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Abstract. Genome-wide association studies have revealed individual genetic variants associated
with phenotypic traits such as disease risk and gene expressions. However, detecting pairwise in-
teraction effects of genetic variants on traits still remains a challenge due to a large number of
combinations of variants (∼ 1011 SNP pairs in the human genome), and relatively small sample
sizes (typically < 104). Despite recent breakthroughs in detecting interaction effects, there are
still several open problems, including: (1) how to quickly process a large number of SNP pairs,
(2) how to distinguish between true signals and SNPs/SNP pairs merely correlated with true sig-
nals, (3) how to detect non-linear associations between SNP pairs and traits given small sam-
ple sizes, and (4) how to control false positives? In this paper, we present a unified framework,
called SPHINX, which addresses the aforementioned challenges. We first propose a piecewise linear
model for interaction detection because it is simple enough to estimate model parameters given
small sample sizes but complex enough to capture non-linear interaction effects. Then, based on
the piecewise linear model, we introduce randomized group lasso under stability selection, and a
screening algorithm to address the statistical and computational challenges mentioned above. In
our experiments, we first demonstrate that SPHINX achieves better power than existing methods
for interaction detection under false positive control. We further applied SPHINX to late-onset
Alzheimer’s disease dataset, and report 16 SNPs and 17 SNP pairs associated with gene traits.
We also present a highly scalable implementation of our screening algorithm which can screen ∼
118 billion candidates of associations on a 60-node cluster in < 5.5 hours. SPHINX is available at
http://www.cs.cmu.edu/∼seunghak/SPHINX/.

1 Introduction

A fundamental problem in genetics is to understand the interaction (or epistatic) effects from pairs
of or multiple single-nucleotide polymorphisms (SNPs) on phenotypic traits [31]. Existing methods for
detecting causal SNP pairs include hypothesis-testing-based methods [35, 37, 41] and penalized multi-
variate regression (PMR) based methods [3, 19, 33]. Arguably PMR-based methods are more powerful
than hypothesis-testing-based methods because PMR can in principle jointly estimate all marginal and
interaction effects simultaneously [16, 19]. However, statistical and computational bottlenecks have pre-
vented PMR from being widely used for detecting interaction effects on traits. Firstly, it is difficult to
control false positives. One can use a “screen and clean” procedure to compute p-values [28,38], but this
strategy substantially downgrades the power in genome wide association mapping because only half of
the samples can be used for each step of screening and cleaning. Secondly, the high correlations between
pairs of SNPs also lead to decrease of the power of PMR, because PMR can only detect true associations
accurately under conditions with little correlation between different SNPs/SNP pairs [6]. Lastly, there is
a substantial computational challenge to overcome. If we were to consider millions of SNPs as candidates
in studying a particular phenotypic trait, the number of potential pairwise interactions between pairs of
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Fig. 1. Overall framework of SPHINX that consists of two steps. In the first step, we use a screening
method to efficiently discard SNPs and SNP pairs without associations; given the SNPs and SNP pairs
survived in the screening step, we run a method that incorporates three different techniques, each of
which is introduced to address the problem on its right side.

SNPs to be considered is > 1011. Such a massive pool of candidates of SNP pairs makes it infeasible to
solve the mathematical optimization program underlying PMR with currently available tools.

The past several years have seen the emergence of several statistical methods that can potentially be
employed to address the problems mentioned above. For the first problem of error control, Meinshausen
and Bühlmann proposed a procedure known as stability selection [27]. The insight behind this technique
is that, given randomly chosen multiple subsamples, true associations of covariates (e.g., SNPs or SNP
pairs) to responses (e.g., a trait) will be selected at high frequency because true association signals are
likely to be insensitive to the random selection of subsamples. Second, to address the non-identifiability
problem in regression due to inter-covariate correlation, a randomized lasso technique has been proposed
that randomly perturbs the scale of covariates in the framework of stability selection, thereby relaxes
the original requirements on small correlation for recovery of true association signals from all covariates
[27]. Naturally, such a scheme is expected to help distinguishing between true and false associations
of SNPs/SNP pairs because only true ones are likely to be selected under the perturbations. Finally, to
combat the computational challenge due to a massive number of covariates, a sure independence screening
(SIS) procedure [10] has been proposed to contain the operational size of the regression problem under
provable guarantee of retaining true signals. It is possible to use the idea behind SIS to effectively
perform simple independent tests on each pair of SNPs (or individual SNPs) and discard the large
fraction of candidates with no associations, such that one can end up with only O(NC) candidates
(where N is sample size and C is a data dependent constant) of which no true associations will be missed
with high probability. These theoretical development notwithstanding, their promised power remains
largely unleashed for practical genome wide association mapping, especially in nontrivial scenarios such
as non-additive epistatic effects, due to several remaining hurdles, including proper models for association,
algorithms for screening with such models and on a computer cluster, and proper integration of techniques
for error control, identifiability, screening, etc., in such a new paradigm.

In this paper, we present SPHINX (which stems from Sparse Piecewise linear model with High through-
put screening for INteraction detection(X)), a new PMR-based approach built on the advancements in
statistical methodologies mentioned above. It is an integrative platform that conjoins and extends the
aforementioned three components, further enhanced with techniques allowing more realistic trait associ-
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ation patterns to be detected. In particular, SPHINX is designed to capture SNP pairs with non-linear
interaction effects (synergistic/antagonistic epistasis) on traits using a piecewise linear model (PLM),
which is better suited to model the complex interactions between a pair of SNPs and the traits. In short,
SPHINX is designed as follows: using an extension of SIS based on PLM, it first selects a set of O(NC)
SNPs and SNP pairs with the smallest residual sum of squares. Then it runs the randomized group lasso
based on PLM on the set of SNPs and SNP pairs selected in the previous step under stability selection.
Finally, it reports SNPs and SNP pairs selected by stability selection, whose coefficients are non-zero given
a majority of subsamples. In Fig. 1, we illustrate the overall framework of SPHINX. Note that in practical
association analysis with all pairs of SNPs, we should address the three problems mentioned above simul-
taneously, which is a non-trivial task. To achieve this goal, we take the approach of unified framework,
which requires statistically sound models and algorithms, and scalable system implementations.

