10
9.

9

W

10
6.

8

B

per
lb

m
k

15
7.

1

W

15
6.

1

B

tw
olf

98
.2

W

96
.4

B

vo
rte

x

14
1.

2

W

14
0.

7

B

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.5. Impact of issuing around wait instructions. For W, instructions cannot issue out-of-order with respect to a
blocked wait instruction, while in B (our baseline) they can.

with the corresponding load instruction (which actually loads the value from the forwarding frame) by matching the

forwarding frame offset (see Section 2.3.2). This association allows the load instruction to be blocked while other

instructions are issued around it. Since the forwarded value is communicated directly between speculative threads

through a mechanism that is logically separated from regular memory (i.e. the forwarding frame), consistency issues

related to this form of synchronization are avoided.

In Figure 5.5 we evaluate the impact of the ability to issue instructions out-of-order with respect to a wait in-

struction (and the corresponding computation chain dependent on that forwarded value). For the select benchmarks,

issuing around wait instructions provides a significant improvement for six applications (BZIP2, GCC, CRAFTY, MCF,

PERLBMK, and VORTEX). For the max-coverage benchmarks, CRAFTY and MCF improve while four applications per-

form slightly worse: for the max-coverage benchmarks, increasing parallel overlap through decreased synchronization

wait time indirectly increases the amount of failed speculation. The select benchmarks improve by an average of 6.3%

while the max-coverage benchmarks only improve by an average of 1.3%. Overall, this support is both beneficial and

straightforward to implement.

116

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e 10
6.

0

B

10
8.

0

F

10
1.

0

M

10
1.

3

P

bzip
2

77
.1

B

71
.5

F

72
.6

M

65
.7

P

gcc

49
.0

B

49
.0

F
43

.0

M
42

.9
P

co
m

pre
ss

77
.5

B

73
.9

F

71
.1

M

67
.0

P

cr
af

ty

69
.3

B

69
.3

F

69
.9

M

69
.9

P

gap

84
.3

B

83
.5

F

59
.0

M

58
.1

P

go

42
.6

B

42
.1

F

48
.8

M

49
.1

P

ijp
eg

95
.7

B

94
.5

F

93
.3

M

91
.0

P
li

75
.7

B

63
.5

F

40
.2

M

40
.1

P

m
88

ks
im

70
.9

B

60
.0

F

63
.8

M

52
.3

P

m
cf

78
.4

B

77
.7

F

70
.3

M

71
.0

P

par
se

r

62
.1

B

55
.6

F

62
.1

M

55
.6

P

per
lb

m
k

81
.6

B

65
.1

F

81
.1

M

65
.3

P

tw
olf

71
.7

B

70
.5

F

60
.1

M

58
.3

P

vo
rte

x

69
.2

B

68
.5

F

62
.7

M

62
.0

P

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

14
0.

7

B

14
1.

6

F

12
7.

8

M

12
8.

2

P

bzip
2

11
4.

0

B

10
9.

3

F

10
1.

8

M

78
.6

P

gcc

10
8.

1

B

10
7.

7

F

79
.6

M

63
.3

P

co
m

pre
ss

11
9.

8

B

11
8.

2

F

11
3.

1

M

10
6.

0

P

cr
af

ty

10
1.

1

B

10
6.

1

F

10
5.

4

M

10
5.

4

P

gap

11
5.

8

B

11
5.

2

F

10
1.

2

M

90
.9

P

go

16
8.

6

B

15
4.

3

F

11
8.

1

M

11
7.

7

P

gzip

55
.1

B

54
.2

F

61
.3

M

61
.1

P

ijp
eg

10
9.

0

B
10

9.
0

F
10

9.
0

M
10

9.
0

P
li

12
7.

3

B

12
3.

8

F

53
.7

M

53
.7

P

m
88

ks
im

86
.7

B

73
.4

F

79
.5

M

61
.3

P

m
cf

12
1.

0

B

11
5.

7

F

10
2.

3

M

91
.4

P

par
se

r

10
6.

8

B

10
1.

7

F

88
.1

M

83
.1

P

per
lb

m
k

15
6.

1

B

15
2.

0

F

45
.7

M

39
.8

P

tw
olf

96
.4

B

96
.0

F

89
.2

M

88
.4

P

vo
rte

x

14
0.

7

B

14
1.

2

F

38
.6

M

38
.5

P

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.6. Potential for improved value communication. B is our baseline, M shows perfect prediction of memory values, F
shows perfect prediction of forwarded values, and P shows perfect prediction of both forwarded and memory values.

5.2.3 The Potential for Further Improvement by Hardware

To illustrate that the performance of many of our benchmarks are limited by the efficiency of value communication,

we show in Figure 5.6 the impact of ideal prediction on performance, starting with the baseline (B) from Figure 5.4

which includes compiler scheduling of the critical forwarding path. In the F experiment we see the impact of perfect

prediction of forwarded values (those explicitly communicated between epochs on the forwarding frame). In effect,

this means that there will be no time spent waiting for synchronization of forwarded values. GCC, CRAFTY, M88KSIM,

MCF, PERLBMK, and TWOLF show a substantial improvement, since the baseline experiment (B) shows these bench-

marks to be somewhat limited by synchronization; the remaining select benchmarks do not improve significantly. The

max-coverage benchmarks are relatively unaffected since they tend to be dominated by failed speculation.

In the M experiment, we measure the impact of perfect memory value prediction, such that no epoch will suffer

from failed speculation. In this case, we see a great improvement in most benchmarks. The select versions of GCC,

CRAFTY, MCF, PERLBMK, TWOLF, and VORTEX show a significant synchronization portion for the M experiment,

indicating that synchronization is still a limiting factor for these applications; the max-coverage versions of GCC,

117

COMPRESS, MCF, PERLBMK, and TWOLF show similar results.

Finally, in the P experiment we evaluate the impact of perfect prediction of both memory and forwarded value

values—this is the same experiment shown in Figure 5.2. In this case, the select versions of GCC, CRAFTY, MCF, as

well as the max-coverage versions of GCC, COMPRESS, MCF, PARSER, TWOLF show a significant increased benefit

compared to either technique alone, while the other benchmarks show only modest improvements. Evidently, given

our compiler support for improving synchronization [76], avoiding failed speculation is the main bottleneck to good

performance; however, further improvement of synchronization may still be possible for some benchmarks. Also, if

we cannot fully eliminate failed speculation then improving synchronization will still be important.

5.3 Techniques for When Prediction Is Best

For a frequently-occurring cross-epoch dependence that the compiler has decided to synchronize or speculate upon,

an attractive alternative is to instead predict the value, eliminating synchronization stall time or failed speculation. In

this section we investigate techniques for predicting values for TLS. We begin with a comparison of related work,

followed by a description of the issues for predicting values for TLS (as compared with uniprocessor value prediction).

We then investigate prediction of memory values and forwarded values, and the optimization of silent stores.

5.3.1 Related Work

Value prediction in the context of a uniprocessor is fairly well understood [28, 49, 64, 74], while value prediction for

thread-speculative architectures is relatively new. Gonzalez et al. [51] evaluated the potential for value prediction when

speculating at a thread-level on the innermost loops from SPECint95 [16] benchmarks, and concluded that predicting

synchronized (forwarded) register dependences provided the greatest benefit, and that predicting memory values did

not offer much additional benefit. The opposite is true of the results presented in this chapter for two reasons. First,

our compiler has correctly scheduled easily-predictable but frequently-synchronized loop-induction variables so that

they cannot cause dependence violations, and has also scheduled the code paths of forwarded values to minimize the

impact of synchronization on performance. Second, we have selected much larger regions of code to speculate on,

resulting in a greater number of memory dependences between threads. Cintra et al. [13] investigated the impact

of value prediction after the compiler has optimized loop induction variables in floating-point applications. Several

other works evaluate the impact of value prediction without such compiler optimization. Oplinger et al. [56] evaluate

118

the potential benefits to TLS of memory, register, and procedure return value prediction, and Akkary et al. [4] and

Rotenberg et al. [62] also describe designs that include value prediction.

5.3.2 Design Issues and Experimental Framework

Predicting values for TLS has similar issues to predicting values in the midst of branch speculation, but at a larger

scale. With branch speculation, we do not want to update the value predictor for any loads on the mispredicted path.

Also, when a value is mispredicted we need only squash a relatively small number of instructions, so the cost of

misprediction is not large. Similarly, in TLS we only want to update the predictor for values predicted in successful

epochs, but this will require either a larger amount of buffering or the ability to back-up and restore the state of the value

predictor. Furthermore, the cost of a misprediction is high for TLS: the entire epoch must be re-executed if a value

is mispredicted because a prediction cannot be verified until the end of the epoch when all modifications by previous

epochs have been made visible.4 Finally, for TLS we require that each epoch has a logically-separate value predictor.

For SMT or other shared-pipeline speculation scheme, this does not mean that each requires a physically separate

value predictor, but that the prediction entries must be kept separate by incorporating the epoch context identifier into

the indexing function. This is necessary since multiple epochs may need to simultaneously predict different versions

of the same location.

We model an aggressive hybrid predictor that combines a 1K×3-entry context predictor with a 1K-entry stride

predictor, using 2-bit, up/down, saturating confidence counters to select between the two predictors. We found that

the number of mispredictions can be minimized by simply predicting only when the prediction confidence is at the

maximum value. Finding the smallest and simplest predictor that produces good results is beyond the scope of this

dissertation. It is important to note that we also model misprediction by re-executing any epoch that has used a

mispredicted-value. Finally, a misprediction is not detected until the end of the epoch when the prediction is verified.

5.3.3 Memory Value Prediction

One potential way to eliminate data dependence violations between speculative threads is through the prediction of

memory values. But which loads should we predict? A simple approach would be to predict every load for which the

predictor is confident. Previous work [9, 23] shows that focusing prediction on critical path instructions is important for

4Some schemes support selective-squashing of instructions that have used a mispredicted value [4], but this requires a large amount of buffering.

119

Table 5.1. Memory value prediction statistics for the select benchmarks.
Avg. Unique

Avg. Exposed Violating Loads
Loads Incorrectly Correctly Not Per Processor

Application per Epoch Predicted Predicted Confident (Across all Regions)

BZIP2 31.9 4.0% 63.9% 32.0% 9.2
GCC 16.1 2.4% 68.3% 29.1% 139.8
COMPRESS 0.0 0.0% 60.0% 40.0% 0.0
CRAFTY 16.5 3.8% 53.9% 42.2% 7.8
GAP 15.5 0.3% 72.8% 26.7% 4.2
GO 33.4 2.6% 53.7% 43.6% 180.8
IJPEG 39.8 1.3% 41.4% 57.2% 12.5
LI 11.9 10.9% 48.7% 40.2% 7.8
M88KSIM 14.3 2.2% 69.6% 28.0% 1.0
MCF 12.1 1.1% 56.2% 42.6% 16.2
PARSER 38.9 0.2% 94.7% 05.0% 71.0
PERLBMK 6.0 0.2% 97.0% 02.6% 0.0
TWOLF 4.3 4.7% 67.8% 27.3% 3.0
VORTEX 44.9 2.5% 60.4% 36.9% 4.8
VPR 34.8 6.7% 53.7% 39.4% 10.5

uniprocessor value prediction when modeling realistic misprediction penalties. Similarly, the cost of misprediction in

TLS is very high, so we instead want to focus only on the loads that can potentially cause misspeculation. Fortunately,

this information is available from the speculative cache line state: only loads that are exposed5 can cause speculation

to fail. Since our scheme tracks which words have been speculatively-modified in each cache line, we can decide

whether a given load is exposed. Furthermore, there is no point predicting a load if the speculatively-loaded (SL) bit

is already set for the corresponding cache line, since any failed speculation will not be averted; for this study, we will

not consider such loads to be exposed.

Table 5.1 shows some statistics for the select benchmarks for exposed loads and their predictability, using the

predictor described above. The exposed loads in eight applications are quite predictable (correctly predicted more

than 60% of the time), while the remaining benchmarks also provide a significant fraction of correct predictions.

We see that the amount of misprediction is small—an average of 2.9% across all select benchmarks, with LI having

the worst misprediction rate at 10.9%. The rates of correct prediction are quite high, averaging 64.1% across all

benchmarks. Hence we expect memory value prediction to work well.

In Figure 5.7, the E experiment shows the impact of predicting all exposed loads for which the predictor is confident.

In almost every case for the select benchmarks, performance is worse due to an increased amount of failed speculation

caused by misprediction; these benchmarks perform 23.5% worse on average. The problem is that despite several

5A load that is not proceeded in the same epoch by a store to the same location is considered to be exposed [3].

