
15-780: Grad AI
Lecture 20: Monte Carlo

methods, Bayesian learning

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Admin

Reminder: midterm March 29

‣ Tuomas’s review session tomorrow, mine
yesterday

Reminder: project milestone reports due
March 31

Review: factor graphs

Undirected, bipartite graph

‣ one set of nodes represents variables

‣ other set represents factors in probability
distribution—tables of nonnegative numbers

‣ need to compute normalizer in order to do
anything useful

Can convert back and forth to Bayes nets

Hard v. soft constraints

Review: factor graphs

Graphical test for independence

‣ different results from Bayes net, even if we
are representing the same distribution

Inference by dynamic programming

‣ instantiate evidence, eliminate nuisance
nodes, normalize, answer query

‣ elimination order matters

‣ treewidth

Relation to logic

Review: HMMs, DBNs

Inference over time

‣ same graphical template
repeated once for each
time step—conceptually
infinite

Inference: forward-
backward algorithm (special
case of belief propagation)

Review: numerical integration

Integrate a difficult function over a high-
dimensional volume

‣ narrow, tall peaks contribute most of the
integral—difficult search problem

Central problem for approximate inference

‣ e.g., computing normalizing constant in a
factor graph

Uniform sampling

1 0.5 0 0.5 10

10

20

30

40

50

60

70

2
N

�

i

f(xi)

Importance sampling

1 0.5 0 0.5 10

10

20

30

40

50

60

70

Variance

How does this help us control variance?

Suppose f big ==> Q big

And Q small ==> f small

Then h = f/Q never gets too big

Variance of each sample is lower ==> need fewer
samples

A good Q makes a good IS

Importance sampling, part II

Suppose

f(x) = R(x)g(x)�
f(x)dx =

�
R(x)g(x)dx

= ER[g(x)]

Importance sampling, part II

Use importance sampling w/ proposal Q(X):

‣ Pick N samples xi from Q(X)

‣ Average wi g(xi), where wi = R(xi)/Q(xi) is
importance weight

EQ(Wg(X)) =
�

Q(x)
R(x)
Q(x)

g(x)

=
�

R(x)g(x)dx

=
�

f(x)dx

Parallel IS

Now suppose R(x) is unnormalized (e.g.,
represented by factor graph)—know only Z R(x)

Pick N samples xi from proposal Q(X)

If we knew wi = R(xi)/Q(xi), could do IS

Instead, set

ŵi = ZR(xi)/Q(xi)

Parallel IS

So, is an unbiased estimate of Zw̄ =
1
N

�

i

ŵi

E(Ŵ) =
�

Q(x)
ZR(x)
Q(x)

dx

=
�

ZR(x)dx

= Z

Parallel IS

So, is an estimate of wi, computed without
knowing Z

Final estimate:

ŵi/w̄

�
f(x)dx ≈ 1

n

�
i

ŵi
w̄ g(xi)

Parallel IS is biased

0 1 2 30

0.5

1

1.5

2

2.5

3

mean(weights)

1
/ m

ea
n(

w
ei

gh
ts

)

E(mean(weights))

E(W̄) = Z, but E(1/W̄) �= 1/Z in general

2 1 0 1 22

1

0

1

2

Q : (X, Y) ∼ N(1, 1) θ ∼ U(−π,π)
f(x, y, θ) = Q(x, y, θ)P (o = 0.8 | x, y, θ)/Z

2 1 0 1 22

1

0

1

2

Posterior E(X, Y, θ) = (0.496, 0.350, 0.084)

MCMC

Integration problem

Recall: wanted

And therefore, wanted good importance
distribution Q(x) (close to R)

�
f(x)dx =

�
R(x)g(x)dx

Back to high dimensions

Picking a good importance distribution is hard
in high-D

Major contributions to integral can be hidden
in small areas

‣ recall, want (R big ==> Q big)

Would like to search for areas of high R(x)

But searching could bias our estimates

Markov-Chain Monte Carlo

Design a randomized search procedure M over
values of x, which tends to increase R(x) if it is small

Run M for a while, take resulting x as a sample

Importance distribution Q(x)?

Markov-Chain Monte Carlo

Design a randomized search procedure M over
values of x, which tends to increase R(x) if it is small

Run M for a while, take resulting x as a sample

Importance distribution Q(x)?