In our experiments, we show the efficacy of SPHINX in controlling false positives, detecting true
causal SNPs and SNP pairs, and using multiple cores/machines to deal with a large number of SNP
pairs. Furthermore, with SPHINX, we analyzed late-onset Alzheimer’s disease eQTL dataset [40], which
contains ∼ 118 billion candidates of associations; the analysis took < 5.5 hours using 60-node cluster
with 720 cores. As a result, we found 16 SNPs and 17 SNP pairs associated with gene traits. Among
our findings, we report the analysis of 6 SNPs (rs1619379, rs2734986, rs1611710, rs2395175, rs3135363,
rs602875 ) associated with immune system-related genes (i.e., HLA gene family) and a SNP pair (pair
of rs4272759 and rs6081791 ) associated with a dopamine-related gene (i.e., DAT gene); the role of
dopamine and immune system in Alzheimer’s disease have been studied in previous research [23,26].

2 Methods
SPHINX is a framework for genome-wide association mapping, which consists of PLM-based screening
technique, PLM-based randomized group lasso under stability selection. Among the SPHINX compo-
nents, the effectiveness of the randomization technique and stability selection are demonstrated in [10,27]
with theory and experiments; the screening approach is extensively studied in both parametric and non-
parametric settings [9, 10]. In this section, we focus on describing our proposed novel model PLM-based
group lasso with the randomization technique and stability selection. We then present the PLM-based
screening method, followed by our system implementation of the screening method. Note that SPHINX
runs the screening method prior to the PLM-based randomized group lasso, as shown in Fig. 1.

2.1 Piecewise Linear Model-Based Group Lasso

The relationships between genetic variations and phenotypic traits are complex, for example, non-linear.
However, due to the highly under-determined nature of the mathematical problem — too many features
(SNPs and SNP pairs) but too few samples — it is difficult to employ models that have a high degree
of freedom. Traditionally, linear models have been used extensively in genome wide association studies
despite the fact that these models are not flexible enough to capture the complexity of the trait-associated
epistatic interactions between SNPs.

We introduce a multivariate piecewise linear model (PLM), which is better suited to model the
complex interactions between a pair of SNPs and traits. Note that we employ PLM for adding additional
degrees of freedom into a linear model in a high-dimensional multivariate regression setting. Therefore,
it is different from the cases, where we change the degrees of freedom in statistical tests such as F-test.
We denote the j-th SNP for the i-th individual by xij ∈ {0, 1, 2} with the number of minor alleles at the
locus. Let us start converting a linear model into a piecewise linear model with two knots denoted by
∆ = {η1, η2}, where η1 = 1 and η2 = 2 for our SNP encoding. It uses three degrees of freedom, flexible
enough to capture the change of gene expression with a change in the genotype. Specifically, let mi

jk

denote the genotype encoding for the interaction between j-th SNP and k-th SNP for the i-th individual,
i.e., mi

jk ≡ xijxik. Then, we have a piecewise linear model as follows:

ŷ = 1C +
P∑
j=1

xjβj +
∑
j<k

Ψ(mjk, {ujk, tjk, wjk}) + ε, (1)
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where mjk = [m1
jk, . . . ,m

N
jk]T , ŷ is an output trait based on the model, βj is the regression coefficient

for the j-th SNP, and ε is Gaussian noise. Here, Ψ(·) is a piecewise linear function given by

Ψ(m
i
jk, {ujk, tjk, wjk}) =


mijkujk if mijk ≤ η1,
mijkujk + (mijk − η1)tjk if η1 < mijk ≤ η2,
mijkujk + (mijk − η1)tjk + (mijk − η2)wjk if mijk > η2,

(2)

where ujk, tjk and wjk represent the regression coefficients for the first, second and third line segment,
respectively. Given the model in Eq. (1), to select significant SNPs/SNP pairs, we propose the following
penalized multivariate piecewise-linear regression, referred to as PLM-based group lasso:

min
C,{βj},{ujk,tjk,wjk}

∥∥∥∥∥∥y −
1C +

P∑
j=1

xjβj +
∑
j<k

Ψ(mjk, {ujk, tjk, wjk})


∥∥∥∥∥∥
2

2

+ λ1

P∑
j=1

|βj |+ λ2

∑
j<k

√
|∆|
√
u2
jk + t2jk + w2

jk,

(3)

where λ1 and λ2 are regularization parameters, determining the sparsity of the solutions. Here the first `1
and second `1/`2 norm are introduced to set the coefficients of individual SNPs and SNP pairs to exactly
zero respectively if they are irrelevant to the observed trait y. It is equivalent to group lasso penalty [39],
and has been shown that it allows us to select true non-zero βjs and {ujk, tjk, wjk}s under certain
conditions [1]. We can optimize Eq. (3) using standard optimization techniques for group lasso such as a
block coordinate descent [12], or a proximal gradient method [25] (we used a proximal gradient method
to optimize Eq. (3) [24]) because the loss function is differentiable and Ψ(·) is linear. Further, the penalty
is separable because there is no overlap between different groups of coefficients. Here, we considered the
squared-loss for eQTL (expression quantitative trait loci) mapping with continuous traits; however, our
methodology can be extended to other loss functions (e.g logistic loss in case/control studies).