120

|

0

|

50

|

100

|

150

 Normalized Region Execution Time

106.0

B

123.9E

107.4V

107.4L

bzip2

77.1

B

88.3E

74.3V

77.7L

gcc

49.0

B

49.2E

49.2V

49.0L

com
press

77.5

B

106.6E

77.4V

79.9L

crafty

69.3

B

71.7E

69.4V

69.3L

gap

84.3

B

111.7E

89.0V
86.0L

go
42.6

B

61.4E

42.6V

42.6L

ijpeg

95.7

B

197.5E

131.2V

132.2L
li

75.7

B

69.1E

35.7V

35.9L

m
88ksim

70.9

B

78.5E

75.0V

78.1L

m
cf

78.4

B

83.9E

79.9V

78.8L

parser

62.1

B

65.1E

62.1V

62.1L

perlbm
k

81.6

B

83.4E

80.8V

81.6L

twolf

71.7

B

111.3E

69.9V

69.9L

vortex

69.2

B

162.3E

69.8V

70.4L

vpr

fail
syn

c
o

th
er

b
u

sy

(a)
E

xecution
tim

e
for

the
selectversions.

|

0

|

20

|

40

|

60

|

80

|

100

 Failed Speculation (%)

6.7

B

22.3E

5.7V

5.7L

bzip2

7.2

B

17.5E

3.7V

8.0L

gcc

0.0

B

0.0E

0.0V

0.0L

com
press

5.9

B

27.2E

6.0V

9.3L

crafty

0.2

B

2.0E

0.2V

0.2L

gap

30.6

B

47.5E

34.4V

32.3L

go

1.2

B

26.6E

1.2V

1.2L

ijpeg

3.0

B

74.4E

29.1V

29.1L
li

54.8

B

49.2E

1.1V

1.1L

m
88ksim

14.3

B

25.8E

20.8V

25.3L

m
cf

9.5

B

16.7E

10.7V

10.1L

parser

0.0
B

4.9E
0.0V
0.0L

perlbm
k

0.7

B

3.2E

0.4V

0.7L

twolf

6.6

B

29.3E

5.2V

5.3L

vortex

13.7

B

58.4E

14.6V

15.3L

vpr

ch
ain

rep
lacem

en
t

d
ep

en
d

en
ce

m
isp

red
ict

(b)
Failed

speculation
for

the
selectversions.

|

0

|

50

|
100

|

150

 Normalized Region Execution Time

140.7

B

137.3E

126.3V

142.5L

bzip2

114.0

B

114.3E

113.9V

114.3L

gcc

108.1

B

108.5E

108.6V

108.3L

com
press

119.8

B

130.2E

119.0V

121.2L

crafty

101.1

B

106.0E

106.0V

106.1L

gap

115.8

B

115.7E

115.8V

115.8L

go

168.6

B

168.5E

168.4V

168.2L

gzip

55.1

B

69.5E

55.0V

55.0L

ijpeg

109.0

B

109.0E

109.0V

109.0L
li

127.3

B

118.0E

101.0V

100.8L

m
88ksim

86.7

B

91.2E

89.5V

87.8L

m
cf

121.0

B

122.3E

121.0V

120.9L

parser

106.8

B

109.1E

106.6V

106.4L

perlbm
k

156.1

B

158.8E

156.2V

156.2L

twolf

96.4

B

93.7E

86.9V

97.0L

vortex

140.7

B

147.0E

141.0V

141.0L

vpr

fail
syn

c
o

th
er

b
u

sy

(c)
E

xecution
tim

e
for

the
m

ax-coverage
versions.

F
ig

u
re

5.7.
P

erfo
rm

an
ce

an
d

failed
sp

ecu
latio

n
w

ith
m

em
o

ry
valu

e
p

red
ictio

n
.

B
is

th
e

b
aselin

e
exp

erim
en

t,E
p

red
icts

all
exposed

lo
ad

s,V
o

n
ly

p
red

icts
lo

ad
s

th
at

h
ave

cau
sed

vio
latio

n
s

u
sin

g
an

exp
o

sed
lo

ad
tab

le
an

d
a

vio
latin

g
lo

ad
s

list
th

at
are

b
o

th
u

n
lim

ited
in

size,an
d

L
refi

n
es

V
w

ith
tab

les/lists
th

at
are

realistic
in

size.

121

hash

Load PC

Load PC

Load PC
��
��
��

Exposed
Load Table

Load PC

Cache Tag

(a) Exposed load table, updated on every ex-
posed load.

hash

Load PC

Load PC

Load PC��
�	

�

Exposed
Load Table

Load PC

Load PC

Load PC

Violating
Loads List

��������

Load PC

Cache Tag

(b) Violating loads list, updated on every dependence violation.

Figure 5.8. Two mechanisms used to throttle memory value prediction: the exposed load table and violating loads list.

correct predictions for a given epoch, it only takes a single misprediction to cause speculation to fail for that epoch

and all active logically-later epochs as well. Figure 5.7(b) shows a breakdown of the percentage of time wasted on

failed speculation: chain represents time spent on epochs that were squashed because logically-earlier epochs were

previously squashed; (replacement represent violations caused by replacement in either the first-level data caches

or the shared unified cache; dependence represents speculation that fails due to violation of a true (read-after-write)

data dependence; and mispredict represents failed speculation due to mispredicted memory values. It is evident that

misprediction of memory values (mispredict) is the cause of performance loss. The max-coverage benchmarks also

suffer an increase in failed speculation for this experiment (E), although it is less severe (only 3.7% worse on average).

For both sets of benchmarks, only the performance of M88KSIM improves.

Rather than predict all exposed loads, we can be even more selective by only predicting loads that are likely to

cause dependence violations. We can track these loads with the following two devices. First, for each speculative

context, we keep a hash table (called the exposed load table) that is indexed by the cache line tag and stores the PC of

the most recent corresponding exposed load, as shown in Figure 5.8(a). This table is reset when an epoch commits.

Second, whenever a dependence violation occurs it is associated with a cache line, so we can use the cache line tag

to index the exposed load table and retrieve the PC of the offending load, as shown in Figure 5.8(b). Hence we can

keep a list of load PCs (also for each speculative context) which have caused violations (the violating loads list), and

can now use this list to decide which loads we should predict. In Table 5.1 we see that the average number of unique

violating loads (by PC) per processor for each benchmark is not large, averaging 31.2 across all benchmarks.

122

In Figure 5.7, the V experiment shows the impact of predicting only loads that have caused violations, as given by

the violating loads list. For this experiment, both the exposed load tables and violating loads lists are unlimited in size.

These mechanisms throttle prediction for the select benchmarks, although average performance is still overall 0.2%

worse than that of the baseline. The performance of most benchmarks is relatively unaffected, except for M88KSIM

which performs 52.8% better, and LI which performs 37.0% worse than the baseline. The max-coverage benchmarks

perform 2.7% better on average than the corresponding baseline, with only BZIP2, M88KSIM, and VORTEX performing

significantly better.

In the L experiment in Figure 5.7, we model more realistic storage sizes for our throttling mechanisms, such

that both the exposed-load tables and violating loads lists have only 32 entries each. Since the exposed-loads table is

implemented with a hashing index function, any conflicting cache tag index simply over-writes that entry, such that the

table saves only the most recent exposed loads. Similarly, the violating loads list only saves the most recent violating

loads. We observe that the performance of the V experiment is maintained except for the max-coverage versions of

BZIP2 and VORTEX. Hence with proper throttling, memory value prediction can be effective for some applications;

for the select benchmarks, loads that cause violations are not easily predictable, suggesting that synchronization may

be a better option for speculative regions with little speculation. Memory value prediction is more effective for the

max-coverage benchmarks (which have a greater amount of failed speculation), suggesting that value prediction can

help increase the number of regions of code for which speculative parallelization is effective.

Having explored value prediction for the sake of avoiding failed speculation, we now turn our attention to using

value prediction to mitigate the performance impact of explicit synchronization.

5.3.4 Prediction of Forwarded Values

Recall that forwarded values are those that are frequently modified and hence their accesses are synchronized and

forwarded between epochs (using the forwarding frame) by the compiler. Similar to memory values, we can also

predict forwarded values. However, while we predict memory values to decrease the amount of failed speculation,

we predict forwarded values to decrease the amount of time spent synchronizing. Table 5.2 shows some statistics for

the prediction of forwarded values for the select benchmarks, using the predictor described previously. We observe

that the fraction of incorrect predictions for forwarded values (averaging 3.8% across all benchmarks) is somewhat

123

|

0

|

50

|

100

 Normalized Region Execution Time

106.0

B

108.0F

108.1

S

bzip2

77.1

B

81.5F

80.3

S

gcc

49.0

B

50.4F

49.3

S

com
press

77.5

B

80.1F

79.1

S

crafty

69.3

B

69.3F

69.3

S

gap

84.3

B

84.9F

84.6

S

go
42.6

B
46.8F

46.1

S

ijpeg

95.7

B

101.0F

100.7

S
li

75.7

B

68.2F

68.2

S

m
88ksim

70.9

B

68.3F

68.3

S

m
cf

78.4

B

78.3F

78.3

S

parser

62.1

B

57.6F

61.7

S

perlbm
k

81.6

B

70.8F

72.0

S

twolf

71.7

B

72.7F

72.2

S

vortex

69.2

B

72.3F

69.9

S

vpr

fail
syn

c
o

th
er

b
u

sy

(a)
E

xecution
tim

e
for

the
selectversions.

|

0

|

20

|

40

|

60

|

80

|

100

 Failed Speculation (%)

6.7

B

6.6F

6.6

S

bzip2

7.2

B

10.6F

9.7

S

gcc

0.0

B

3.4F

0.6

S

com
press

5.9

B

9.6F

8.1

S

crafty

0.2

B

0.2F

0.2

S

gap

30.6

B

31.2F

31.0

S

go

1.2

B

8.4F

6.8

S

ijpeg

3.0

B

17.3F

15.7

S
li

54.8

B

50.7F

50.9

S

m
88ksim

14.3

B

22.9F

21.4

S

m
cf

9.5

B

9.6F

9.5

S

parser

0.0

B
0.0F
0.0

S

perlbm
k

0.7

B

0.5F

0.5

S

twolf

6.6

B

10.6F

9.3

S

vortex

13.7

B

18.2F

15.3

S

vpr

ch
ain

rep
lacem

en
t

d
ep

en
d

en
ce

m
isp

red
ict

(b)
Failed

speculation
for

the
selectversions.

|

0

|

50

|
100

|

150

 Normalized Region Execution Time

140.7

B

141.6F

141.6

S

bzip2

114.0

B

115.7F

115.1

S

gcc

108.1

B

108.8F

108.4

S

com
press

119.8

B

121.2F

120.2

S

crafty

101.1

B

106.1F

106.1

S

gap

115.8

B

115.9F

115.9

S

go

168.6

B

164.3F

165.1

S

gzip

55.1

B

59.3F

58.5

S

ijpeg

109.0

B

109.0F

109.0

S
li

127.3

B

121.4F

120.9

S

m
88ksim

86.7

B

82.1F

82.3

S

m
cf

121.0

B

120.8F

120.8

S

parser

106.8

B

104.3F

106.0

S

perlbm
k

156.1

B

154.2F

154.7

S

twolf

96.4

B

96.4F

96.4

S

vortex

140.7

B

141.0F

141.2

S

vpr

fail
syn

c
o

th
er

b
u

sy

(c)
E

xecution
tim

e
for

the
m

ax-coverage
versions.

F
ig

u
re

5.9.
P

erfo
rm

an
ce

o
f

fo
rw

ard
ed

valu
e

p
red

ictio
n

.
B

is
th

e
b

aselin
e

exp
erim

en
t,

F
p

red
icts

all
fo

rw
ard

ed
valu

es
S

p
red

icts
fo

rw
ard

ed
valu

es
th

at
h

ave
cau

sed
stalls.

124

Table 5.2. Forwarded value prediction statistics for the select benchmarks.
Incorrectly Correctly Not Average Number

Application Predicted Predicted Confident of “Waiting” Loads

BZIP2 0.4% 22.8% 76.7% 0.9
GCC 6.7% 34.5% 58.6% 2.0
COMPRESS 2.4% 90.3% 7.2% 0.2
CRAFTY 3.6% 6.3% 90.0% 2.1
GAP 0.3% 0.0% 99.6% 0.0
GO 2.0% 12.4% 85.5% 0.9
IJPEG 7.7% 32.4% 59.8% 2.8
LI 13.1% 39.2% 47.6% 1.0
M88KSIM 8.0% 64.1% 27.8% 0.7
MCF 9.3% 52.5% 38.0% 1.4
PARSER 0.5% 19.3% 80.0% 0.2
PERLBMK 0.1% 98.8% 1.1% 0.1
TWOLF 0.1% 14.8% 85.1% 1.5
VORTEX 0.7% 71.1% 28.1% 2.3
VPR 2.6% 35.6% 61.7% 2.6

higher than for memory values (as shown in Table 5.1) while the fraction of correct predictions for forwarded values

(averaging 39.6%) is not as high.