‣ Q = stationary distribution of M…

Stationary distribution

Run HMM or DBN
for a long time;
stop at a random
point

Do this again and
again

Resulting samples
are from stationary
distribution

Designing a search chain

Would like Q(x) = R(x)

‣ makes importance weight = 1

Turns out we can get this exactly, using
Metropolis-Hastings

�
f(x)dx =

�
R(x)g(x)dx

Metropolis-Hastings

Way of designing chain w/ Q(x) = R(x)

Basic strategy: start from arbitrary x

Repeatedly tweak x to get x’

If R(x’) ! R(x), move to x’

If R(x’) << R(x), stay at x

In intermediate cases, randomize

Proposal distribution

Left open: what does “tweak” mean?

Parameter of MH: Q(x’ | x)

‣ one-step proposal distribution

Good proposals explore quickly, but remain in
regions of high R(x)

Optimal proposal?

MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’

Repeat for T steps; sample is x1, …, xT (will
usually contain duplicates)

R(x�)
R(x)

Q(x� | x)
Q(x | x�)

MH algorithm

Sample x’ ~ Q(x’ | x)

Compute p =

With probability min(1, p), set x := x’

Repeat for T steps; sample is x1, …, xT (will
usually contain duplicates)

note: we don’t need
to know Z

R(x�)
R(x)

Q(x� | x)
Q(x | x�)

MH example

1 0.5 0 0.5 11

0.5

0

0.5

1

Acceptance rate

Moving to new x’ is accepting

Want acceptance rate (avg p) to be large, so
we don’t get big runs of the same x

Want Q(x’ | x) to move long distances (to
explore quickly)

Tension between Q and P(accept):

p =
R(x�)
R(x)

Q(x� | x)
Q(x | x�)

Mixing rate, mixing time

If we pick a good proposal, we will move
rapidly around domain of R(x)

After a short time, won’t be able to tell where
we started—we have reached stationary dist’n

This is short mixing time = # steps until we
can’t tell which starting point we used

Mixing rate = 1 / (mixing time)

MH estimate

Once we have our samples x1, x2, …

Optional: discard initial “burn-in” range

‣ allows time to reach stationary dist’n

Estimated integral: 1
N

N�

i=1

g(xi)

In example

g(x) = x2

True E(g(X)) = 0.28…

Proposal:

Acceptance rate 55–60%

After 1000 samples, minus burn-in of 100:

final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716

Q(x� | x) = N(x� | x, 0.252I)

Gibbs sampler

Special case of MH

Divide X into blocks of r.v.s B(1), B(2), …

Proposal Q:

‣ pick a block i uniformly (or round robin, or
any other schedule)

‣ sample XB(i) ~ P(XB(i) | X¬B(i))

Gibbs example

0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

Gibbs example

1.5 1 0.5 0 0.5 1 1.5

1

0.5

0

0.5

1

Why is Gibbs useful?

For Gibbs, p =
P (x�

i, x
�
¬i)

P (xi, x¬i)
P (xi | x�

¬i)
P (x�

i | x¬i)

Gibbs derivation

P (x�
i, x

�
¬i)

P (xi, x¬i)
P (xi | x�

¬i)
P (x�

i | x¬i)

=
P (x�

i, x¬i)
P (xi, x¬i)

P (xi | x¬i)
P (x�

i | x¬i)

=
P (x�

i, x¬i)
P (xi, x¬i)

P (xi, x¬i)/P (x¬i)
P (x�

i, x¬i)/P (x¬i)
= 1

Gibbs in practice

Proof of p=1 means Gibbs is often easy to
implement

Often works well

‣ if we choose good blocks (but there may be
no good blocking!)

Fancier version: adaptive blocks, based on
current x

Gibbs failure example

6 4 2 0 2 4 6
5

4

3

2

1

0

1

2

3

4

5

Sequential sampling

In an HMM or DBN, to sample P(XT), start from
X1 and sample forward step by step

‣ Xt+1 ~ P(Xt+1 | Xt)

P(X1:T) = P(X1) P(X2 | X1) P(X3 | X2) …

Particle filter

Can sample Xt+1 ~ P(Xt+1 | Xt) using any
algorithm from above

If we use parallel importance sampling to get
N samples at once from each P(Xt), we get a
particle filter

‣ also need one more trick: resampling

Write xt,i (i = 1…N) for sample at time t

Particle filter

Want one sample from each of P(Xt+1 | xt,i)

Have only Z P(Xt+1 | xt,i)

For each i, pick xt+1,i from proposal Q(x)

Compute unnormalized importance weight

ŵi = ZP (xt+1,i | xt,i)/Q(xt+1,i)