Randomization As previously mentioned, high correlations between SNPs or SNP pairs make it hard
to distinguish between true association SNPs/SNP pairs and the correlated ones. To address the problem,
we randomly perturb the scale of covariates in Eq. (3) [27], called PLM-based randomized group Lasso:

min
C,{βj},{ujk,tjk,wjk}

∥∥∥∥∥∥y −
1C +

P∑
j=1

Wjxjβj +
∑
j<k

Ψ(Wjkmjk, {ujk, tjk, wjk})


∥∥∥∥∥∥
2

2

+ λ1

∑
j

|βj | (4)

+ λ2

∑
j<k

√
|∆|
√
u2
jk + t2jk + w2

jk.

Here P (Wj = 1) = P (Wj = δ) = P (Wjk = 1) = P (Wjk = δ) = 0.5, and δ ∈ (0, 1] determines the degree
of perturbations (the smaller δ, the larger perturbations). It has been shown that this randomization with
stability selection weakens the condition for the recovery of true non-zero coefficients [27]. Furthermore,
Meinshausen and Bühlmann empirically showed that the randomization is very useful to distinguish
between true causal signals and the false ones merely correlated with the true signals [27].

Stability Selection Next, to control false positives, we adopt stability selection [27], which takes the
bootstrapping approach. Suppose we have a set of (λ1, λ2) parameters denoted by {Λt}Tt=1, where Λt =
(λ1, λ2)t. For each Λt, we solve Eq. (4) based on randomly chosen samples size of bN/2c for α times. Then
we select SNPs or SNP pairs if their coefficients are set to non-zero more than πthrα (0.5 < πthr ≤ 1)
times for any regularization parameters. Under certain assumptions, it has been shown that the expected
number of false positives E(V ) is bounded by

E(V ) ≤
1

2πthr − 1

q2Λ
kmar + kint

, (5)

where qΛ is the expected number of non-zero coefficients in a solution of Eq. (4) [27]. Note that for whole
genome-wide association studies, stability selection based on Eq. (4) is computationally challenging due
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Algorithm 1: PLM-based Randomized Group Lasso under Stability Selection
Input: X: SNP matrix, y: Expression of a single gene, Ωmar: selected individual SNPs by screening, Ωint: selected pairs

of SNPs by screening, κ: maximum expected number of false positives, {Λt}Tt=1: a set of regularization parameters
of (λ1, λ2), πthr: threshold for stability selection (0.5 < πthr ≤ 1).

Output: Ŝmar: selected individual SNPs, Ŝint: selected pairs of SNPs.
1 Πtj = 0, j ∈ Ωmar; Πtjk = 0, (j, k) ∈ Ωint and t = 1, . . . , T .

2 for t = 1 to T do
3 (λ1, λ2)← Λt.
4 sj = 0, ∀j ∈ Ωmar; sjk = 0, ∀(j, k) ∈ Ωint
5 for k = 1 to α do
6 Randomly select bN/2c samples from N samples without replacement.
7 Given the bN/2c subsamples, solve the PLM-based randomized group Lasso in Eq. (4).
8 sj = sj + 1 for all selected individual term j
9 sjk = sjk + 1 for all selected pairwise terms (j, k)

10 Compute the maximum expected number of false positives (E(V )) via Eq. (5).
11 if E(V ) ≤ κ then

12 Πtj ←
sj
α for all j ∈ Ωmar Πtjk ←

sjk
α for all (j, k) ∈ Ωint

13 Ŝmar = {j : maxtΠ
t
j ≥ πthr}; Ŝint = {(j, k) : maxtΠ

t
jk ≥ πthr}

Algorithm 2: Piecewise Linear Model-Based Screening
Input: X: SNP matrix, y: Expression of a single gene, N : number of samples, P : number of SNPs, bmar: number of SNPs

to select per-iteration, bint: number of SNP pairs to select per-iteration, kmar: total number of SNPs to select,
kint: total number of SNP pairs to select.

Output: Ωmar: selected individual SNPs, Ωint: selected pairs of SNPs.
1 Ωmar = Ωint = ∅, r = y;
2 while (kmar > |Ωmar|) || (kint > |Ωint|) do
3 nmar = Min((kmar − |Ωmar|), bmar);
4 nint = Min((kint − |Ωint|), bint);
5 for SNP j /∈ Ωmar do
6 RSSj = min

C,βj
||r− 1C − xjβj ||22;

7 Sort(RSSj ,ascending);
8 Ωmar = Ωmar ∪ Top(RSSj , nmar);
9 for SNP (j, k) /∈ Ωint do

10 RSSjk = min
C,{ujk,tjk,wjk}

||r− 1C − Ψ(mjk, {ujk, tjk, wjk})||22;

11 Sort(RSSjk,ascending);
12 Ωint = Ωint ∪ Top(RSSjk, nint);

13 (Ĉ, β̂, {û, t̂, ŵ}) = argmin
C,β,u,t,w

||y − 1C −
∑
j∈Ωmar xjβj −

∑
(j,k)∈Ωint

Ψ(mjk, {ujk, tjk, wjk})||22;

14 r = y − 1Ĉ −
∑
j∈Ωmar xj β̂j −

∑
(j,k)∈Ωint

Ψ(mjk, {ûjk, t̂jk, ŵjk});

to all SNP pairs considered. Specifically, optimizing Eq. (4) is non-trivial because it requires us to use an
iterative algorithm such as a proximal gradient method [24], which sweeps over such a large number of
SNP pairs multiple times. To address the problem, we introduce PLM-based screening algorithm, which
efficiently gives us small candidate sets of association SNPs and SNP pairs, denoted by Ωmar and Ωint.
We describe PLM-based randomized group lasso under stability selection in Algorithm 1.