In Figure 5.9, the F experiment shows the impact of predicting forwarded values: for the select benchmarks the

amount of time spent waiting for synchronization is significantly reduced for M88KSIM, PERLBMK, and TWOLF, al-

though the amount of failed speculation for GCC, CRAFTY, IJPEG LI, VORTEX, and VPR increases. From Figure 5.9(b)

we see that this increase is indeed due to the misprediction of forwarded values (mispredict) for GCC, LI, IJPEG,

MCF, and VORTEX. The remaining benchmarks (LI, VORTEX, and VPR) suffer an increase in failed speculation due to

violated data dependences (dependence): dependences which previously were indirectly synchronized by value for-

warding are now exposed due to the increased overlap resulting from successfully predicted forwarded values. This

observation suggests that prediction of forwarded values will perform better when used in concert with other tech-

niques for reducing failed speculation. Overall, forwarded value prediction yields an average improvement of 0.1%

for the select benchmarks and 0.3% for the max-coverage benchmarks.

To throttle forwarded value prediction, we apply a similar technique to that used for memory value prediction:

we track which forwarded loads that cause the pipeline to stall waiting for synchronization (waiting loads), and only

predict those values. Similar to violating loads, these loads can be tracked through the use of a small list of PCs: in

Table 5.2 we see that the number of unique waiting loads per benchmark is quite small, averaging 1.2 loads across all

benchmarks. The S bars shows the results of this experiment, which for the select benchmarks maintains the benefits

of the F experiment for M88KSIM and TWOLF and also helps mitigate the negative impact on IJPEG, VORTEX, and

125

Table 5.3. Percent of dynamic, non-stack stores that are silent (for the select benchmarks).
Dynamic, Non-Stack

Application Silent Stores

BZIP2 4.3%
CC1 8.7%
COMPRESS95 94.8%
CRAFTY 3.3%
GAP 0.2%
GO 1.4%
IJPEG 30.7%
LI 0.0%
M88KSIM 19.4%
MCF 10.7%
PARSER 1.4%
PERLBMK 1.3%
TWOLF 0.6%
VORTEX 53.7%
VPR 5.9%

VPR. Overall, throttled forwarded value prediction yields an average improvement of 0.2% for the select benchmarks

and the same 0.3% improvement for the max-coverage benchmarks. Similar to memory value prediction, for some

applications the prediction of forwarded values is an effective way to reduce the amount of time spent synchronizing,

but does not have a large impact on most applications.

5.3.5 Silent Stores

Often, a store does not actually modify the value of its target location. In other words, the value of the location

before the store is the same as the value of the location after the store. This occurrence is known as a silent store [48],

and was first exploited to reduce coherence traffic. A store that is expected to be silent is replaced with a load, and

the loaded value is compared with the value to be stored. If they are not the same, then the store is executed after

all, otherwise we save the coherence traffic of gaining exclusive access to the cache line and eliminate future update

traffic. This same technique can be applied to TLS to avoid data dependence violations so that a dependent store-load

pair can be made independent if the store is actually silent.

In Table 5.3 we see that silent stores are abundant in the select benchmarks, ranging from 4% to 80% of all dynamic

non-stack stores within speculative regions, and averaging 15.8% across all benchmarks. However, what matters is

whether the stores which cause dependence violations are silent.

The mechanism for exploiting silent stores for TLS is somewhat different than that used for exploiting silent stores

in a uniprocessor. Replacing a potentially-silent store with a load could cause the underlying speculative coherence

scheme to detect a read-after-write dependence violation if a logically-earlier epoch stores to the same cache line. In-

stead, we convert a potentially-silent store to a prefetch (which is ignored by the data dependence tracking mechanism),

126

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e 10
6.

0

B

10
8.

1

SS

bzip
2

77
.1

B

77
.0

SS

gcc

49
.0

B
29

.5

SS

co
m

pre
ss

77
.5

B

77
.4

SS

cr
af

ty

69
.3

B

69
.3

SS

gap

84
.3

B

84
.2

SS

go

42
.6

B

42
.6

SS

ijp
eg

95
.7

B

96
.1

SS
li

75
.7

B

80
.7

SS

m
88

ks
im

70
.9

B

70
.7

SS

m
cf

78
.4

B

79
.3

SS

par
se

r

62
.1

B

62
.1

SS

per
lb

m
k

81
.6

B

81
.6

SS

tw
olf

71
.7

B

70
.3

SS

vo
rte

x

69
.2

B

69
.1

SS

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

14
0.

7

B

14
2.

4

SS

bzip
2

11
4.

0

B

11
3.

9

SS

gcc

10
8.

1

B

10
0.

9

SS

co
m

pre
ss

11
9.

8

B

11
9.

9

SS

cr
af

ty

10
1.

1

B

10
6.

0

SS

gap

11
5.

8

B

11
5.

7

SS

go

16
8.

6

B

16
8.

7

SS

gzip

55
.1

B

55
.0

SS

ijp
eg

10
9.

0

B

10
9.

0

SS
li

12
7.

3

B

12
9.

4

SS

m
88

ks
im

86
.7

B

86
.0

SS

m
cf

12
1.

0

B

11
8.

9

SS

par
se

r

10
6.

8

B

10
6.

9

SS

per
lb

m
k

15
6.

1

B

15
6.

7

SS

tw
olf

96
.4

B

86
.8

SS

vo
rte

x

14
0.

7

B

14
1.

3

SS

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.10. Performance of silent stores optimization. B is the baseline experiment, and S optimizes silent stores.

and verify the location later via a load when the epoch becomes homefree.

Figure 5.10 shows that optimizing silent stores results in a substantial improvement for COMPRESS (40.0%), a slight

improvement for most benchmarks, and an increase in failed speculation for BZIP2 and M88KSIM. Exploiting silent

stores yields an improvement of 0.9% for the select benchmarks and 0.6% for the max-coverage benchmarks, Com-

pared with using value prediction to avoid potential memory dependences (as we explored earlier in Section 5.3.3),

the silent stores approach requires significantly less hardware support (e.g., no value predictor is needed). Hence this

appears to be an attractive technique for enhancing TLS performance.

5.4 Techniques for When Synchronization Is Best

For frequently-occurring cross-epoch dependences with unpredictable values, the only remaining alternative is to

synchronize. In this section we investigate techniques for dynamic synchronization of dependences, and also prioriti-

zation of the critical forwarding path between synchronized accesses.

127

T
im

e

E1 E2E2

Memory

6

E1
E2

store *p

load *q

Memory

store *p

load *q

St
al

l

Figure 5.11. Dynamic synchronization, which avoids failed speculation (left) by stalling the appropriate load until the previous
epoch completes (right).

5.4.1 Hardware-Inserted Dynamic Synchronization

For many of our benchmarks, failed speculation is a significant performance limitation (especially for the max-

coverage benchmarks); and as we observed in Section 5.3, prediction alone cannot eliminate all dependence violations.

Our compiler has already inserted synchronization for local variables with cross-epoch data dependences (such as loop

induction variables). Many dependences still remain, as demonstrated in Section 5.2.3, which can be synchronized

dynamically by hardware.

Related Work

Dynamic synchronization has been applied to both uniprocessor and multiprocessor domains. Chrysos et al. [11]

present a design for dynamically synchronizing dependent store-load pairs within the context of an out-of-order issue

uniprocessor pipeline, and Moshovos et al. [54] investigate the dynamic synchronization of dependent store-load pairs

in the context of the Multiscalar architecture [27, 65].

Both of these works differ from ours because they have the ability to forward a value directly from the store to the

load in a dynamically-synchronized store-load pair: this is not difficult in a uniprocessor since the store and load issue

from the same pipeline; for a multiprocessor like the Multiscalar, this requires that the memory location in question is

implicitly forwarded from the producer to the consumer—functionality that is provided by the Multiscalar’s address-

resolution buffer [27]. As discussed and quantified in Sections 3.1.2 and 4.2.2, our scheme does not provide such

support for implicit forwarding since it is not worth the complexity.

128

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

10
6.

0

B

11
3.

9

D

11
1.

0

R

11
1.

1

L

bzip
2

77
.1

B

80
.6

D

77
.2

R

77
.2

L

gcc

49
.0

B

49
.2

D
49

.2

R
49

.0
L

co
m

pre
ss

77
.5

B

97
.3

D

77
.8

R

77
.8

L

cr
af

ty

69
.3

B

78
.1

D

69
.3

R

69
.2

L

gap

84
.3

B

88
.2

D

82
.6

R

82
.5

L

go

42
.6

B

42
.4

D

42
.6

R

42
.6

L

ijp
eg

95
.7

B

11
8.

6

D

96
.8

R

96
.7

L
li

75
.7

B

37
.3

D

40
.0

R

40
.9

L

m
88

ks
im

70
.9

B

77
.4

D

68
.5

R

68
.5

L

m
cf

78
.4

B

98
.0

D

80
.5

R

80
.8

L

par
se

r

62
.1

B

62
.1

D

62
.1

R

62
.1

L

per
lb

m
k

81
.6

B

81
.2

D

80
.8

R

81
.0

L

tw
olf

71
.7

B

67
.0

D

70
.5

R

72
.0

L

vo
rte

x

69
.2

B

11
0.

9

D

71
.4

R

71
.3

L

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

14
0.

7

B

10
7.

1

D

11
7.

0

R

11
9.

1

L

bzip
2

11
4.

0

B

10
8.

1

D

11
2.

1

R

11
2.

1

L

gcc

10
8.

1

B

82
.6

D

92
.4

R

92
.1

L

co
m

pre
ss

11
9.

8

B

12
9.

2

D

12
0.

6

R

12
0.

5

L

cr
af

ty

10
1.

1

B

10
6.

0

D

10
6.

2

R

10
6.

2

L

gap

11
5.

8

B

10
8.

5

D

11
5.

2

R

11
5.

3

L

go

16
8.

6

B

12
5.

7

D

13
7.

3

R

13
7.

4

L

gzip

55
.1

B

54
.8

D

54
.8

R

54
.8

L

ijp
eg

10
9.

0

B
10

9.
0

D
10

9.
0

R
10

9.
0

L
li

12
7.

3

B

71
.3

D

96
.3

R

96
.5

L

m
88

ks
im

86
.7

B

89
.0

D

84
.8

R

84
.7

L

m
cf

12
1.

0

B

10
9.

1

D

11
7.

4

R

11
7.

4

L

par
se

r

10
6.

8

B

95
.6

D

10
2.

0

R

10
2.

2

L

per
lb

m
k

15
6.

1

B

10
9.

4

D

11
1.

7

R

11
8.

1

L

tw
olf

96
.4

B

85
.9

D

87
.1

R

99
.7

L

vo
rte

x

14
0.

7

B

11
2.

6

D

11
4.

8

R

11
6.

4

L

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.12. Performance of dynamic synchronization. B is the baseline experiment, D automatically synchronizes all violating
loads (using a exposed load tables and violating loads lists of unlimited size), R builds on D by periodically resetting the
violating loads list, and L refines R with tables that are realistic in size.

Design Issues

Figure 5.11 illustrates how we dynamically synchronize two epochs. We obviously do not want to synchronize

every load; instead, when a load is likely to cause a dependence violation, we can prevent speculation from failing

by stalling the load until the previous epoch is complete: at that point, all modifications by logically-earlier epochs

will be visible and the load can safely issue. We use the exposed load table and violating loads list described in

Section 5.3.3 to identify the loads most likely to cause a violation that should therefore be synchronized. Again, this

dynamic synchronization technique is not as aggressive as that described by Moshovos et al. [54] because our design

does not support implicit forwarding.

Performance

In Figure 5.12, experiment D shows the performance of dynamic synchronization where we have synchronized ev-

ery load in the violating loads list. For now, we model tables/lists that are unlimited in size. For the select benchmarks

we see that failed speculation has been replaced with synchronization as expected, resulting in improved performance

129

for M88KSIM and VORTEX. However, nine benchmarks are now over-synchronized: we have unwittingly replaced

successful speculation with synchronization as well, since some cases have infrequent dependence violations which

trigger the dynamic synchronization mechanism. Overall, this technique has a negative performance impact, slowing

down all benchmarks by an average of 6.0%.

