I 5-780: Grad Al Lecture 20: Monte Carlo methods, Bayesian learning

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Reminder: midterm March 29
 - Tuomas's review session tomorrow, mine
 yesterday
 1-2PM
 GHC
 GHC
- Reminder: project milestone reports due March 31

Review: factor graphs

A DE TO THE A DE TO THE TO THE

- Undirected, bipartite graph
 - one set of nodes represents variables
 - other set represents factors in probability distribution—tables of nonnegative numbers
 - need to compute normalizer in order to do anything useful
- Can convert back and forth to Bayes nets
- Hard v. soft constraints

Review: factor graphs

- Graphical test for independence
 - different results from Bayes net, even if we are representing the same distribution
- Inference by dynamic programming
 - instantiate evidence, eliminate nuisance nodes, normalize, answer query
 - elimination order matters
 - treewidth
- Relation to logic

Review: HMMs, DBNs

- Inference over time
 - same graphical template repeated once for each time step—conceptually infinite
- Inference: forwardbackward algorithm (special case of belief propagation)

Review: numerical integration

and the second of the second o

- Integrate a difficult function over a highdimensional volume
 - narrow, tall peaks contribute most of the integral—difficult search problem
- Central problem for approximate inference
 - e.g., computing normalizing constant in a factor graph

Uniform sampling

The second and the second of t

Importance sampling

Variance

- How does this help us control variance?
 - Suppose f big ==> Q big
 - And Q small ==> f small
 - Then h = f/Q never gets too big
 - Variance of each sample is lower ==> need fewer samples
 - A good Q makes a good IS

Importance sampling, part II

A CONTRACT OF THE ACTION OF TH

• Suppose

$$f(x) = R(x)g(x)$$
$$\int f(x)dx = \int R(x)g(x)dx$$
$$= \mathbb{E}_R[g(x)]$$

Importance sampling, part II

And the state of the second of

- Use importance sampling w/ proposal Q(X):
 - Pick N samples x_i from Q(X)
 - Average w_i g(x_i), where w_i = R(x_i)/Q(x_i) is importance weight

$$\mathbb{E}_Q(Wg(X)) = \int Q(x) \frac{R(x)}{Q(x)} g(x)$$
$$= \int R(x) g(x) dx$$
$$= \int f(x) dx$$

Parallel IS

- Now suppose R(x) is unnormalized (e.g., represented by factor graph)—know only Z R(x)
- Pick N samples x_i from proposal Q(X)
- If we knew $w_i = R(x_i)/Q(x_i)$, could do IS
- Instead, set

$$\hat{w}_i = ZR(x_i)/Q(x_i)$$

Parallel IS

 $\mathbb{E}(\hat{W}) = \int Q(x) \frac{ZR(x)}{Q(x)} dx$ $= \int ZR(x) dx$ = Z

 $\circ\,$ So, $\bar{w}=\frac{1}{N}\sum_{i}\hat{w}_{i}$ is an unbiased estimate of Z

Parallel IS

 $\,\circ\,$ So, \hat{w}_i/\bar{w} is an estimate of w_i, computed without knowing Z

• Final estimate:

$$\int f(x)dx \approx \frac{1}{n} \sum_{i} \frac{\hat{w}_i}{\bar{w}} g(x_i)$$

Parallel IS is biased

The second and the second of t

 $Q: (X, Y) \sim N(1, 1) \qquad \theta \sim U(-\pi, \pi)$ $f(x, y, \theta) = Q(x, y, \theta) P(o = 0.8 \mid x, y, \theta) / Z$

Posterior $E(X, Y, \theta) = (0.496, 0.350, 0.084)$

MCMC

Integration problem

A State of the second and the second of the

Recall: wanted

$$\int f(x)dx = \int R(x)g(x)dx$$

 And therefore, wanted good importance distribution Q(x) (close to R)

Back to high dimensions

HARTER AND THE AND THE

- Picking a good importance distribution is hard in high-D
- Major contributions to integral can be hidden in small areas
 - recall, want (R big ==> Q big)
- Would like to search for areas of high R(x)
- But searching could bias our estimates

Markov-Chain Monte Carlo

Contraction of the second of the

- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?