2.2 Piecewise Linear Model-Based Screening

In Eq. (4), we include all P SNPs and
(
P
2

)
(= P (P−1)

2 ) SNP pairs, which makes it impractical solve
the problem at a whole-genome scale (e.g., millions of SNPs). To handle the quadratic explosion of the
number of SNP pairs, we propose a scalable screening method based on PLM. Our screening method is
designed to sequentially select potentially relevant SNPs and SNP pairs using a simple test scheme. Note
that this screening step focuses on avoiding missing true positives supported by sure-screening theory [9].

Our screening algorithm is a variant of iterative sure independence screening based on Eq. (1). It
greedily selects SNPs and SNP pairs based on the contribution of each candidate SNP or SNP pair to
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the decrease of residual sum of squares. The PLM-based screening is described in Algorithm 2. Note that
there are two pairs of parameters (kmar, kint) and (bmar, bint). The pair (kmar, kint) determines the total
number of SNPs and SNP pairs selected, and (bmar, bint) determines the number of candidates selected
per-iteration. In our experiments, we used (kmar, kint) = (N,N) and (bmar, bint) = (10, 10) to limit the
number of selected correlated SNPs/SNP pairs at each iteration by 10. When SNPs are highly correlated,
we recommend large values of (kmar, kint) and small values of (bmar, bint) because it will allow us to select
more independent SNPs/SNP pairs. After the screening step, we obtain small candidate sets of SNPs and
SNP pairs, and thus it is computationally tractable to solve the high-dimensional problem in Eq. (4).

2.3 System Implementation of Piecewise Linear Model-Based Screening

We implemented a highly efficient shared- and distributed-memory parallel PLM-based screening algo-
rithm in C++. Our implementation can exploit parallelism when running on multi-core machines, or on
clusters of multi-core machines. To exploit shared-memory parallelism, we used PFunc [17], a lightweight
and portable library that provides C and C++ APIs to express task parallelism. For distributed-memory
parallelism, we used MPI [29, 30], a popular library specification for message-passing that is used exten-
sively in high-performance computing. In this section, we briefly describe some salient features of our
implementation that optimize memory and computational efficiency.

First of all, we optimize the memory footprint of SPHINX by storing each SNP using 2 bits (to repre-
sent 0, 1, 2), thereby giving us 4 SNPs per-byte of data. This way, the entire SNP dataset is compressed
and most of the operations, such as tests for SNP-SNP interactions, are performed as bit-wise operations.
For example, using this scheme, a 200 patient, 500,000 SNP dataset only occupies 250MB of storage
that can be entirely cached in-memory on most modern machines. The SNP-SNP interaction pairs are
constructed on-the-fly in order to save space instead of explicitly storing

(
P
2

)
additional columns.

We also optimize our implementation for computational efficiency. Note that the significant SNPs and
SNP-SNP interactions are selected by solving millions of linear systems, followed by computation of the
2-norm of the resulting residual. To quickly solve the linear systems, we use Cholesky factorization [5]
because Cholesky decomposition is faster (although less numerically stable in some cases) than other
alternatives such as QR decomposition [5] and singular value decomposition (SVD) [14]. Furthermore,
we use BLAS and LAPACK kernels to optimize all the linear operations. After the selection of the first
SNP and SNP pair, incremental linear models are built; that is, given a set of selected SNPs and SNP
pairs, the best SNP or SNP pair to add to our model has to be determined. As the number of selected
candidates increases, the linear system becomes more expensive to solve, thereby making successive later
iterations expensive. In order to offset these costs, we resort to using a hand-coded incremental version
of Cholesky factorization, which keeps the per-iteration costs near constant.

3 Simulation Study

In this section, we validate the effectiveness of SPHINX in terms of false positive control, statistical
power, and screening scalability via simulations because ground-truth associations are unknown in real
datasets. We first conduct an extensive simulation study to demonstrate and statistically validate the
efficacy of SPHINX 1, in comparison to two popular existing approaches: the two-locus test by PLINK [35]
with the --epistasis option and the maximum likelihood method with fully parametrized two-locus model
(saturated two-locus test) [8] with Bonferroni correction at significance level 0.01. We set |Ωmar| = N ,
|Ωint| = N , and κ = 3 for SPHINX, allowing for three false positives on average. We simulated chro-
mosome 1 with 22834 SNPs and 2000 individuals using GWAsimulator [22], and generated traits under
additive and non-additive scenarios: association SNP pairs have (1) additive, and (2) non-additive inter-
action effects. We ran the methods on 50 different data sets generated by randomly choosing 200 samples

1 For all experiments, we used the following regularization parameters: λ1 = λ2 ∈ {0.5, 0.1, 0.05, 0.01, 0.005}.
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(c) Non−additive scenario
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(b) Statistical Power

Fig. 2. (a): Number of false positives of SNP pairs found by SPHINX (a,d), PLINK (b,e) and saturated
two-locus test (c,f) with different sample sizes and the number of SNPs under two null hypotheses (see
text for details). (b): A comparison of the number of true positive rates and the number of false
positives by SPHINX, PLINK and saturated two-locus test with different numbers of true association
SNP pairs out of 300 total SNPs and 44850 SNP pairs, under the additive scenario (a,b) and the
non-additive scenario (c,d). We show the means with error bars of 1/2 standard deviation.

and 300 consecutive SNPs from the simulated genome for each simulation setting (see supplementary
note for more details on the experimental setup and simulation results).