For the max-coverage benchmarks, dynamic synchronization D results in a significant improvement for more than

half of the benchmarks, and an average improvement of 16.4% across all benchmarks. COMPRESS, M88KSIM, and

PERLBMK now speed up with this technique. Hence dynamic synchronization is important for limiting the negative

performance impact of poorly performing regions that are selected for speculative parallelization by the compiler.

The fraction of speculation that fails for different speculative regions is a continuum—from speculation that fails

rarely to constantly. A good scheme for dynamic synchronization must adapt to all of these cases by aggressively

synchronizing those with frequent failed speculation and selectively synchronizing those with intermittent failed spec-

ulation, without resulting in the over-synchronization evident in the D experiment. To achieve this behavior, we

periodically reset the violating loads list in experiment R (a period of 16 epochs on a single processor, not counting

those for which speculation failed, was found to work well through experimentation), resulting in an improvement over

the baseline (B) of 2.1% for the select benchmarks, and 11.8% for the max-coverage benchmarks. In the L experiment,

we model tables/lists that are more realistic in size (exposed-load tables and violating loads lists that have 32 entries

each). The resulting performance improvement over the baseline (B) is 1.9% for the select benchmarks, and 10.3%

for the max-coverage benchmarks. In summary, dynamic synchronization is a promising technique for improving the

performance of TLS.

5.4.2 Prioritizing the Critical Forwarding Path

In Section 5.3.4 we observed that even after aggressive prediction of forwarded values, synchronization is still

an impediment to good speedup for some benchmarks. We call the instructions between the first use and the last

definition of a forwarded value the critical forwarding path. When it is not possible to eliminate synchronization, an

alternative is to instead prioritize critical instructions to help reduce the size and hence performance impact of the

critical forwarding path. Our compiler already performs this optimization to the best of its ability, but there may be

more that can be done dynamically by hardware at run-time. To the best of our knowledge, this is the first evaluation

130

2 op r2=r1,r3
3 op r5=r6,r7
4 op r6=r5,r8

6 signal

1 load r1=X

5 store r2,X C
ri

ti
ca

l P
at

h

2 op r2=r1,r3

6 signal
3 op r5=r6,r7
4 op r6=r5,r8

1 load r1=X

5 store r2,X

���
�

���
�

���
�

���
�

C
ri

ti
ca

l P
at

h
Mark

(a) Prioritization.

Issued Insts
That Are High Improvement in Avg.

Priority and Start-to-Signal Time (cycles)
Application Issued Early Unprioritized Prioritized Speedup

BZIP2 4.4% 88.7 94.0 0.94
CC1 14.7% 136.8 127.0 1.08
COMPRESS95 8.2% 11.3 11.2 1.01
CRAFTY 8.9% 71.6 70.1 1.02
GAP 2.7% 116.8 111.5 1.05
GO 10.1% 101.7 100.0 1.02
IJPEG 12.2% 40.9 38.4 1.07
LI 1.6% 44.6 43.6 1.02
M88KSIM 5.9% 74.0 72.3 1.02
MCF 4.0% 75.6 69.1 1.09
PARSER 4.8% 145.4 138.7 1.05
PERLBMK 0.0% 35.5 35.3 1.01
TWOLF 7.2% 88.8 87.8 1.01
VORTEX 6.5% 126.7 148.8 0.85
VPR 20.3% 102.1 102.1 1.00

(b) Statistics.

Figure 5.13. Prioritization of the critical forwarding path. We show (a) our algorithm, where we mark the instructions on the
input chain of the critical store and the pipeline’s issue logic gives them high priority; (b) some statistics, namely the fraction
of issued instructions that are given high priority by our algorithm and issue early, and also the improvement in the average
number of cycles from the start of the epoch until each signal.

of a hardware scheme for prioritizing the critical forwarding path for TLS.

Our hardware prioritization algorithm works as shown in Figure 5.13(a). We mark all instructions with register

outputs on the input-chain of the critical store. We also track the critical forwarding path through memory, so that a

critical load also depends on the store which produced the value for the given memory location. Ideally, we would also

mark any instructions on the input-chain of an unpredictable conditional branch as being on the critical forwarding

path, but this beyond the scope of this dissertation. The pipeline issue logic then gives priority to marked instructions

so that the associated signal may be issued as early as possible. This algorithm could be implemented using techniques

described by Fields et al. [23], but for now we focus on the potential impact.

The impact of prioritizing the critical forwarding path is shown in Figure 5.14. Note that we model a 128-entry

reorder buffer (see Table 2.6), so the issue logic has significant opportunity to reorder prioritized instructions. Despite

this fact, the impact on most applications is small. For the select benchmarks, the amount of synchronization time

(sync) is reduced for GCC, MCF, TWOLF, and VORTEX. For VORTEX, however, this savings is negated by an increase

in failed speculation (again, due to the corresponding increase in parallel overlap that exposes more inter-epoch data

dependences). On average, both the select and max-coverage benchmarks improve by 0.6%.

To clarify the impact of prioritization, Figure 5.13(b) shows the fraction of issued instructions that are given high

priority by our algorithm and also issue early, which averages 7.4% across all select benchmarks. Figure 5.13(b) also

shows the change in the average number of cycles from the start of an epoch to the issue of each signal, for which the

131

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e 10
6.

0

B

10
8.

8

S

bzip
2

77
.1

B

76
.4

S

gcc

49
.0

B
49

.2

S

co
m

pre
ss

77
.5

B

77
.6

S

cr
af

ty

69
.3

B

68
.8

S

gap

84
.3

B

84
.1

S

go

42
.6

B

42
.6

S

ijp
eg

95
.7

B

95
.9

S
li

75
.7

B

73
.4

S

m
88

ks
im

70
.9

B

68
.5

S

m
cf

78
.4

B

78
.1

S

par
se

r

62
.1

B

61
.4

S

per
lb

m
k

81
.6

B

78
.2

S

tw
olf

71
.7

B

72
.2

S

vo
rte

x

69
.2

B

69
.3

S

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

14
0.

7

B

14
1.

5

S

bzip
2

11
4.

0

B

11
4.

0

S

gcc

10
8.

1

B

10
8.

5

S

co
m

pre
ss

11
9.

8

B

12
0.

0

S

cr
af

ty

10
1.

1

B

10
6.

2

S

gap

11
5.

8

B

11
5.

7

S

go

16
8.

6

B

16
6.

7

S

gzip

55
.1

B

54
.7

S

ijp
eg

10
9.

0

B

10
9.

0

S
li

12
7.

3

B

12
4.

0

S

m
88

ks
im

86
.7

B

84
.6

S

m
cf

12
1.

0

B

12
0.

8

S

par
se

r

10
6.

8

B

10
6.

6

S

per
lb

m
k

15
6.

1

B

15
6.

8

S

tw
olf

96
.4

B

87
.3

S

vo
rte

x

14
0.

7

B

14
1.

2

S

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.14. Performance impact of prioritizing the critical forwarding path: B is the baseline experiment, and S prioritizes
the critical forwarding path.

results are mixed: five benchmarks are improved by at least 5%, while 10 benchmarks are improved less than 5%.

As demonstrated in Section 5.2.1, our TLS compiler dramatically reduces the impact of synchronization by schedul-

ing the critical forwarding path, limiting the remaining opportunity for hardware scheduling to have impact. We

evaluate the impact of hardware prioritization without aggressive compiler scheduling in Figure 5.15. We observe

that hardware prioritization (S) has more of an impact than before (when compiler scheduling was applied), the im-

provement averaging 1.4% across all select benchmarks. However, hardware prioritization is as effective as compiler

scheduling (B) only for MCF; in most cases, compiler scheduling is much more effective.

Since the performance impact of hardware prioritization of the critical forwarding path is modest compared to

the scheduling done by the compiler, the potential complexity of its implementation is not worth the cost. Hence

scheduling the critical forwarding path for forwarded local variables is a task best suited to the compiler.

132

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

11
5.

1

U

11
5.

8

S

10
6.

0

B

bzip
2

10
9.

3

U

10
6.

0

S

77
.1

B

gcc

56
.6

U

56
.6

S
49

.0
B

co
m

pre
ss

12
1.

7

U

11
6.

4

S

77
.5

B

cr
af

ty

10
6.

6

U

10
7.

0

S

69
.3

B

gap

11
2.

0

U

11
0.

3

S

84
.3

B

go

89
.4

U

87
.8

S

42
.6

B

ijp
eg

95
.7

U

95
.6

S

95
.7

B
li

93
.2

U

92
.7

S

75
.7

B

m
88

ks
im

77
.9

U

74
.2

S

70
.9

B

m
cf

17
9.

9

U

18
0.

2

S

78
.4

B

par
se

r

78
.7

U

77
.6

S

62
.1

B

per
lb

m
k

84
.2

U

81
.5

S

81
.6

B

tw
olf

10
5.

1

U

10
2.

9

S

71
.7

B

vo
rte

x

11
5.

2

U

11
6.

6

S

69
.2

B

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

12
1.

9

U

12
2.

7

S

14
0.

7

B

bzip
2

11
6.

2

U

11
6.

0

S

11
4.

0

B

gcc

11
6.

0

U

11
5.

0

S

10
8.

1

B

co
m

pre
ss

13
9.

2

U

13
7.

4

S

11
9.

8

B

cr
af

ty

10
5.

6

U

10
5.

7

S

10
1.

1

B

gap

11
6.

4

U

11
6.

1

S

11
5.

8

B

go

16
9.

4

U

16
9.

8

S

16
8.

6

B

gzip

88
.7

U

86
.9

S

55
.1

B

ijp
eg

10
9.

9

U
10

9.
9

S
10

9.
0

B
li

12
9.

2

U

12
8.

6

S

12
7.

3

B

m
88

ks
im

92
.5

U

89
.9

S

86
.7

B

m
cf

13
5.

6

U

13
5.

8

S

12
1.

0

B

par
se

r

11
0.

4

U

11
0.

7

S

10
6.

8

B

per
lb

m
k

15
8.

7

U

15
9.

4

S

15
6.

1

B

tw
olf

92
.2

U

91
.9

S

96
.4

B

vo
rte

x

12
9.

6

U

12
9.

7

S

14
0.

7

B

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.15. Performance impact of prioritizing the critical forwarding path when it has not been scheduled by the compiler:
U has not been scheduled by the compiler, S builds on U by prioritizing the critical forwarding path, and B is scheduled by
the compiler.

5.5 Combining the Techniques

In this section, we evaluate the impact of all of our techniques combined. Most techniques are orthogonal in their

operation with the exception of memory value prediction and dynamic synchronization: we only want to dynamically

synchronize on memory values that are unpredictable. This cooperative behavior is implemented by having the dy-

namic synchronization logic check the prediction confidence for the load in question, and synchronizing only when

confidence is low.

Figure 5.16 shows the performance impact of combining the various techniques, where the B experiment is our base-

line, the F experiment represents the two techniques for improving communication of forwarded values (forwarded

value prediction and scheduling the critical forwarding path), the M experiment represents the three techniques for

improving the communication of memory values (memory value prediction, exploiting silent stores, and dynamic syn-

chronization), and the A experiment shows all techniques combined. We model the realistic table/list sizes described

in Section 5.3.3. For the select benchmarks, improving communication of forwarded values (F) is only effective for

133

|0

|50

|100

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e 10
6.

0

B

10
8.

9

F

11
1.

1

M

11
1.

5

A

bzip
2

77
.1

B

79
.6

F

76
.6

M

78
.8

A

gcc

49
.0

B

49
.5

F
29

.5

M
29

.8
A

co
m

pre
ss

77
.5

B

79
.2

F

77
.8

M

79
.6

A

cr
af

ty

69
.3

B

68
.8

F

69
.3

M

68
.9

A

gap

84
.3

B

84
.6

F

81
.5

M

81
.9

A

go

42
.6

B

46
.1

F

42
.6

M

46
.1

A

ijp
eg

95
.7

B

10
0.

9

F

96
.9

M

10
2.

4

A
li

75
.7

B

67
.0

F

39
.3

M

42
.4

A

m
88

ks
im

70
.9

B

67
.4

F

68
.4

M

65
.6

A

m
cf

78
.4

B

78
.6

F

80
.5

M

80
.5

A

par
se

r

62
.1

B

61
.0

F

62
.1

M

61
.0

A

per
lb

m
k

81
.6

B

71
.0

F

80
.8

M

71
.0

A

tw
olf

71
.7

B

72
.4

F

69
.6

M

68
.3

A

vo
rte

x

69
.2

B

70
.0

F

71
.2

M

72
.1

A

vp
r

fail
sync
other
busy

(a) The select versions.

|0

|50

|100

|150

 N
o

rm
al

iz
ed

 R
eg

io
n

 E
xe

cu
ti

o
n

 T
im

e

14
0.