Markov-Chain Monte Carlo

Will a state of the second of

- Design a randomized search procedure M over values of x, which tends to increase R(x) if it is small
- Run M for a while, take resulting x as a sample
- Importance distribution Q(x)?
 - Q = stationary distribution of M...

Stationary distribution

Hard a line was a for an a start of the second of the seco

- Run HMM or DBN for a long time; stop at a random point
- Do this again and again
- Resulting samples are from stationary distribution

Designing a search chain

Harris a long and the second of the second o

$$\int f(x)dx = \int R(x)g(x)dx$$

- Would like Q(x) = R(x)
 - makes importance weight = 1
- Turns out we can get this exactly, using
 Metropolis-Hastings

Metropolis-Hastings

Contraction of the second of t

- Way of designing chain w/ Q(x) = R(x)
- Basic strategy: start from arbitrary x
- Repeatedly tweak x to get x'
- If $R(x') \ge R(x)$, move to x'
- If $R(x') \leq R(x)$, stay at x
- In intermediate cases, randomize

Proposal distribution

- Left open: what does "tweak" mean?
- Parameter of MH: Q(x' | x)
 - one-step proposal distribution
- Good proposals explore quickly, but remain in regions of high R(x)
- Optimal proposal?

MH algorithm

And the second for any of the second of the

• Sample x' ~
$$Q(x' \mid x)$$

• Compute p = $\frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$

- With probability min(I, p), set x := x'
- Repeat for T steps; sample is x₁, ..., x_T (will usually contain duplicates)

MH algorithm

Hard a fair was a fair was a fair of the second of the sec

note: we don't need to know Z

- Sample x' ~ Q(x' | x) • Compute p = $\frac{R(x')}{R(x)} \frac{Q(x' | x)}{Q(x | x')}$
- With probability min(I, p), set x := x'
- Repeat for T steps; sample is x₁, ..., x_T (will usually contain duplicates)

MH example

Acceptance rate

A CONTRACT OF THE ASSANCE OF THE ASS

- Moving to new x' is accepting
- Want acceptance rate (avg p) to be large, so we don't get big runs of the same x
- Want Q(x' | x) to move long distances (to explore quickly)
- Tension between Q and P(accept):

$$\mathbf{p} = \frac{R(x')}{R(x)} \frac{Q(x' \mid x)}{Q(x \mid x')}$$

Mixing rate, mixing time

Walk of the second of the seco

- If we pick a good proposal, we will move rapidly around domain of R(x)
- After a short time, won't be able to tell where we started—we have reached stationary dist'n
- This is short mixing time = # steps until we can't tell which starting point we used
- **Mixing rate** = I / (mixing time)

MH estimate

- Once we have our samples x_1, x_2, \ldots
- Optional: discard initial "burn-in" range
 - allows time to reach stationary dist'n
- Estimated integral:

$$\frac{1}{N}\sum_{i=1}^{N}g(x_i)$$

In example

$$\circ g(\mathbf{x}) = \mathbf{x}^2$$

- True E(g(X)) = 0.28...
- Proposal: $Q(x' \mid x) = N(x' \mid x, 0.25^2 I)$
- Acceptance rate 55–60%
- After 1000 samples, minus burn-in of 100:

final estimate 0.282361
final estimate 0.271167
final estimate 0.322270
final estimate 0.306541
final estimate 0.308716

Gibbs sampler

A CONTRACT OF THE AND THE AND

- Special case of MH
- Divide **X** into blocks of r.v.s B(1), B(2), ...
- Proposal Q:
 - pick a block i uniformly (or round robin, or any other schedule)
 - ► sample $\mathbf{X}_{B(i)} \sim P(\mathbf{X}_{B(i)} \mid \mathbf{X}_{\neg B(i)})$

Gibbs example

The second second and the second second

Gibbs example

The second second and the second second

Why is Gibbs useful?