3.1 Power to Detect True Casual SNPs and SNP pairs Under False Positive Control

We first confirm that SPHINX effectively controls the number of false positives of SNP pairs under two
null hypotheses: (1) there exist no marginal and no interaction effects, (2) there exist only marginal effects
but no interaction effects. As can be seen in Fig. 2(a), for both null hypotheses, false positives were well
controlled with different sample sizes from 100 to 1000 and different numbers of SNPs from 100 to 700
(less than one false positive under both null hypotheses). However, PLINK and the saturated two-locus
test failed to control the number of false positives effectively under the second scenario (up to 7.94 and
8470, respectively) because SNP pairs correlated with SNPs having some marginal effects were falsely
detected.

We then performed experiments to show that SPHINX exhibits high power even when false positives
are well-suppressed. In the simulation, we randomly chose three SNPs for marginal effects (out of 300
SNPs), and set the number of SNP pairs from 1 to 5 (out of 44850 possible pairs) for interaction effects
(SNPs with minor allele frequency between 0 and 0.2 were randomly chosen). Compared to PLINK, and
the saturated two-locus test, as shown in Fig. 2(b), SPHINX showed significantly larger true positive
rates (up to ∼ 40%) while generating fewer number of false positives (< 0.18) under both scenarios of
additive and non-additive interaction effects. In contrast, PLINK found a smaller fraction of SNP pairs
with true interaction effects (up to ∼ 10%), and the number of false positives was less than 1.04. The
saturated two-locus test found more true positives than PLINK but the number of false positives was
very large (> 1000).

3.2 Scalability of Screening Implementation

We carried out scalability experiments for our screening implementation on oxygen, a six-node cluster
of dual-socket, quad-core Intel Xeon E5410 machine with 32GB of RAM per-node running Linux Kernel
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(b) Multi-core
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Fig. 3. Performance of the parallel implementation of our screening algorithm on oxygen cluster.

2.6.31-23 (total 48 cores). Fig. 3 shows the throughput (SNPs processed per second) for various scenarios
when running on a simulated dataset that had 200 SNPs, 500 samples, and 20 true association SNPs.
Each experiment was run for 50 iterations, where each iteration considered 200 marginal candidates and(

200
2

)
interaction candidates. To test the effect of simultaneously evaluating multiple responses (e.g., eQTL

mapping on many gene traits), we ran experiments with the number of responses varying from 1 to 16. The
left panel depicts the multi-node (cluster) performance of our implementation on oxygen; as can be seen,
our implementation is able to process up to 14000 SNPs per second on 6 machines and shows near-linear
speedup. Furthermore, our implementation handles an increasing number of responses (e.g., gene traits)
gracefully; processing 16 responses in a multi-task fashion only results in a 3.5x slowdown when compared
to processing just one response (4000 SNPs per second as opposed 14000 SNPs per second). The middle
panel shows the near-linear speedup achieved when we use pure multi-threading on a single node of
oxygen. The scalability is slightly less than the multi-node case because of memory bandwidth issues that
result from BLAS-2 operations such as matrix-vector products. Finally, the right panel demonstrates our
algorithm’s capability to exploit both multi-core and cluster architectures together. In this experiment,
we ran 8 threads per-node and increased the number of nodes from 1 to 6 to achieve a near-linear speedup.
To conclude, our implementation is able to efficiently process large datasets while scaling near-linearly.

4 Association Analysis of Late-Onset Alzheimer’s Disease Data

We applied SPHINX to late-onset Alzheimer’s disease (AD) data from Harvard Brain Tissue Resource
Center and Merck Research Laboratories [40], in an attempt to detect causal SNPs associated either
marginally or epistatically to molecular traits of interest. This data concerns 206 AD cases with 555091
SNPs in total and expression levels of 37585 DNA probes including known and predicted genes, miR-
NAs and non-coding RNAs in three brain regions including cerebellum, visual cortex, and dorsolateral
prefrontal cortex, profiled on a custom-made Agilent 44K microarray. Specifically, we are interested in
the expression traits of all 718 genes in visual cortex related to neurological diseases according to GAD
(genetic association database) [2], and we focused on the 18137 SNPs residing within 50kb from these genes,
in an attempt to search for cis-acting causal SNPs or “restricted” trans-acting (i.e., acting on genes within
the same functional group) SNPs related to neurological diseases. This results in a massive problem in-
volving 18137 SNPs, ∼ 164 million SNP-pairs and 718 gene traits, that is, ∼ 118 billion candidates of
associations between SNPs/SNP-pairs and traits. We employed a cluster with a total of 720 cores (see
Methods for experimental details), which took 4.5 hours to perform screening and < 1 hour for stability
selection with PLM-based randomized group lasso. Using SPHINX, we found 16 SNPs and 17 SNP pairs
significantly associated with the expression traits (see Tables S1 and S2 for the list of all SNPs and SNP
pairs found by SPHINX). The patterns of marginal and interaction effects are illustrated in Fig. 4.
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Fig. 4. Gene expression levels according to the genotypes of (a) 16 SNPs, and (b) 17 SNP pairs found
by SPHINX. In (a), x-axis represents genotypes and y-axis shows the average gene expression levels of
individuals who possess the corresponding genotype with error bars of 1/2 standard deviation. In (b), x
and y-axis represent genotypes of a SNP pair and z-axis shows the average gene expression levels.