7

B

14
1.

5

F

13
4.

2

M

13
4.

2

A

bzip
2

11
4.

0

B

11
5.

0

F

11
2.

9

M

11
3.

6

A

gcc

10
8.

1

B

10
8.

9

F

86
.3

M

87
.4

A

co
m

pre
ss

11
9.

8

B

12
0.

3

F

12
0.

5

M

12
1.

0

A

cr
af

ty

10
1.

1

B

10
6.

2

F

10
6.

1

M

10
6.

1

A

gap

11
5.

8

B

11
5.

8

F

11
5.

2

M

11
5.

4

A

go

16
8.

6

B

16
5.

3

F

13
7.

5

M

14
2.

8

A

gzip

55
.1

B

58
.2

F

54
.7

M

57
.9

A

ijp
eg

10
9.

0

B
10

9.
0

F
10

9.
0

M
10

9.
0

A
li

12
7.

3

B

12
1.

2

F

93
.1

M

94
.3

A

m
88

ks
im

86
.7

B

81
.5

F

84
.7

M

80
.0

A

m
cf

12
1.

0

B

12
0.

4

F

11
5.

1

M

11
4.

6

A

par
se

r

10
6.

8

B

10
4.

7

F

10
2.

5

M

10
1.

6

A

per
lb

m
k

15
6.

1

B

15
4.

0

F

14
4.

7

M

14
4.

0

A

tw
olf

96
.4

B

87
.1

F

87
.1

M

86
.7

A

vo
rte

x

14
0.

7

B

14
1.

2

F

11
6.

3

M

11
6.

4

A

vp
r

fail
sync
other
busy

(b) The max-coverage versions.

Figure 5.16. Performance of all techniques combined. B is the baseline experiment, F models techniques for optimizing
forwarded values, M models techniques for optimizing memory values, and A models all techniques.

M88KSIM and TWOLF, and yields a 0.4% improvement across all benchmarks (for the max-coverage benchmarks the

average improvement is 0.8%). In contrast, improving communication of memory values is quite effective, resulting

in significant performance gains for the select versions of COMPRESS and M88KSIM, as well as the max-coverage

versions of COMPRESS, GZIP, M88KSIM, and VPR. On average, the select applications improve by 5.8% and the

max-coverage applications improve by 7.0%. Finally, we observe that these techniques can be complementary: for

example, the performance when all techniques are combined (A) is better than that of either group of techniques in

isolation (i.e. F or M) for the select versions of MCF and VORTEX, and the max-coverage versions of PARSER and

PERLBMK. A closer look at these two cases reveals that improving communication of forwarded values reduces (F)

synchronization time (sync) but increases the amount of failed speculation (fail)—increasing the amount of parallel

overlap also increases the number of out-of-order data dependences between epochs. Similarly, reducing the number

of dependence violations by improving the communication of memory values (M) simply exposes more synchroniza-

tion stall (sync). When both sets of techniques are combined, we attack both synchronization and failed speculation at

the same time, resulting in improved performance for the two benchmarks.

134

Table 5.4. Summary of techniques for improving value communication.
Average Maximum

Requires Improvement Improvement
Technique Improves/Applies To Throttling Complexity select max-cov. select max-cov.

forwarded value prediction synchronization/forwarded values yes moderate 0.2% 0.3% 11.8% 5.0%
hardware prioritization synchronization/forwarded values no high 0.6% 0.6% 4.1% 9.4%

memory value prediction failed speculation/memory values yes moderate -0.2% 2.7% 52.8% 20.6%
silent stores failed speculation/memory values no low 0.9% 0.6% 40.0% 10.0%
dynamic synchronization failed speculation/memory values yes low 1.9% 10.3% 46.0% 24.4%

all forwarded synchronization/forwarded values - - 0.4% 0.8% 13.0% 9.7%
all memory failed speculation/memory values - - 5.8% 7.0% 48.0% 26.9%
all value communication/all values - - 5.4% 6.7% 44.0% 25.9%

5.6 Chapter Summary

We have shown that improving value communication in TLS can yield large performance benefits, and examined

the techniques for taking advantage of this fact. Our analysis provides several important lessons. First, we discovered

that prediction cannot be applied liberally when the cost of misprediction is high: predictors must be throttled to tar-

get only those dependences that limit performance. We observed that silent stores are prevalent, that replacing them

with prefetches and loads can improve the performance of TLS execution, and requires significantly less hardware

support than load value prediction (e.g., no value predictor is needed). We found that dynamic synchronization im-

proves performance for many applications and can also mitigate the negative impact of poorly-performing speculative

regions. We found that hardware prioritization to reduce the critical forwarding path does not work well, even though

a significant number of instructions can be reordered.

Table 5.4 summarizes each technique and its respective performance impact. Of the five techniques for improving

value communication, forwarded and memory value prediction and dynamic synchronization require careful throttling,

while hardware prioritization and silent stores do not. Hardware prioritization is the most complex technique, while

forwarded and memory value prediction are moderately complex (requiring predictors, tag lists and value tables), and

silent stores and dynamic synchronization are the least complex. Averaging across all benchmarks, we observe that the

techniques for improving the communication of memory values are more effective than those for forwarded values for

both the select and max-coverage benchmark sets. Every technique has a significant impact on at least one application,

with maximum improvements ranging from 4.1% to 42.8% for the select benchmarks, and 5.0% to 24.4% on the

max-coverage benchmarks.

Looking at the performance of techniques when combined, we see evidence of complementary behavior in several

135

cases. For the max-coverage benchmarks, the techniques that apply to forwarded values achieve a greater average

speedup when combined compared to either technique in isolation. Similarly, the techniques that apply to memory

values achieve a greater average speedup when combined for the select benchmarks. The maximum improvement is

also greater for combined techniques than isolated techniques in many cases. Finally, in all cases the performance with

all techniques combined is not as good as that of the memory value techniques alone, indicating that the techniques for

forwarded values are interfering. Overall, we conclude that hardware techniques for improving the communication of

memory values are effective, while improving the communication of forwarded local variables is a task best suited to

the compiler.

136

Chapter 6

Conclusions

Architectures that naturally support multithreading (such as chip-multiprocessors) have become increasingly common-

place over the past decade, and this trend will likely continue in the near future. However, only workloads composed

of parallel threads can take advantage of such processors. This dissertation proposes support for Thread-Level Specu-

lation (TLS) which empowers the compiler to optimistically create parallel threads despite uncertainty as to whether

those threads are actually independent; it puts forth the thesis that hardware support for thread-level speculation that

is simple and efficient, and that scales to a wide range of multithreaded architectures can empower the compiler to im-

prove the performance of sequential applications. This thesis is validated through a detailed evaluation of SPEC [16]

integer and floating-point benchmarks, generated by a feedback-directed, fully-automated compiler, and measured on

realistic, simulated hardware.

In the next section, we review in detail the contributions of this dissertation. We then discuss possible directions

for future work, and finally conclude by summarizing the most important lessons to be taken from this research.

6.1 Contributions

This dissertation makes contributions in three major areas. The first is the proposal of a cooperative approach

to TLS that capitalizes on the strengths of both the compiler and hardware. The second is the design and detailed

evaluation of a unified scheme for TLS hardware support. Third, this dissertation presents a comprehensive evaluation

of techniques for improving value communication between speculative threads.

137

6.1.1 A Cooperative Approach to TLS

In contrast with many previous approaches to TLS, this dissertation contributes a cooperative approach that exploits

the respective strengths of compiler and hardware and ventures to redefine the interface between them. The compiler

understands the structure of an entire program, but cannot easily predict its run-time behavior. In contrast, hardware

operates on only limited windows of instructions but can observe all of the details of dynamic execution. Through new

architected instructions that allow software to manage TLS execution, we free hardware from the burden of breaking

programs into threads and tracking register dependences between them, while empowering the compiler to optimisti-

cally parallelize programs. This cooperative approach has many advantages over those that used either software or

hardware in isolation, allowing the implementation of aggressive optimizations in the compiler, and minimizing the

complexity of the underlying hardware support.

6.1.2 Unified Hardware Support for TLS

Previous approaches to TLS hardware support apply to either speculation within a chip-multiprocessor (or simultaneously-

multithreaded processor) or to a larger system composed of multiple uniprocessor systems. The hardware support for

TLS presented in this dissertation is unique because it scales seamlessly both within and beyond chip boundaries—

allowing this single unified design to apply to a wide variety of multithreaded processors and larger systems that use

those processors as building blocks. We demonstrate that tracking data dependences by extending invalidation-based

cache coherence and using first-level data caches to buffer speculative state is both elegant and efficient, and that

less aggressive designs, namely deep uniprocessor speculation and TLS support using only the load/store-queues, are

insufficient to capture the same performance improvements as our approach. This dissertation also contributes a thor-

ough evaluation of a wide range of architectural scales—chip-multiprocessors with varying numbers of processors

and cache organizations, and larger multi-chip systems—as well as a detailed exploration of design alternatives and

sensitivity to various architectural parameters.

6.1.3 A Comprehensive Evaluation of Techniques for Improving Value Communication Between

Speculative Threads

This dissertation provides a comprehensive evaluation of techniques for enhancing value communication within

a system that supports thread-level speculation, and demonstrates that many of them can result in significant perfor-

138

mance gains. While these techniques are evaluated within the context of the implementation of TLS described in this

dissertation, we expect to see similar trends within other TLS environments since the results are largely dependent

on application behavior rather than the details of how speculation support is implemented. An important contribution

is that these techniques are evaluated after the compiler has eliminated obvious data dependences and scheduled any

critical forwarding paths, thereby removing the “easy” bottlenecks to achieving good performance. This leads us to

very different conclusions than previous studies on exploiting value prediction within TLS [51, 56]. We demonstrate

the importance of throttling back value prediction to avoid the high cost of misprediction, and propose and evalu-

ate techniques for focusing prediction on the dependences that matter most. We also present the first exploration of

how silent stores can be exploited within TLS. Finally, we evaluate two novel hardware techniques for enhancing the

performance of synchronized dependences across speculative threads, but find that the compiler is better suited to

optimizing the communication of forwarded values than hardware.

6.2 Future Work

Thread-level speculation remains a relatively new mode of execution for both compiler and architectural support,

and there is plenty of research to be done beyond this dissertation. These topics are presented in the sections that follow,

including future compiler research, investigation of hardware support for improving cache locality on private-cache

CMPs, and exploration of techniques for online feedback and dynamic adaptation.

6.2.1 Compiler Support

Compiler support for TLS is still in its infancy. While our compiler infrastructure is sufficiently powerful and

realistic to allow the detailed evaluation of hardware support presented in this dissertation, there are still many aspects

which can be improved—this is the most abundant area for future work.

Speculative parallelization of regions of code other than loops warrants investigation. Other possibilities include

procedure continuations (executing the code beyond a procedure call in parallel with the procedure call itself), loop

continuations (executing the code beyond the end of a loop in parallel with the loop itself), simultaneously executing

multiple loops in parallel, recursion, selection structures, and more. While other work has investigated speculation on

structures other than loops [52, 56], the evaluations are of limited detail.

In Section 2.4 we discuss the issue of selecting which loops in a program to speculatively parallelize, and the

139

impact of unrolling the selected loops. For the select benchmarks evaluated in this dissertation, we use a set of loops

that maximize performance on our baseline hardware support, assuming that the compiler has access to complete

profile information on the relative performance of each potentially-speculative loop with several different unrollings.

This abundance of information would not likely be available to a real compiler, hence there is a need for the compiler

to be more independent of profile information. A more comprehensive compiler infrastructure would combine state-

of-the-art techniques for traditional automatic parallelization and pointer analyses, and also benefit from new kinds of

analyses to statically estimate dynamic behavior.

As reported in Section 2.5.1, a major source of overhead in our transformed benchmarks is due to the insertion of

gcc “asm” statements which represent new TLS instructions: the compiler is forced to be conservative, resulting in

a dramatic increase in the number of spills, and optimization is hindered in other ways as well. A back-end which

understands TLS instructions (which for the most part should not hamper optimization) would be able to produce code

that is significantly more efficient.

For many of the hardware techniques discussed in this dissertation, there exist potential software counterparts.