Particle filter

Normalize weights:

Now, (wi, xt+1,i) is an approximate weighted
sample from P(Xt+1)

What will happen if we do this for T=1, 2, … ?

w̄ =
1
N

�

i

ŵi wi = ŵi/w̄

Resampling

To get an unweighted sample, resample

Sample N times (with replacement) from xt+1,i
with probabilities wi/N

‣ alternately: deterministically take floor(wi)
copies of xt+1,i and sample only from
fractional part [wi – floor(wi)]

Each xt+1,i appears wi times on average, so
we’re still a sample from P(Xt+1)

Particle filter example

Learning

Learning

Basic learning problem: given some
experience, find a new or improved model

Experience: a sample x1, …, xN

Model: want to predict xN+1, …

Example

Experience = range sensor readings & odometry
from robot

Model = map of the world

Example

The “botanist learning problem”

‣ Experience = physical measurements of
surveyed specimens & expert judgements of
their true species

‣ Model = factor graph relating species to
measurements

Sample data
sepal
length

sepal
width

petal
length

petal
width species

5.1 3.5 1.4 0.2 Iris setosa

5.6 3.0 4.5 1.5 Iris
versicolor

4.9 3.0 1.4 0.2 Iris setosa

6.4 2.8 5.6 2.1 Iris
virginica

5.8 2.7 4.1 1.0 Iris
versicolor

Factor graph

One of many possible factor graphs

Values of Φs not shown, but part of model

ϕ0

ϕ4ϕ3
ϕ2

ϕ1

Factor graph
ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1

…

X1

X2

X3

X4

Factor graph
ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1 ϕ0

ϕ4ϕ3
ϕ2

ϕ1

…
Φ1 params…

X1

X2

X3

X4

In general

For our purposes, a model M is exactly a
distribution P(X | M) over possible samples

When is M better than M’? When P(X | M)
is more accurate than P(X | M’).

Bayes rule encodes this: from prior P(M) and
evidence X, compute posterior P(M | X)

‣ P(M | X) = P(X | M) P(M) / P(X)

‣ better predictions (higher P(X | M)) yield
higher posterior

Conditional model

Split variables into (X, Y)

Suppose we always observe X

Two ways P(X, Y) and P’(X, Y) can differ:

‣ P(X) " P’(X), and/or

‣ P(Y | X) " P’(Y | X)

First way doesn’t matter for decisions

Conditional model: only specifies P(Y | X, M)

Conditional model example

Experience = samples of (X, Y)

X = features of object

Y = whether object is a “framling”

Model = rule for deciding whether a new
object is a framling

Sample data & possible model

tall pointy blue framling

T T F T

T F F T

F T F F

T T T F

T F F T

H = tall ∧ ¬blue

Hypothesis space

Hypothesis space H = set of models we are
willing to consider

‣ for philosophical or computational reasons

E.g., all factor graphs of a given structure

Or, all conjunctions of up to two literals

Prior is a distribution over H

A simple learning algorithm

Conditional learning: samples (xi, yi)

Let H be a set of propositional formulae

‣ H = { H1, H2, … }

H is consistent if H(xi) = yi for all i

Version space V = { all consistent H } ⊆ H

Version space algorithm: predict y = majority
vote of H(x) over all H ∈ V

Framlings

H = { conjunctions of up to 2 literals } = { T, F, tall,
pointy, blue, ¬tall, ¬pointy, ¬blue, tall ∧ pointy, tall ∧
blue, pointy ∧ blue, ¬tall ∧ pointy, … }

tall pointy blue framling

T T F T

T F F T

F T F F

T T T F

T F F T

Framlings

tall pointy blue framling

T T F T

T F F T

F T F F

T T T F

T F F T

Analysis

Mistake = make wrong prediction

If some H ∈ H is always right, eventually we’ll
eliminate all competitors, and make no more
mistakes

If no H ∈ H is always right, eventually V will
become empty

‣ e.g., if label noise or feature noise

Analysis

Suppose | H | = N

How many mistakes could we make?

Analysis

Suppose | H | = N

How many mistakes could we make?

Since we predict w/ majority of V, after any
mistake, we eliminate half (or more) of V

Can’t do that more than log2(N) times

Discussion

In example, N = 20, log2(N) = 4.32

Made only 2 mistakes

Mistake bound: limits wrong decisions, as
desired

But, required strong assumptions (no noise,
true H contained in H)

Could be very slow!