4.1 Marginal Effects in Late-Onset Alzheimer’s Disease Dataset

Among 16 SNPs identified with marginal effects, 13 SNPs were located nearby affected genes (12 SNPs
are located within 50kb, and 1 SNP is located within 130kb from their associated genes), and 3 SNPs
were associated with a gene trait in a different chromosome. As an example, here we investigate 6 SNPs
(rs1619379, rs2734986, rs1611710, rs2395175, rs3135363, rs602875 ) associated with HLA (human leuko-
cyte antigen) genes including HLA-A, HLA-DRB1, and HLA-DQB1, related to immune system. All the
6 SNPs were located nearby the affected HLA genes, which encode proteins for antigen presentation [4].
We observed that 5 SNPs out of the 6 SNPs had positive correlation with the expression levels of their
associated genes, whereas one SNP (rs1619379 ) had negative correlation with the expression levels of its
associated gene (HLA-A).

We found out that 5 SNPs (out of the 6 SNPs) had genome annotations in their locations. For as-
sociations between the three SNPs (rs1619379, rs2734986, rs1611710 ) and HLA-A, we observed that
rs1619379 and rs1611710 coincide with H3K27Ac histone mark and transcription factor binding sites,
respectively, and rs2734986 aligns with spliced ESTs. It suggests that rs1619379 and rs1611710 may
perturb regulatory elements of HLA-A, and rs2734986 may be related to a mechanism for DNA tran-
scription. In case of the association between rs2395175 and HLA-DRB1, rs2395175 was in an intron of a
HLA-DRB1 gene (chr6:32489683-32557613). Finally, for associations between the two SNPs (rs3135363,
rs602875 ) and HLA-DQB1, we observed that rs3135363 coincides with both transcription factor binding
site and H3K27Ac histone mark, which hints that rs3135363 may be related to regulatory mechanisms
for HLA-DQB1. For rs602875, we did not find any specific genome annotations.

It should be noted that associations between HLA genes and late-onset AD [21, 26] have been found
and these findings have been replicated in previous studies. It has been reported that there is association
between HLA-A and late-onset of AD [15, 34], and Lehmann et al. replicated the association between
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HLA-B7 and AD [20]. As we found associations between the 6 SNPs and HLA genes, and previous studies
reported associations between HLA genes and AD, it would be interesting to further investigate whether
these associations are related to regulatory mechanisms or transcription factor bindings.

4.2 Interaction Effects in Late-Onset Alzheimer’s Disease Dataset

Among 17 SNP pairs identified with interaction effects, as an example, we investigate the biological under-
pinnings of one of our findings — the pair rs4272759 (chr11:100899750) and rs6081791 (chr20:1988298)
that is jointly (but not marginally) associated with DAT (Dopamine Active Transporter, chr5:1392905-
1445545) — to demonstrate the biological validity of our results. Specifically, the expression level of
DAT is high only when both SNPs are heterozygous (i.e., both SNPs have only one minor allele). SNP
rs4272759 is located 605 base-pairs upstream of the start position of gene PGR (ProGesterone Receptor,
chr11:100900355-101001255), whereas SNP rs6081791 is 13407 base-pairs downstream of gene PDYN
(ProDYNorphin, chr20:1959402-1974891). An extensive literature survey has yielded intriguing biological
evidence to explain the association involving DAT with PGR and PDYN, suggesting that our finding
is biologically plausible. It was reported that progesterone treatment could increase the dynorphin con-
centration and prodynorphin mRNA level (prodynorphin is the precursor protein of dynorphin) [11],
suggesting that a disruption of the PGR function could alter the activity of PDYN, which supports our
finding that the SNPs in PGR and PDYN are epistatic. A direct association between PDYN and DAT
has also been reported. For example, it has been reported that prodynorphin expression in the striatum
is associated with D1 dopamine receptor stimulation [13]; furthermore, in the experiments with DAT
knock-down mice, Cagniard et al. [7] found that the increased level of dopamine is associated with the
level of dynorphin expression. Overall, evidence from the literature seems to support a hypothesis drawn
from our association analysis of interacting genetic variations that, a pair of SNPs affecting PGR and
PDYN are likely to lead to an epistatic effect on DAT, and it would be interesting to further examine
the status of DAT in the case studied in [11], and the status of PGR in cases studied in [13] and [7] to
directly confirm and characterize such an epistatic effect.

5 Conclusions

We developed a unified framework for detecting marginal and pairwise interaction effects on traits, built
on state-of-the-art techniques including screening, randomization, and stability selection. Furthermore, to
facilitate the detection of SNPs and SNP pairs associated with traits at a whole genome scale, we imple-
mented an efficient and scalable screening program. We validate the efficacy of SPHINX via simulations
and the analysis of late-onset Alzheimer’s disease dataset. Note that detecting pairwise interaction ef-
fects on traits requires us to address computational and statistical challenges simultaneously, which stem
from a large number of SNP pairs to be tested, correlations between SNPs/SNP pairs, and non-linear
patterns of marginal and interaction effects; to our knowledge, SPHINX is the first attempt to address
these challenges within a single framework. For future work, we plan to (1) incorporate diverse prior
knowledge into our model such as trait networks using graph-guided fused lasso [18] or grouping infor-
mation on both genotypes (e.g., LD structures) and phenotypic traits (e.g., pathways) using structured
input-output lasso [19], (2) use kernel techniques for detecting multi-way interactions among SNPs, (3)
detect interaction effects under case-control settings via logistic regression, and (4) combine linear mixed
model with SPHINX to correct for population structures [36].

Acknowledgments This work was done under a support from NIH 1 R01 GM087694-01; NIH 1RC2HL101487-
01 (ARRA); AFOSR FA9550010247; ONR N0001140910758; NSF Career DBI-0546594; NSF IIS-0713379;
and Alfred P. Sloan Fellowship awarded to E.P.X.
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Supplementary Note

S1 Simulation Study

We present the details of our simulation results. Throughout the experiments, we performed experiments
under two scenarios: additive and non-additive scenarios. We first show how we generated simulation data
for each scenario. Then we show that a piecewise linear model is better than a linear model for detecting
SNP pairs with non-additive interaction effects. Next, we compare SPHINX with two popular approaches
including the two-locus test by PLINK [35] with --epistasis option and the saturated two-locus test [8]
to demonstrate that our proposed method is significantly more powerful than the other methods under
various simulation settings.