For example, in Section 5.4.2, we compare the optimization of the critical forwarding path through both hardware

prioritization and compiler scheduling; in this case, we find that compiler scheduling is much more effective. One

could also envision software versions of value prediction and dynamic synchronization, which could eliminate the

need for additional hardware tables. Furthermore, compiler-inserted prefetching could be beneficial, especially for

speculatively-parallelized loops executing on a private-cache CMP.

Another aspect of compilation for TLS with a potentially large impact is the layout of data in memory. In Sec-

tion 4.3.4 we demonstrate that the layout of pages in the DSM system for TLS on multi-node architectures can have

a large impact on performance, and could possibly be dealt with by the compiler. Furthermore, the compiler could

also reduce false dependences through manipulation of the alignment of data structures in memory. For example, in

an array of structures, each structure could be cache-line aligned, eliminating any false dependences between epochs

that access adjacent structures.

140

6.2.2 Hardware Support for Improving Cache Locality

While it is desirable for the speculative buffering for TLS hardware support to be distributed (e.g., the private

data caches in a chip-multiprocessor), one consequence is reduced data locality compared to the original sequential

execution. As demonstrated in Section 3.4.2, decreased cache locality is one of most significant overheads of TLS

execution after failed speculation and synchronization (which were addressed in Chapter 5). Techniques exist, such as

prefetching, which can potentially be implemented in hardware to improve cache locality and hence performance for

TLS execution on distributed-cache hardware support.

6.2.3 Online Feedback and Dynamic Adaptation

Another potentially important area for future TLS research is in improving the cooperation between software in

hardware at run-time. As a simple example, consider a speculatively-parallelized region of code for which speculation

constantly fails. In such a case, we would like the hardware to suggest that software cease speculation and instead

continue sequentially. A trivial implementation of this feedback would use performance counters that track the fraction

of epochs that are violated. However, failed speculation is not the only overhead that can cause a speculative execution

to slow down with respect to the sequential execution—other overheads include synchronization and cache locality. A

more sophisticated approach would allow the estimation of true performance for both the sequential and speculative

executions. Such information could allow more involved dynamic adaptation than simply discontinuing unsuccessful

speculation. First, this information could aid in the decision of where to speculate in the first place. Second, as

observed in Sections 3.4 and 4.3 for some applications, increasing the number of processors beyond a certain point

can yield diminishing returns or even degrade performance; this suggests that for every speculative region there exists

an optimal number of processors, which could potentially be obtained dynamically through sampled performance

feedback.

141

Appendix A

Full Coherence Scheme

In this appendix, we present the full details of the speculative coherence scheme, including support for TLS within

a chip-multiprocessor with a private- and/or shared-cache architecture, as well as beyond a chip for multiprocessor

systems that use chip-multiprocessors as building blocks.

A.1 Line State in the Cache

The invalidation-based cache coherence scheme that we extend can be in one of the following states: invalid (I),

exclusive (E), shared (S), or dirty (D). The invalid state indicates that the cache line is no longer valid and should not

be used. The shared state denotes that the cache line is potentially resident in some other cache, while the exclusive

state indicates that this is the only cached copy. The dirty state denotes that the cache line has been modified and must

be written back to external memory. When a processor attempts to write to a cache line, exclusive access must first

be obtained—if the line is not already in the exclusive state, upgrade requests must be sent to all other caches which

contain a copy of the line, thereby invalidating those copies.

To detect data dependences and to buffer speculative memory modifications, we extend the standard set of cache

line states to include the seven new states as described in Table A.1. The new states denote four orthogonal properties

of a cache line: whether it is dirty; whether it has been speculatively-loaded (SpL); whether it has been speculatively-

modified (SpM); and whether it is exclusive (E) versus shared (S)1.

1Note that in Section 3.2.2

142

Table A.1. Shared cache line states.
State Description

I invalid
E exclusive
S shared
D dirty (implies exclusive)
DSpL dirty and speculatively-loaded (implies exclusive)
SpLE speculatively-loaded exclusive
SpLS speculatively-loaded shared
SpME speculatively-modified exclusive
SpMS speculatively-modified shared
SpLME speculatively-loaded and modified exclusive
SpLMS speculatively-loaded and modified shared

Although these properties are orthogonal, some combinations are not allowable, e.g., dirty and speculatively-

modified. When a cache line is dirty, the cache owns the only up-to-date copy of that cache line, and must preserve

it from speculative modifications so that the line can eventually be supplied to the rest of the memory system. Con-

versely, when a cache line is in the speculatively-modified state, we may need to discard any speculative modifications

to the line if speculation ultimately fails. Since it would be difficult to isolate both dirty and speculatively-modified

portions of the same line in a traditional hardware cache (especially if these portions can overlap), it is difficult to

allow both of these states to co-exist.

Maintaining the notion of exclusiveness is important since a speculatively-modified cache line that is exclusive

(SpME or SpLME) does not require upgrade requests to be sent out when side-effects are committed to memory. It is

also interesting to note that the states SpMS and SpLMS imply that the cache line is both speculatively-modified and

shared. This means that it is possible for more than one modified copy of a cache line to exist as long as no more than

one copy is non-speculative and the rest of the copies are speculative.

The dirty and speculatively-loaded state (DSpL) indicates that a cache line is dirty and that the cache line is the only

up-to-date copy. Since a speculative load cannot corrupt the cache line, it is safe to delay writing the line back until a

speculative store occurs.

For speculation to succeed, any cache line with a speculative state must remain in the cache (or be preserved in

a victim cache) until the corresponding epoch becomes homefree; speculative modifications may not be propagated

to the rest of the memory hierarchy, and cache lines that have been speculatively-loaded must be tracked in order to

detect whether data dependence violations have occurred. If a speculative cache line must be replaced then this is

143

Table A.2. Processor-initiated actions.
Action Description

PRM processor read miss
PRH processor read hit
PWM processor write miss
PWH processor write hit
PRMSp processor read miss speculative
PRCMSp processor read conflict-miss speculative

(a logically-later epoch has already
modified the same cache line)

PRHSp processor read hit speculative
PWMSp processor write miss speculative
PWCMSp processor write conflict-miss speculative

(another epoch has already speculatively-
modified the same cache line)

PWHSp processor write hit speculative

treated as a violation, causing speculation to fail and the epoch to be re-executed.

A.2 Processor Actions

We now describe an implementation of an invalidation-based cache coherence scheme extended to detect data

dependence violations. First, we list all possible actions that are originated by the processors, the cache controller, or

the external memory system. Table A.2 lists the possible actions which are originated by the processor. Processor-

initiated actions are divided into reads and writes, hits and misses, and speculative and non-speculative accesses.

Misses are further divided into regular misses and conflict misses. For states other than invalid (I), a regular miss

indicates that the current cache line must be replaced. A conflict-miss indicates that two different epochs—executing

on processors that physically share the cache or on one multithreaded processor—have accessed the same cache

line in an unacceptable manner. The following scenarios differentiate acceptable access patterns from those that are

unacceptable in a shared cache.

• Two different epochs may both speculatively read the same cache line.

• If an epoch speculatively-modifies a cache line, only a logically-later epoch may read that cache line afterwards.

This implicit forwarding effectively allows us to forward speculative modifications between two properly or-

dered epochs. If a logically-earlier epoch attempts to read the cache line, a read conflict-miss will result.

• Only one epoch may speculatively-modify a given cache line. If an epoch attempts to speculatively-modify a

144

Table A.3. Actions generated by the shared cache controller.
Sent To Action Description

External G.ER Generate external read.
G.EREx Generate external read exclusive.
G.EWb Generate external writeback (the line is no longer cached).
G.EU Generate external update-line (like a write, except the line remains

cached).
G.EUp Generate external upgrade request (request for ownership, copy of line

not required).
G.EUpSp Generate external upgrade request speculative (request for ownership

which may not be granted, copy of line not required).
G.ERExSp Generate external read exclusive speculative.

Shared G.Viol Generate violation (a definite violation).
Cache G.Suspend Generate a suspend (a violation which may be avoided by suspending).
Controller G.Combine Combine this cache line with the external copy (if combining is not

supported then ignore this action).
G.ORB Add current tag to ORB (ownership required buffer).
G.FlushORB For each tag in the ORB (ownership required buffer) generate an EUpSp.

If cache line combining is supported, otherwise an EUp. If any actions
follow, they must wait until G.FlushORB completes.

G.Progress If epoch E, which has speculatively-modified the cache line, is
logically-later than the current epoch then violate epoch E,
otherwise G.Suspend for the current epoch (ensuring forward progress).

Conditions Ack=Excl Acknowledgement from the previous action indicates that the cache line
is exclusive.

Exposed False if the epoch stored to the memory location before the load
occurred, true otherwise.

Older True if the epoch which generated the action is older (logically-earlier)
than the current epoch.

Replicate True if the cache line may be replicated in the local cache (the
actions that follow apply to the replicated cache line).

cache line that has already been speculatively-modified by a different epoch, a write conflict miss (PWCMSp)

results.

A.3 Cache Actions

Table A.3 describes all actions generated by the cache controller. The first group are actions which are sent to the

external memory system. There are two possible write actions: (i) a writeback (G.EWb) which sends a copy of the

cache line and indicates that the line is no longer cached; and (ii) an update (G.EU) which also sends a copy of the

cache line but implies that the line is still cached. If a line is not owned exclusively and a processor attempts to write

to the line, exclusive ownership must first be obtained using the upgrade request (G.EUp) action. An upgrade request

thus differs from a read exclusive request by not requiring that a copy of the line to be sent with the acknowledgement.

There are also two speculative actions which may be sent to the external memory system. There is a speculative

145

version of the upgrade request action which piggybacks the epoch number of the requester (G.EUpSp). This action is

unlike any regular coherence action because it is a hint and not a definite command—i.e. a speculative upgrade request

is not guaranteed to provide exclusiveness. This is useful when an epoch tries to speculatively-modify a cache line that

a logically-earlier epoch has already speculatively-modified. We do not want the logically-earlier epoch to give up its

copy (and thus fail), so the upgrade request may not give the requesting epoch exclusive ownership—success of the

upgrade request is indicated in an acknowledgement. There is also a speculative version of read exclusive (G.ERExSp)

which has the same properties as a speculative upgrade request, except that a copy of the cache line is provided with

the acknowledgement.

The next group of actions are performed at the cache controller. The violation action (G.Viol) indicates that spec-

ulation has failed and must recover. The (G.Suspend) action indicates that a violation is about to occur, and the only

way to avoid it is to suspend the thread. For example, if a speculative cache line is about to be replaced, the thread

which caused the replacement could be suspended until the epoch which owns the speculative cache line becomes

homefree. If a suspension is not supported, the G.Suspend action may be conservatively replaced with a real violation

(G.Viol).

If two epochs speculatively-modify the same cache line, there are two ways to resolve the situation. One option is

to simply violate the logically-later epoch. Alternatively, we could allow both epochs to modify their own copies of

the cache line and combine them with the real copy of the cache line as they commit, as is done in a multiple-writer

coherence protocol [5, 10]. The action G.Combine indicates that the current cache line should be combined with the

copy stored at the next level of caching in the external memory system. If combining is not supported, the G.Combine

action is simply ignored.

When an epoch becomes homefree, it may allow its speculative modifications to become visible to the rest of the

system. However, the epoch must first acquire ownership of all cache lines that are speculatively-modified but not in

an exclusive state. Since a search over the entire cache for such cache lines would take far too long and delay passing

the homefree token, we instead store the addresses of cache lines requiring ownership in an ownership required buffer

(ORB). The G.ORB action adds the current cache line address to the ORB.

When an epoch becomes homefree, it generates an upgrade request for each entry in the ORB, as described by

the G.FlushORB action. If cache line combining is supported, G.FlushORB may instead generate speculative upgrade

146

Epoch j

load b = X

...

Epoch j

...

load b = X

store X = a
...

(a) Exposed Use (b) Un-exposed Use
Figure A.1. Exposed and un-exposed uses.

requests for each line address in the ORB. Since write-after-write (WAW) dependences are not true dependences

they may be eliminated through renaming, and therefore the logically-later of two epochs which both speculatively-

modified the same cache line does not need to be violated: the speculative modifications may be combined later. A

speculatively-modified cache line may not change to the dirty state until G.FlushORB completes.

The two conflict-misses described previously in Table A.2 do not necessarily have to result in failed speculation.

If cache line replication is supported, certain violations can be avoided. However, when replication is not possible

we must be careful which epoch is suspended or violated, since the wrong choice could result in deadlock or even

livelock. The action G.Progress only suspends or violates logically-later epochs, ensuring that speculation makes

forward progress. If epoch E which speculatively-modified the cache line is logically-later than the current epoch,

then G.Progress violates epoch E; otherwise, G.Progress performs G.Suspend for the current epoch.

