
15-780: Grad AI
Lecture 18: Probability,

planning, graphical models

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Admin

Reminder: project milestone reports due 2
weeks from today

Review: probability

Independence, correlation

Expectation, conditional e., linearity of e.,
iterated e., independence & e.

Experiment, prior, posterior

Estimators (bias, variance, asymptotic behavior)

Bayes Rule

Model selection

Review: probability & AI

PSTRIPS

QBF and “QBF+”

PSTRIPS to QBF+ translation

Q1X1 Q2X2 Q3X3 . . . F (X1, X2, X3, . . .)
each quantifier is max, min, or mean

Example: got cake?

¬have1 ∧ gatebake1 ∧ bake2 ⇔ Cbake2

have1 ∧ gateeat1 ∧ eat2 ⇔ Ceat2

have1 ∧ eat2 ⇔ Ceat’2

[Cbake2 ⇒ have3] ∧ [Ceat2 ⇒ eaten3] ∧

[Ceat’2 ⇒ ¬have3]

0.8:gatebake1 ∧ 0.9:gateeat1

Example: got cake?

have3 ⇒ [Cbake2 ∨ (¬Ceat’2 ∧ have1)]

¬have3 ⇒ [Ceat’2 ∨ (¬Cbake2 ∧ ¬have1)]

eaten3 ⇒ [Ceat2 ∨ eaten1]

¬eaten3 ⇒ [¬eaten1]

Example: got cake?

¬bake2 ∨ ¬eat2

(pattern from past few slides is repeated for
each action level w/ adjacent state levels)

Example: got cake?

¬have1 ∧ ¬ eaten1

haveT ∧ eatenT

Simple QBF+ example
p(y) = p(z) = 0.5

How can we solve?

Scenario trick

‣ transform to PBI or 0-1 ILP

Dynamic programming

‣ related to algorithms for SAT, #SAT

‣ also to belief propagation in graphical models
(next)

Solving exactly by scenarios

Replicate u to uYZ: u00, u01, u10, u11
Replicate clauses: share x; set y, z by index;
replace u by uYZ; write aYZ for truth value
a00 ⇔ [(¬x ∨ 0) ∧ (¬0 ∨ u00) ∧ (x ∨ ¬0)] ∧

a01 ⇔ [(¬x ∨ 1) ∧ (¬0 ∨ u01) ∧ (x ∨ ¬0)] ∧ ...

add a PBI: a00 + a01 + a10 + a11 ! 4 * threshold

(¬x ∨ z) ∧ (¬y ∨ u) ∧ (x ∨ ¬y)

Solving by sampling scenarios

Sample a subset of the values of y, z (e.g., {11, 01}):

‣ a11 ⇔ [(¬x ∨ 1) ∧ (¬1 ∨ u11) ∧ (x ∨ ¬1)] ∧

a01 ⇔ [(¬x ∨ 1) ∧ (¬0 ∨ u01) ∧ (x ∨ ¬0)]

Adjust PBI: a11 + a10 ! 2 * threshold

(¬x ∨ z) ∧ (¬y ∨ u) ∧ (x ∨ ¬y)

Combining PSTRIPS w/ scenarios

Generate M samples of Nature (gatebake1,
gateeat1, gatebake3, gateeat3, gatebake5, …)

Replicate state-level vars M times

One copy of action vars bake2, eat2, bake4, …

Replicate clauses M times (share actions)

Replace goal constraints w/ constraint that all
goals must be satisfied in at least y% of
scenarios (a PBI)

Give to MiniSAT+ (fixed y) or CPLEX (max y)

Dynamic programming

Consider the simpler problem (all p=0.5):

This is essentially an instance of #SAT

Structure:

Dynamic programming for
variable elimination

Variable elimination

In general
Pick a variable ordering

Repeat: say next variable is z

‣ move sum over z inward as far as it goes

‣ make a new table by multiplying all old tables
containing z, then summing out z

‣ arguments of new table are “neighbors” of z

Cost: O(size of biggest table * # of sums)

‣ sadly: biggest table can be exponentially large

‣ but often not: low-treewidth formulas

Connections

Scenarios are related to your current HW

DP is related to belief propagation in graphical
models (next)

Can generalize DP for multiple quantifier types
(not just sum or expectation)

‣ handle PSTRIPS

Graphical
models

Why do we need
graphical models?

So far, only way we’ve seen to write down a
distribution is as a big table

Gets unwieldy fast!

‣ E.g., 10 RVs, each w/ 10 settings

‣ Table size = 1010

Graphical model: way to write distribution
compactly using diagrams & numbers

Typical GMs are huge (1010 is a small one), but
we’ll use tiny ones for examples

Bayes nets

Best-known type of graphical model

Two parts: DAG and CPTs

Rusty robot: the DAG

Rusty robot: the CPTs

For each RV (say X),
there is one CPT
specifying P(X | pa(X))

P(Metal) = 0.9
P(Rains) = 0.7
P(Outside) = 0.2
P(Wet | Rains, Outside)
" TT: 0.9" TF: 0.1
" FT: 0.1" FF: 0.1
P(Rusty | Metal, Wet) =
" TT: 0.8" TF: 0.1
" FT: 0"" FF: 0

Interpreting it

Benefits

11 v. 31 numbers

Fewer parameters to learn

Efficient inference = computation of
marginals, conditionals ⇒ posteriors

Comparison to prop logic +
random causes

Can simulate any Bayes net w/ propositional
logic + random causes—one cause per CPT
entry

E.g.:

Inference Qs

Is Z > 0?

What is P(E)?

What is P(E1 | E2)?

Sample a random configuration according to
P(.) or P(. | E)

Hard part: taking sums over r.v.s (e.g., sum
over all values to get normalizer)

Inference example

P(M, Ra, O, W, Ru) =

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Find marginal of M, O

Independence

Showed M ⊥ O

Any other independences?

Didn’t use CPTs: some independences depend
only on graph structure

May also be “accidental” independences

‣ i.e., depend on values in CPTs

Conditional independence

How about O, Ru? O Ru

Suppose we know we’re not wet

P(M, Ra, O, W, Ru) =

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Condition on W=F, find marginal of O, Ru

Conditional independence

This is generally true

‣ conditioning can make or break independences

‣ many conditional independences can be derived
from graph structure alone

‣ accidental ones often considered less interesting

We derived them by looking for factorizations

‣ turns out there is a purely graphical test

‣ one of the key contributions of Bayes nets

Blocking

Shaded = observed (by convention)

Example: explaining away

Intuitively:

Markov blanket

Markov blanket of
C = minimal set of
obs’ns to make C
independent of rest
of graph

Learning Bayes nets
(see 10-708)

M Ra O W R
uT F T T F

T T T T T
F T T F F
T F F F T
F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =

Laplace smoothing

M Ra O W R
uT F T T F

T T T T T
F T T F F
T F F F T
F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =

Advantages of Laplace

No division by zero

No extreme probabilities

‣ No near-extreme probabilities unless lots of
evidence

Limitations of counting and
Laplace smoothing

Work only when all variables are observed in
all examples

If there are hidden or latent variables, more
complicated algorithm—see 10-708

‣ or just use a toolbox!