S1.1 Generation of Simulation Data

We first simulated chromosome 1 with 22834 SNPs and 2000 individuals using GWAsimulator [22], and
generated traits under additive and non-additive scenarios. In our of our experiments, we ran the methods
on 50 different data sets generated by randomly choosing N samples and P consecutive SNPs from the
simulated genome for each simulation setting.

Let us denote S1 by a set of SNPs with marginal effects, and S2 by a set of SNP pairs with interaction
effects. For the additive scenario, we generate simulation data as follows:

yi =
∑
j∈S1

xijβj +
∑

(j,k)∈S2

xijx
i
kβjk + εi, (6)

where yi is the continuous response (e.g., gene expression level) for the i-th individual, xij ∈ {0, 1, 2}
represents the encoding of the j-th SNP for the i-th individual (i.e., the number of minor alleles), εi
represents Gaussian noise with zero mean and unit variance for the i-th individual, and βj and βjk are
constants that represent the size of marginal and interaction effects, respectively.

For the non-additive scenario, we generate simulation data as follows:

yi =
∑
j∈S1

xijβj +
∑

(j,k)∈S2

f(xijx
i
k) + εi, (7)

where f(xijx
i
k) is given by

f(xijx
i
k) =


r1 : if xijx

i
k = 0,

r2 : if xijx
i
k = 1,

r3 : if xijx
i
k = 2,

r4 : if xijx
i
k = 4,

where rq ∼ Unif(−βjk, βjk) for all q = 1, . . . , 4. Note that in this non-additive scenario, the relationship
between y and a pair of SNPs xj and xk is non-additive due to the function f(xijx

i
k), which randomly

assigns the size of interaction effects according to the input genotype xijx
i
k.

In our experiments below, we denote N by the sample size, P by the number of SNPs, ν by the
association strength of marginal and interaction effects (i.e., ν = {βj , βjk}), and ξ by the number of
true association SNPs and SNP pairs (i.e., ξ = {|S1|, |S2|}). Furthermore, we randomly choose S2 such
that each SNP pair in S2 has the minor allele frequency less than MAF1 and MAF2. In other words, we
randomly choose a set of SNP pairs with interaction effects (i.e., S2) among the SNP pairs with minor
allele frequency less than MAF1 and MAF2. For the set S1, we randomly chose SNPs with marginal
effects among the SNPs with minor allele frequency less than 0.1.
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Fig. S1. Comparison of true positive rate between piecewise linear screening and linear screening under
different sample sizes and MAFs of true SNP pairs under additive scenario (a,b) and non-additive
scenario (c,d). We show the means with error bars of 1/2 standard deviation.

S1.2 Benefits of Using a Piecewise Linear Model for Screening

We tested the benefits of using a piecewise linear model instead of a simple linear model during the
screening procedure. Throughout this section, we use PLS to indicate using a piecewise linear model for
screening and LS to indicate using a simple linear model for screening. For this experiment, we simulated
data with P = 500 (that generates candidates of 124750 SNP pairs), three SNPs having marginal effects
with association strength of 1, and three SNP pairs having interaction effects with association strength
of 3, i.e., ν = {3, 3} and ξ = {1, 3}. Given the simulation data, for both PLS and LS, N candidates of
SNP pairs were selected, where N is the sample size. We then evaluated true positive rate of PLS and
LS under different minor allele frequencies (MAFs) of true association SNP pairs from 0.1 to 0.4 (fixing
N = 200) and different sample sizes from 100 to 600 (fixing MAF1=MAF2= 0.1). Fig. S1 represents the
average true positive rate of PLS and LS with error bars of 1/2 standard deviation when the underlying
true interaction effect was additive (See Fig. S1(a,b)), and non-additive (See Fig. S1(c,d)). In general,
our results show that PLS is very useful under various simulation settings. When true model was linear,
true positive rates of PLS and LS were comparable in most of our settings as shown in Fig. S1(a,b),
which was not expected because a simple linear model would be ideal given finite data under the additive
scenario. It seems that the model complexity of PLS was small enough not to lose much power. When
true model was non-linear, PLS showed clear benefits over LS. As seen in Fig. S1(c,d), true positive rate
of PLS substantially increased as sample size and minor allele frequency increased but true positive rate
of PL marginally improved. It seems that true positive rate of PLS significantly increased due to the fact
that additional degrees of freedom allowed PLS to fit well into the data under the non-additive scenario.

S1.3 Comparison of Different Methods for the Detection of SNP Pairs with Interaction
Effects

We present our comparison results among SPHINX, the two-locus test by PLINK [35] with the --epistasis
option, and the saturated two-locus test [8] with various experimental settings. We evaluate the general
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(a) Additive scenario (b) Non-additive scenario

Fig. S2. Comparison of true positive rate and the number of false positives for SPHINX (first column),
two-locus test by PLINK (second column), and saturated two-locus test (third column) under the linear
scenario (a) and the non-linear scenario (b). In each panel, x-axis and y-axis show MAFs of true
association SNP pairs (MAF1, MAF2), and z-axis shows the means of true positive rate or the number
of false positives with error bars of 1/2 standard deviation over 50 different simulation datasets given
the corresponding MAF pairs.

performance of SPHINX, PLINK [35] and the saturated two-locus test [8] on simulation datasets with
different MAFs of true association SNP pairs and different association strengths. For PLINK and the
saturated two-locus test, we used significance level of 1% with Bonferroni correction [32]; for SPHINX, we
set κ = 3, allowing for at most three expected number of false positives, and used the following sequence
of regularization parameters: λ1 = λ2 ∈ {0.5, 0.1, 0.05, 0.01, 0.005}.