The last group of actions are actually conditions evaluated by the coherence mechanism. Since we want to maintain

the most exact exclusiveness information possible, external upgrade requests will indicate in the acknowledgement

whether exclusiveness is obtained (Ack=Excl).

If fine-grain speculatively-modified (SM) bits exist (as described in Section 3.3.4), we can detect whether a load is

an upwards exposed use—i.e. the use of a location without a prior definition of that location by the same epoch [3].

In Figure A.1(a) we see that the load is exposed since the location p has not already been defined by the epoch.

Conversely, in Figure A.1(b) we see that the load is not exposed since the location p has been defined by the a

previous store in the same epoch. We only have to consider a location to be speculatively-loaded if it is an upwards

exposed use, otherwise the load cannot cause a data dependence violation. To differentiate these cases, we will check

147

Table A.4. Other actions.
Action Description

ER External read.
EREx External read exclusive (copy of line is supplied

with ack).
EI External invalidate.
EUp External upgrade request (copy of line is not

supplied with ack).
ERExSp External read exclusive speculative (copy of line

is supplied with ack).
EUpSp External upgrade request speculative (copy of

line is not supplied with ack).

HFree Epoch has become homefree.
Viol Epoch has committed a violation or been cancelled.
→X Transition to new state X.
(A)?(B):(C) If A then B else C.

the condition Exposed.

A key function of our speculative coherence scheme is the ability to decide whether a speculative coherence action

originated from a logically-earlier epoch or a logically-later epoch. The Older condition is true if the epoch which

generated the action is logically-earlier than the current epoch and false otherwise.

Finally, the condition Replicate is true if a cache line is successfully replicated, where successful replication means

that another copy of the same cache line (with the same cache tag) may be created within the same associative set. If

cache line replication is not supported, then Replicate is always false.

A.4 Other Actions

Table A.4 describes several miscellaneous actions. The first group are actions which are received from the external

memory system. The action HFree indicates that an epoch has received the homefree token and has processed any

pending incoming coherence actions; hence, at this point memory is consistent with the rest of the system, and the

epoch is guaranteed not to have violated any data dependences with logically-earlier epochs and can therefore commit

all of its speculative modifications by changing their cache states to dirty (D).

The action Viol indicates that the current epoch has either committed a violation or has been cancelled. All cache

lines which have been speculatively-modified must be invalidated (changed to the invalid state), and all other specula-

tive cache lines may be changed back to an appropriate non-speculative state.

148

A.5 State Transition Diagram

We describe the coherence scheme for supporting TLS using a state transition diagram, given in Table A.5. For each

current shared cache line state and each possible action we give the appropriate response actions and the transition to

the new state.

We now investigate several “action × state” pairs of interest.

• Some actions cannot occur in a given state. For example, PRH × I cannot occur since an invalid cache line can-

not yield a hit. A conflict-miss like PWCMSp can only occur if the cache line has been speculatively-modified.

By definition, a conflict miss occurs when another epoch, sharing the same cache, has already speculatively-

modified the cache line in question—i.e. it is in one of the states SpME, SpMS, SpLME, or SpLMS.

• An example of the basic detection of a read-after-write dependence violation is illustrated by EUpSp × SpLS.

If the epoch which generated the speculative upgrade request is older than the current epoch, then a dependence

violation has occurred and the processor is notified (G.Viol).

• This version of the coherence scheme is implemented with the objective of slowing down a non-speculative

thread as little as possible. For this reason, a cache line in a non-speculative state is not invalidated when a

speculative upgrade request occurs, as shown by EUpSp × E. Alternatively, the cache line could be relinquished

in order to give exclusiveness to the speculative thread, possibly eliminating the need for that thread to obtain

ownership when it becomes homefree. These two options are analyzed experimentally in Section 3.5.3.

• PWHSp × D generates an update (G.EU), ensuring that the only up-to-date copy of a cache line is not corrupted

with speculative modifications. Conversely, PRHSp × D simply changes to the dirty and speculatively-loaded

state (DSpL), since the cache line will not be corrupted by a speculative load.

• PRMSp × SpME results in a G.Suspend: the cache line which has been speculatively-modified must be replaced

to continue, and this is not allowable. We may either violate the epoch, or suspend until the epoch becomes

homefree at which point we may allow the speculative modifications to be written-back to the external memory

system.

149

Table A.5. Cache state transition diagram (Continued on next page). →X represents the transition to new state X, and
(A)?(B):(C) denotes if A then B else C.

Cache Line State
Action I E

PRM G.ER; (Ack=Excl)?(→E):(→S); G.ER; (Ack=Excl)?(→E):(→S);
PRH - →E;
PWM G.EREx; →D; G.EREx; →D;
PWH - →D;
PRMSp G.ER; (Ack=Excl)?(→SpLE):(→SpLS); G.ER; (Ack=Excl)?(→SpLE):(→SpLS);
PRCMSp - -
PRHSp - →SpLE;
PWMSp G.ERExSp; G.ERExSp;

(Ack=Excl)?(→SpME):(G.ORB; →SpMS); (Ack=Excl)?(→SpME):(G.ORB; →SpMS);
PWCMSp - -
PWHSp - →SpME;

ER - →S;
EREx - →I;
EI - →I;
EUp - →I;
ERExSp - →S;
EUpSp - →S;

HFree →I; G.FlushORB; →E; G.FlushORB;
Viol →I; →E;

Cache Line State
Action S D

PRM G.ER; (Ack=Excl)?(→E):(→S); G.EWb; G.ER; (Ack=Excl)?(→E):(→S);
PRH →S; →D;
PWM G.EREx; →D; G.EWb; G.EREx; →D;
PWH G.EUp; →D; →D;
PRMSp G.ER; (Ack=Excl)?(→SpLE):(→SpLS); G.EWb;

G.ER; (Ack=Excl)?(→SpLE):(→SpLS);
PRCMSp - -
PRHSp →SpLS; →DSpL;
PWMSp G.ERExSp; G.EWb; G.ERExSp;

(Ack=Excl)?(→SpME):(G.ORB; →SpMS); (Ack=Excl)?(→SpME):(G.ORB; →SpMS);
PWCMSp - -
PWHSp G.EUpSp; G.EU; →SpME;

(Ack=Excl)?(→SpME):(G.ORB; →SpMS);

ER →S; G.EU; →S;
EREx →I; G.EWb; →I;
EI →I; G.EWb; →I;
EUp →I; G.EWb; →I;
ERExSp →S; G.EU; →S;
EUpSp →S; →D;

HFree →S; G.FlushORB; →D; G.FlushORB;
Viol →S; →D;

150

Table A.5. Cache state transition diagram (Continued on next page).
Cache Line State

Action DSpL SpLE SpLS

PRM G.Suspend; G.Suspend; G.Suspend;
PRH →DSpL; →SpLE; →SpLS;
PWM G.Suspend; G.Suspend; G.Suspend;
PWH G.Viol; G.Viol; G.Viol;
PRMSp G.Suspend; G.Suspend; G.Suspend;
PRCMSp - - -
PRHSp →DSpL; →SpLE; →SpLS;
PWMSp G.Suspend; G.Suspend; G.Suspend;
PWCMSp - - -
PWHSp G.EU; →SpLME; →SpLME; G.EUpSp; (Ack=Excl)?

(→SpLME):(G.ORB; →SpLMS);

ER G.EU; →SpLS; →SpLS; →SpLS;
EREx G.EWb; G.Viol; G.Viol; G.Viol;
EI G.EWb; G.Viol; G.Viol; G.Viol;
EUp G.EWb; G.Viol; G.Viol; G.Viol;
ERExSp G.EU; →SpLS; (Older)?(G.Viol):(→SpLS); (Older)?(G.Viol):(→SpLS);
EUpSp G.EU; →SpLS; (Older)?(G.Viol):(→SpLS); (Older)?(G.Viol):(→SpLS);

HFree →D; G.FlushORB; →E; G.FlushORB; →S; G.FlushORB;
Viol →D; →E; →S;

Cache Line State
Action SpME SpMS

PRM G.Suspend; G.Suspend;
PRH G.Viol; G.Viol;
PWM G.Suspend; G.Suspend;
PWH G.Viol; G.Viol;
PRMSp G.Suspend; G.Suspend;
PRCMSp (Replicate)?(→SpLS):(G.Progress); (Replicate)?(→SpLS):(G.Progress);
PRHSp (Exposed)?(→SpLME):(→SpME); (Exposed)?(→SpLMS):(→SpMS);
PWMSp G.Suspend; G.Suspend;
PWCMSp (Replicate)?(→SpMS):(G.Progress); (Replicate)?(→SpMS):(G.Progress);
PWHSp →SpME; →SpMS;

ER G.ORB; →SpMS; →SpMS;
EREx G.Viol; G.Viol;
EI G.Viol; G.Viol;
EUp G.Viol; G.Viol;
ERExSp G.ORB; →SpMS; →SpMS;
EUpSp G.ORB; →SpMS; →SpMS;

HFree G.FlushORB; →D; G.FlushORB; G.Combine; →D;
Viol →I; →I;

• ER × SpLME demonstrates the case when exclusive ownership of a cache line which has been speculatively-

modified is lost. The tag for this cache line is added to the ORB by the action G.ORB so that ownership may be

obtained quickly when the epoch becomes homefree.

151

Table A.5. Cache state transition diagram (Continued from previous page).
Cache Line State

Action SpLME SpLMS

PRM G.Suspend; G.Suspend;
PRH G.Viol; G.Viol;
PWM G.Suspend; G.Suspend;
PWH G.Viol; G.Viol;
PRMSp G.Suspend; G.Suspend;
PRCMSp (Replicate)?(→SpLMS):(G.Progress); (Replicate)?(→SpLMS):(G.Progress);
PRHSp →SpLME; →SpLMS;
PWMSp G.Suspend; G.Suspend;
PWCMSp (Replicate)?(→SpLMS):(G.Progress); (Replicate)?(→SpLMS):(G.Progress);
PWHSp →SpLME; →SpLMS;

ER G.ORB; →SpLMS; →SpLMS;
EREx G.Viol; G.Viol;
EI G.Viol; G.Viol;
EUp G.Viol; G.Viol;
ERExSp (Older)?(G.Viol):(G.ORB; →SpLMS); (Older)?(G.Viol):(→SpLMS);
EUpSp (Older)?(G.Viol):(G.ORB; →SpLMS); (Older)?(G.Viol):(→SpLMS);

HFree G.FlushORB; →D; G.FlushORB; G.Combine; →D;
Viol →I; →I;

• HFree × SpLME demonstrates waiting for G.FlushORB to complete, which guarantees ownership of all speculatively-

modified cache lines, before changing to the dirty (D) state. In HFree × SpLMS, after waiting for G.FlushORB

to complete, the speculatively-modified cache line is combined with the current external copy before changing

to the dirty state.

A.6 Coherence in the External Memory System

Coherence with support for speculation in the external memory system is quite similar to regular coherence. As

listed in Table A.4, we require the following standard coherence actions: read (ER), read-exclusive (EREx), invalidate

(EI), and upgrade requests (EUp). A read is a request for a copy of the cache line, and a read-exclusive is a request

for a copy of the cache line as well as ownership; an upgrade request does not require a copy of the cache line. An

invalidation, which is used to maintain inclusion, causes the cache to relinquish the appropriate cache line.

Two new speculative coherence actions are supported by the external memory system: read-exclusive speculative

(ERExSp) and upgrade request speculative (EUpSp). Both of these actions behave similarly to their non-speculative

counterparts with the exception of two important distinctions. First, the epoch number of the requester is piggybacked

along with the request in both cases, so the receiver can make decisions based on the relative ordering of the requesting

epoch. Second, both actions are only hints and do not compel the cache to relinquish ownership. As long as these

152

signals are propagated, this layer of the coherence scheme may be applied recursively to deeper levels of the external

memory system.

It is possible to re-design the speculative coherence scheme so that speculative messages are not used—this has

the advantage that the underlying coherence mechanisms are not modified in any way, and that only the cache state

and cache controllers must be extended to support TLS. The performance impact of this design option is evaluated in

Section 3.5.2.

153

Bibliography

[1] W. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus IPC: the end of the road for conventional

microarchitectures. In Proceedings of ISCA 27, June 2000.

[2] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency control performance modeling: Alternatives

and implications. ACM Transactions on Database Systems, 12(4):609–654, 1987.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools. Addison Wesley, 1986.