And the second of the second o

$$\circ \text{ For Gibbs, p} = \frac{P(x'_i, x'_{\neg i})}{P(x_i, x_{\neg i})} \frac{P(x_i \mid x'_{\neg i})}{P(x'_i \mid x_{\neg i})}$$

Gibbs derivation

Hard The Allow A Tory was a superior of the second of the

$$= \frac{P(x'_{i}, x'_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x'_{\neg i})}{P(x'_{i} \mid x_{\neg i})}$$

$$= \frac{P(x'_{i}, x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i} \mid x_{\neg i})}{P(x'_{i} \mid x_{\neg i})}$$

$$= \frac{P(x'_{i}, x_{\neg i})}{P(x_{i}, x_{\neg i})} \frac{P(x_{i}, x_{\neg i})/P(x_{\neg i})}{P(x'_{i}, x_{\neg i})/P(x_{\neg i})}$$

$$= 1$$

Gibbs in practice

- Proof of p=1 means Gibbs is often easy to implement
- Often works well
 - if we choose good blocks (but there may be no good blocking!)
- Fancier version: adaptive blocks, based on current **X**

Gibbs failure example

The second second and the second second

Sequential sampling

Hard and the second of the sec

In an HMM or DBN, to sample P(X_T), start from
 X_I and sample forward step by step

$$\blacktriangleright \mathbf{X}_{t+1} \sim \mathsf{P}(\mathbf{X}_{t+1} \mid \mathbf{X}_t)$$

 $\circ P(\mathbf{X}_{1:T}) = P(\mathbf{X}_1) P(\mathbf{X}_2 \mid \mathbf{X}_1) P(\mathbf{X}_3 \mid \mathbf{X}_2) \dots$

Particle filter

A CONTRACT OF THE ASSAULT ON THE STORE THE STORE THE STORE THE STORE STO

- Can sample $X_{t+1} \sim P(X_{t+1} | X_t)$ using any algorithm from above
- If we use parallel importance sampling to get N samples at once from each P(X_t), we get a *particle filter*
 - also need one more trick: resampling
- Write $\mathbf{x}_{t,i}$ (i = 1...N) for sample at time t

Particle filter

• Want one sample from each of $P(\mathbf{X}_{t+1} | \mathbf{x}_{t,i})$

- Have only $Z P(\mathbf{X}_{t+1} | \mathbf{x}_{t,i})$
- For each i, pick $\mathbf{x}_{t+1,i}$ from proposal Q(x)
- Compute unnormalized importance weight

$$\hat{w}_i = ZP(\mathbf{x}_{t+1,i} \mid \mathbf{x}_{t,i})/Q(\mathbf{x}_{t+1,i})$$

Particle filter

• Normalize weights:

$$\bar{w} = \frac{1}{N} \sum_{i} \hat{w}_{i} \qquad w_{i} = \hat{w}_{i} / \bar{w}$$

- Now, (w_i, **x**_{t+1,i}) is an approximate weighted sample from P(**X**_{t+1})
- What will happen if we do this for T=1, 2, ...?

- To get an unweighted sample, **resample**
- Sample N times (with replacement) from $\mathbf{x}_{t+1,i}$ with probabilities w_i/N
 - alternately: deterministically take floor(w_i) copies of x_{t+1,i} and sample only from fractional part [w_i floor(w_i)]
- Each $\mathbf{x}_{t+1,i}$ appears w_i times on average, so we're still a sample from $P(\mathbf{X}_{t+1})$

Particle filter example

A CONTRACT OF THE ACTION OF TH

Walk and the second of the sec

Learning

 Basic learning problem: given some experience, find a new or improved model

- Experience: a sample x_1, \ldots, x_N
- Model: want to predict x_{N+1}, \ldots

 Experience = range sensor readings & odometry from robot

• Model = map of the world

- The "botanist learning problem"
 - Experience = physical measurements of surveyed specimens & expert judgements of their true species
 - Model = factor graph relating species to measurements

Sample data

sepal length	sepal width	petal length	petal width	species
5.I	3.5	I.4	0.2	Iris setosa
5.6	3.0	4.5	1.5	lris versicolor
4.9	3.0	1.4	0.2	Iris setosa
6.4	2.8	5.6	2.I	lris virginica
5.8	2.7	4 . I	1.0	lris versicolor