Comparison with Different Minor Allele Frequencies We evaluated the three different methods on
simulation datasets with N = 200 (sample size), P = 300 (the number of SNPs), ν = {3, 3} (association
strength of marginal and interaction effects), and ξ = {3, 3} (the number of true association SNPs and
SNP pairs). Fig. S2 shows true positive rate and the number of false positives of the three different methods
(columns) with different MAFs of true association SNP pairs (i.e., MAF1=MAF2 ∈ {0.1, 0.2, 0.3}) under
the linear scenario (Fig. S2(a)) and the non-linear scenario (Fig. S2(b)). Overall, SPHINX achieved
the best performance considering both true positive rate and the number of false positives. When we
compare between PLINK and SPHINX, under both the additive and non-additive scenarios, SPHINX
showed significantly better true positive rate than PLINK while producing fewer number of false positives.
Furthermore, SPHINX effectively controlled the number of false positives over all regions of MAFs,
showing that the theory of stability selection [27] is in agreement with the empirical results (e.g., under
the additive scenario, SPHINX had 0.12 false positives on average). When we compare between the
saturated two-locus test and SPHINX, for both scenarios, the saturated two-locus test found slightly
more true positives but much larger number of false positives than SPHINX, which makes the saturated
two-locus test impractical. It can be explained by the fact that many parameters in the saturated two-
locus test led to over-fitting of the model.

Comparison with Different Association Strengths We also tested the three methods with different
association strengths ν1 = ν2 = 1, . . . , 5 (N = 200, P = 300, MAF1 = MAF2 = 0.1, ξ = {3, 3}), and show
true positive rate and the number of false positives under the additive scenario in Fig. S3(a,b) and under
the non-additive scenario in Fig. S3(c,d). Overall, SPHINX showed the best performance among the three
methods as it found a relatively large number of true positives while effectively suppressing false positives
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Fig. S3. Comparison of true positive rate and the number of false positives among SPHINX, PLINK
and saturated two-locus test with different association strengths under the additive scenario (a,b) and
the non-additive scenario (c,d). We show the means with error bars of 1/2 standard deviation.

over all association strengths. Furthermore, under the non-additive scenario, only SPHINX effectively
increased true positive rate as association strength increased under the control of false positives. On the
other hand, PLINK showed very low true positive rate (true positive rate was < 0.05 for all association
strengths), and the saturated two-locus test produced many false positives (> 200 in most cases).

Table S1. Significant trait-associated SNPs in Alzheimer’s disease dataset [40] found by SPHINX. For
each SNP, we represent GENE which is located within 50kb from the corresponding SNP. The stability
score represents the proportion for which the SNP was selected in stability selection.

SNP GENE Affected Stability
Gene Score

rs1047631 DTNBP1 DTNBP1 0.705
rs536635 C9orf72 SELL 0.651
rs7483826 WT1 WT1 0.979
rs2699411 LRPAP1 LRPAP1 0.824
rs16844487 LRPAP1 LRPAP1 0.763
rs1323580 PTPRD HHEX 0.631
rs4701834 SEMA5A SEMA5A 0.631
rs7852952 PTPRD PTPRD 0.724
rs2734986 HLA-A HLA-A 0.628
rs1611710 HLA-A HLA-A 0.617
rs2395175 HLA-DRB1 HLA-DRB1 0.692
rs602875 HLA-DQB1 HLA-DQB1 0.809
rs3135363 HLA-DRB1 HLA-DQB1 0.717
rs1619379 HLA-A HLA-A 0.967
rs156697 GSTO2 GSTO2 0.943
rs7759273 ABCB1 PARK2 0.67
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Table S2. Significant trait-associated SNP pairs identified by SPHINX in Alzheimer’s disease
dataset [40]. For each SNP A(B), we represent GENE A(B), which is located within 50kb from the
SNP. The stability score represents the proportion for which the pair was selected in stability selection.

SNP A GENE A SNP B GENE B Affected Stability
Gene Score

rs10501554 DLG2 rs7805834 NOS3 NEFH 0.684
rs4547324 Intergenic rs7870939 PTPRD MEIS1 0.602
rs1956993 NUBPL rs6677129 LOC199897 FARP1 0.633
rs27744 LTC4S rs13209308 PARK2 CLCN2 0.629
rs17150898 MAGI2 rs7798194 CDK5 NINJ2 0.605
rs2802247 FLT1 rs9533787 DNAJC15 ADH1C 0.629
rs10883782 CYP17A1 rs10786737 CNNM2 SCN1B 0.683
rs7139251 ITPR2 rs12915954 IGF1R IL6 0.605
rs11207272 PDE4D rs2274932 ZBP1 ARSB 0.635
rs2634507 TOX rs11790283 VLDLR SFXN2 0.622
rs17309944 BDNF rs358523 HTR1A GRIK1 0.665
rs10501554 DLG2 rs17318454 RFX4 GNAS 0.611
rs4900468 CYP46A1 rs10217447 PTPRD CAPN5 0.64
rs17415066 KCNJ10 rs912666 SUSD1 SEMA5A 0.663
rs6578750 CCKBR rs12340630 TAL2 CTNNA3 0.631
rs4272759 PGR rs6081791 PDYN DAT 0.71
rs2679822 MYRIP rs4538793 NXPH1 CPT7 0.85
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