[4] H. Akkary and M. Driscoll. A Dynamic Multithreading Processor. In MICRO-31, December 1998.

[5] C. Amza, S. Dwarkadas A.L. Cox, and W. Zwaenepoel. Software DSM Protocols that Adapt between Single

Writer and Multiple Writer. In Proceedings of the Third High Performance Computer Architecture Conference,

pages 261–271, February 1997.

[6] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Benchmarks. Technical Report RNR-91-002,

NASA Ames Research Center, August 1991.

[7] Scott E. Breach, T. N. Vijaykumar, Sridhar Gopal, James E. Smith, and Gurindar S. Sohi. Data memory al-

ternatives for multiscalar processors. Technical Report CS-TR-1997-1344, Computer Sciences Department,

University of Wisconsin-Madison, 1996.

[8] Broadcom Corporation. The Sibyte SB-1250 Processor. http://www.sibyte.com/mercurian.

[9] B. Calder, G. Reinman, and D. Tullsen. Selective value prediction. In International Symposium on Computer

Architecture, 1999.

154

[10] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-related information in dis-

tributed shared memory systems. ACM Transactions on Computer Systems, 13(3):205–243, August 1995.

[11] G. Chrysos and J. Emer. Memory dependency prediction using store sets. In Proceedings of the 25th ISCA, June

1998.

[12] M. Cintra, J. F. Martı́nez, and J. Torrellas. Architectural Support for Scalable Speculative Parallelization in

Shared-Memory Multiprocessors. In Proceedings of ISCA 27, June 2000.

[13] M. Cintra and J. Torrellas. Learning cross-thread violations in speculative parallelization for multiprocessors. In

Proceedings of the 8th HPCA, 2002.

[14] C. B. Colohan, A. Zhaia, J. G. Steffan, and T. C. Mowry. Compiling sequential programs for a thread level

speculative architecture. In Proceedings of Some Conference, Month 2003.

[15] Compaq Computer Corporation. Alpha 21264/ev67 microprocessor hardware reference manual.

[16] Standard Performance Evaluation Corporation. The SPEC Benchmark Suite. Technical report.

http://www.spechbench.org.

[17] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In International Conference on Parallel Pro-

cessing, 1986.

[18] Sandhya Dwarkadas, Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Evaluation of Release Consistent

Software Distributed Shared Memory on Emerging Network Technology. In Proceedings of ISCA 20, pages

144–155, May 1993.

[19] Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L. Stamm, and Dean M. Tullsen. Simulta-

neous multithreading: A platform for next-generation processors.

[20] J. Emer. Ev8: The post-ultimate alpha.(keynote address). In International Conference on Parallel Architectures

and Compilation Techniques, 2001.

155

[21] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Srilatha Manne, Shubhendu S. Mukherjee,

Harish Patil, Steven Wallace, Nathan Binkert, Roger Espasa, and Toni Juan. Asim: A performance model

framework. IEEE Computer, February 2002.

[22] M. Farrens, G. Tyson, , and A.R. Pleszkun. A study of single-chip processor/ cache organizations for large

number of transistors. In Proceedings of ISCA 21, pages pp. 338–347, 1994.

[23] Brian A. Fields, Shai Rubin, and Rastislav Bodik. Focusing processor policies via critical-path prediction. In

ISCA 2001, 2001.

[24] R. Figueirdo and J. Fortes. Hardware support for extracting coarse-grain speculative parallelism in distributed

shared-memory multiprocessors. In Proceedings of the International Conference on Parallel Procesing, Septem-

ber 2001.

[25] M. Frank, C. Moritz, B. Greenwald, S. Amarasinghe, and A. Agarwal. Suds: Primitive mechanisms for memory

dependence speculation. Technical Report MIT/LCS Technical Memo LCS-TM-591, January 1999.

[26] M. Franklin. The Multiscalar Architecture. PhD thesis, University of Wisconsin – Madison, 1993.

[27] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dynamic Reordering of Memory References.

IEEE Transactions on Computers, 45(5), May 1996.

[28] F. Gabbay and A. Mendelson. Speculative execution based on value prediction. Technical Report EE Department

TR #1080, Technion–Israel Institute of Technology, 1996.

[29] Maria Jesus Garzaran, Milos Prvulovic, Jose Maria Llaberia, Victor Vinals, Lawrence Rauchwerger, and Josep

Torrellas. Tradeoffs in buffering memory state for thread-level speculation in multiprocessors. In In Proceedings

of the Ninth International Symposium on High-Performance Computer Architecture (HPCA), February 2003.

[30] S. C. Goldstein, K. E. Schauser, and D. E. Culler. Lazy threads: Implementing a fast parallel call. Journal of

Parallel and Distributed Computing, 37(1):5–20, August 1996.

[31] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning Cache. In Proceedings of the Fourth

International Symposium on High-Performance Computer Architecture, February 1998.

156

[32] M. Gupta and R. Nim. Techniques for speculative run-time parallelization of loops. In In Proceedings of

Supercomputing 1998, November 1998.

[33] M. Gupta and R. Nim. Techniques for Speculative Run-Time Parallelization of Loops. In Supercomputing ’98,

November 1998.

[34] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support for a Chip Multiprocessor. In Proceedings

of ASPLOS-VIII, October 1998.

[35] M. Herlihy and J. Moss. Transactional memory: Architectural support for lock-free data structures. In Proceed-

ings of ISCA 20, 1993.

[36] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. D. Loreto, P. Hontalas, P. LaRouche, K. Sturdevant, J. Tup-

man, V. Warren, J. Wedel, H. Younger, and S. Bellenot. Distributed simulation and the time warp operating

system. In In Proceedings of the 11th Annual ACM Symposium on Operating System Principles, pages 77–93,

November 1987.

[37] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache

and Prefetch Buffers. In Proceedings of ISCA 17, pages 364–373, May 1990.

[38] J. Kahle. Power4: A Dual-CPU Processor Chip. Microprocessor Forum ’99, October 1999.

[39] T. Knight. An Architecture for Mostly Functional Languages. In Proceedings of the ACM Lisp and Functional

Programming Conference, pages 500–519, August 1986.

[40] Jens Knoop and Oliver Ruthing. Lazy code motion. In Proc. ACM SIGPLAN 92 Conference on Programming

Language Design and Implementation, 92.

[41] V. Krishnan and J. Torrellas. The Need for Fast Communication in Hardware-Based Speculative Chip Multi-

processors. In International Conference on Parallel Architectures and Compilation Techniques (PACT), October

1999.

[42] Venkata Krishnan and Josep Torrellas. A chip multiprocessor architecture with speculative multithreading. IEEE

Transactions on Computers, Special Issue on Multithreaded Architecture, September 1999.

157

[43] H. Kung and J. Robinson. On optimistic methods for concurrency control. ACM Transactions Database Systems,

6(2):213–226, June 1981.

[44] M. S. Lam and R. P. Wilson. Limits of Control Flow on Parallelism. In Proceedings of the 19th Annual Interna-

tional Symposium on Computer Architecture, pages 46–57, May 1992.

[45] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Communications of the ACM,

17(8):453–455, August 1974.

[46] Leslie Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–811, November

1977.

[47] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proceedings of the 24th

ISCA, pages 241–251, June 1997.

[48] Kevin M. Lepak and Mikko H. Lipasti. On the value locality of store instructions. In Proceedings of ISCA 27,

June 2000.

[49] Mikko H. Lipasti and John Paul Shen. Exceeding the dataflow limit via value prediction. In International

Symposium on Microarchitecture, 1996.

[50] P. Marcuello and A. Gonzlez. Clustered Speculative Multithreaded Processors. In Proc. of the ACM Int. Conf.

on Supercomputing, June 1999.

[51] P. Marcuello, J. Tubella, and A. Gonzalez. Value prediction for speculative multithreaded architectures. In

International Symposium on Microarchitecture, November 1999.

[52] Pedro Marcuello and Antonio González. Thread-Spawning Scheme for Speculative Multithreading. In Proceed-

ings of the 8th HPCA, February 2002.

[53] G. Morrisett and M. Herlihy. Optimistic Parallelization. Technical Report CMU-CS-93-171, School of Computer

Science, Carnegie Mellon University, October 1993.

[54] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dynamic speculation and synchronization of data depen-

dences. June 1997.

158

[55] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case for a Single-Chip Multiprocessor.

In Proceedings of ASPLOS-VII, October 1996.

[56] J. Oplinger, D. Heine, and M. S. Lam. In Search of Speculative Thread-Level Parallelism. In Proceedings of the

1999 International Conference on Parallel Architectures and Compilation Techniques (PACT’99), October 1999.

[57] D. Padua, D. Kuck, and D. Lawrie. High-speed multiprocessors and compilation techniques. IEEE Transactions

on Computing, September 1980.

[58] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Quantifying the complexity of superscalar proces-

sors. Technical Report CS-TR-1996-1328, University of Wisconsin-Madison, 1996.

[59] M. Prvulovic, M. Garzaran, L. Rauchwerger, and J. Torrellas. Removing architectural bottlenecks to the scala-

bility of speculative parallelizatoin. In proceedings of the 28th Annual International Symposium on Computer

Architecture, July 2001.

[60] L. Rauchwerger and D. Padua. The LRPD Test: Speculative Run-Time Parallelization of Loops With Privatiza-

tion and Reduction Parallelization. In Proceedings of PLDI ’95, pages 218–232, June 1995.

[61] Jr. Robert H. Halstead. Multilisp: a language for concurrent symbolic computation. ACM Transactions on

Programming Languages and Systems (TOPLAS), 7(4):501–538, 1985.

[62] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors. In Proceedings of Micro 30, 1997.

[63] P. Rundberg and P. Stenstrom. Low-cost thread-level data dependence speculation on multiprocessors. In Fourth

Workshop on Multithreaded Execution, Architecture and Compilation, December 2000.

[64] Y. Sazeides and J. E. Smith. The Predictability of Data Values. Proceedings of Micro 13, pages 248–258,

December 1997.

[65] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar Processors. In Proceedings of ISCA 22, pages 414–425,

June 1995.

[66] J. G. Steffan, C. B. Colohan, A. Zhaia, and T. C. Mowry. A Scalable Approach to Thread-Level Speculation. In

Proceedings of ISCA 27, June 2000.

159

[67] S. Tjiang, M. Wolf, M. Lam, K. Pieper, and J. Hennessy. Languages and Compilers for Parallel Computing,

pages 137–151. Springer-Verlag, Berlin, Germany, 1992.

[68] M. Tremblay. MAJC: Microprocessor Architecture for Java Computing. HotChips ’99, August 1999.

[69] J.-Y. Tsai, J. Huang, C. Amlo, D.J. Lilja, and P.-C. Yew. The Superthreaded Processor Architecture. IEEE

Transactions on Computers, Special Issue on Multithreaded Architectures, 48(9), September 1999.

[70] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maximizing On-Chip Parallelism.

In Proceedings of ISCA 22, pages 392–403, June 1995.

[71] Dean Tullsen, Susan Eggers, Joel Emer, Henry Levy, Jack Lo, and Rebecca Stamm. Exploiting choice: Instruc-

tion fetch and issue on an implementable simultaneous multithreading processor. In ISCA 1996, May.

[72] J. Veenstra. MINT+ mips emulator. Personal communication.

[73] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Os support for improving data locality on cc-numa com-

pute servers. In In Proceedings of the 7th International Conference on Architectural Support for Programming

Languages and Operating Systems, October 1996.

[74] Kai Wang and Manoj Franklin. Highly accurate data value prediction using hybrid predictors. In International

Symposium on Microarchitecture, 1997.

[75] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, April 1996.

[76] A. Zhaia, C. B. Colohan, J. G. Steffan, and T. C. Mowry. Compiler optimization of scalar value communication

between speculative threads. In Proceedings of ASPLOS-X, October 2002.

[77] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for Speculative Run-Time Parallelization in Distributed

Shared-Memory Multiprocessors. In Proceedings of the Fourth International Symposium on High-Performance

Computer Architecture, February 1998.

[78] Y. Zhang, L. Rauchwerger, and J. Torrellas. Hardware for Speculative Parallelization of Partially-Parallel

Loops in DSM Multiprocessors. In Fifth International Symposium on High-Performance Computer Architec-

ture (HPCA), pages 135–141, January 1999.

160

[79] Z. Zhang and J. Torrellas. Speeding up irregular applications in shared-memory multiprocessors: Memory

binding and group prefetching. In Proceedings of the 22nd Annual International Symposium on Computer Ar-

chitecture, pages 188–200, June 1995.