A CONTRACT OF THE AND THE AND

- One of many possible factor graphs
- Values of Φs not shown, but part of model

Factor graph

A CONTRACT OF THE ASSAULT FROM THE ASSAULT

Factor graph

A CONTRACT OF THE ASSAULT FROM THE STORE THE S

In general

- For our purposes, a model M is exactly a distribution P(X | M) over possible samples
- When is M better than M? When P(X | M) is more accurate than P(X | M').
- Bayes rule encodes this: from *prior* P(M) and evidence X, compute *posterior* P(M | X)
 - $\blacktriangleright P(M \mid \mathbf{X}) = P(\mathbf{X} \mid M) P(M) / P(\mathbf{X})$
 - better predictions (higher P(X | M)) yield higher posterior

Conditional model

A CONTRACT OF THE ASSANCE THE

- Split variables into (X, Y)
- $^{\circ}\,$ Suppose we always observe \boldsymbol{X}
- Two ways $P(\mathbf{X}, \mathbf{Y})$ and $P'(\mathbf{X}, \mathbf{Y})$ can differ:
 - $P(\mathbf{X}) \neq P'(\mathbf{X})$, and/or
 - $\bullet P(\mathbf{Y} \mid \mathbf{X}) \neq P'(\mathbf{Y} \mid \mathbf{X})$
- First way doesn't matter for decisions
- Conditional model: only specifies P(Y | X, M)

Conditional model example

A CONTRACT OF THE AND THE AND

- Experience = samples of (X, Y)
- **X** = features of object
- **Y** = whether object is a "framling"
- Model = rule for deciding whether a new object is a framling

Sample data & possible model

Hard the state of the state of

tall	pointy	blue	framling
Т	Т	F	Т
Т	F	F	Т
F	Т	F	F
Т	Т	Т	F
Т	F	F	Т

$$H = tall \land \neg blue$$

Hypothesis space

- Hypothesis space \mathcal{H} = set of models we are willing to consider
 - for philosophical or computational reasons
- E.g., all factor graphs of a given structure
- Or, all conjunctions of up to two literals
- $\circ~{\rm Prior}$ is a distribution over ${\mathcal H}$

A simple learning algorithm

Contraction of The Article of the Ar

- Conditional learning: samples (**x**_i, y_i)
- $\circ~$ Let ${\mathscr H}$ be a set of propositional formulae

= Bayes Rule

 $\bullet \mathcal{H} = \{ H_1, H_2, \dots \}$

- *H* is **consistent** if $H(\mathbf{x}_i) = y_i$ for all *i*
- **Version space** $V = \{ all consistent H \} \subseteq \mathcal{H}$
- Version space algorithm: predict y = majority vote of $H(\mathbf{x})$ over all $H \in V$

Framlings

A State of the sta

tall	pointy	blue	framling
Т	Т	F	Т
Т	F	F	Т
F	Т	F	F
Т	Т	Т	F
Т	F	F	Т

\$\mathcal{H}\$ = { conjunctions of up to 2 literals } = { T, F, tall, pointy, blue, ¬tall, ¬pointy, ¬blue, tall ^ pointy, tall ^ blue, pointy ^ blue, ¬tall ^ pointy, ... }

tall	pointy	blue	framling
Т	Т	F	Т
Т	F	F	Т
F	Т	F	F
Т	Т	Т	F
Т	F	F	Т

Framlings

and the second to the second t

X, : T, tall, pointy, -blue, tall appinty tall 1 7 blue X2: T'tall' - blue, tall ~ Jlue $\top \rightarrow \times$ xji tall, talln - Slæ xy: fall ~ -, d/re

Analysis

- **Mistake** = make wrong prediction
- If some H ∈ *H* is always right, eventually we'll eliminate all competitors, and make no more mistakes
- ∘ If no $H \in \mathscr{H}$ is always right, eventually V will become empty
 - e.g., if **label noise** or **feature noise**

Analysis

of H contains A consistant

• Suppose $|\mathcal{H}| = N$

• How many mistakes could we make?

Flog N7

A DESCRIPTION OF THE STATE OF T

- Suppose $|\mathcal{H}| = N$
- How many mistakes could we make?
- Since we predict w/ *majority* of V, after any mistake, we eliminate half (or more) of V
- Can't do that more than $log_2(N)$ times

Discussion

• In example, N = 20, $log_2(N) = 4.32$

- Made only 2 mistakes
- Mistake bound: limits wrong decisions, as desired
- But, required strong assumptions (no noise, true H contained in \mathcal{H})
- Could be very slow!