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Admin

Reminder: project milestone reports due 2 
weeks from today



Review: probability

Independence, correlation

Expectation, conditional e., linearity of e., 
iterated e., independence & e.

Experiment, prior, posterior

Estimators (bias, variance, asymptotic behavior)

Bayes Rule

Model selection



Review: probability & AI

PSTRIPS

QBF and “QBF+”

PSTRIPS to QBF+ translation

Q1X1 Q2X2 Q3X3 . . . F (X1, X2, X3, . . .)
each quantifier is max, min, or mean



Example: got cake?

¬have1 ∧ gatebake1 ∧ bake2 ⇔ Cbake2

have1 ∧ gateeat1 ∧ eat2 ⇔ Ceat2

have1 ∧ eat2 ⇔ Ceat’2

[Cbake2 ⇒ have3] ∧ [Ceat2 ⇒ eaten3] ∧                  

[Ceat’2 ⇒ ¬have3]

0.8:gatebake1 ∧ 0.9:gateeat1



Example: got cake?

have3 ⇒ [Cbake2 ∨ (¬Ceat’2 ∧ have1)]

¬have3 ⇒ [Ceat’2 ∨ (¬Cbake2 ∧ ¬have1)]

eaten3 ⇒ [Ceat2 ∨ eaten1]

¬eaten3 ⇒ [¬eaten1]



Example: got cake?

¬bake2 ∨ ¬eat2

(pattern from past few slides is repeated for 
each action level w/ adjacent state levels)



Example: got cake?

¬have1 ∧ ¬ eaten1

haveT ∧ eatenT



Simple QBF+ example
p(y) = p(z) = 0.5



How can we solve?

Scenario trick

‣ transform to PBI or 0-1 ILP

Dynamic programming

‣ related to algorithms for SAT, #SAT

‣ also to belief propagation in graphical models 
(next)



Solving exactly by scenarios

Replicate u to uYZ: u00, u01, u10, u11
Replicate clauses: share x; set y, z by index; 
replace u by uYZ; write aYZ for truth value
a00 ⇔ [(¬x ∨ 0) ∧ (¬0 ∨ u00) ∧ (x ∨ ¬0)] ∧   

a01 ⇔ [(¬x ∨ 1) ∧ (¬0 ∨ u01) ∧ (x ∨ ¬0)] ∧ ...

add a PBI:  a00 + a01 + a10 + a11 ! 4 * threshold

(¬x ∨ z) ∧ (¬y ∨ u) ∧ (x ∨ ¬y)



Solving by sampling scenarios

Sample a subset of the values of y, z (e.g., {11, 01}):

‣ a11 ⇔ [(¬x ∨ 1) ∧ (¬1 ∨ u11) ∧ (x ∨ ¬1)] ∧    

a01 ⇔ [(¬x ∨ 1) ∧ (¬0 ∨ u01) ∧ (x ∨ ¬0)]

Adjust PBI:  a11 + a10 ! 2 * threshold

(¬x ∨ z) ∧ (¬y ∨ u) ∧ (x ∨ ¬y)



Combining PSTRIPS w/ scenarios

Generate M samples of Nature (gatebake1, 
gateeat1, gatebake3, gateeat3, gatebake5, …)

Replicate state-level vars M times

One copy of action vars bake2, eat2, bake4, …

Replicate clauses M times (share actions)

Replace goal constraints w/ constraint that all 
goals must be satisfied in at least y% of 
scenarios (a PBI)

Give to MiniSAT+ (fixed y) or CPLEX (max y)



Dynamic programming

Consider the simpler problem (all p=0.5):

 

This is essentially an instance of #SAT

Structure:



Dynamic programming for 
variable elimination



Variable elimination



In general
Pick a variable ordering

Repeat: say next variable is z

‣ move sum over z inward as far as it goes

‣ make a new table by multiplying all old tables 
containing z, then summing out z

‣ arguments of new table are “neighbors” of z

Cost: O(size of biggest table * # of sums)

‣ sadly: biggest table can be exponentially large

‣ but often not: low-treewidth formulas



Connections

Scenarios are related to your current HW

DP is related to belief propagation in graphical 
models (next)

Can generalize DP for multiple quantifier types 
(not just sum or expectation)

‣ handle PSTRIPS



Graphical 
models



Why do we need 
graphical models?

So far, only way we’ve seen to write down a 
distribution is as a big table

Gets unwieldy fast!

‣ E.g., 10 RVs, each w/ 10 settings

‣ Table size = 1010

Graphical model: way to write distribution 
compactly using diagrams & numbers

Typical GMs are huge (1010 is a small one), but 
we’ll use tiny ones for examples



Bayes nets

Best-known type of graphical model

Two parts: DAG and CPTs



Rusty robot: the DAG



Rusty robot: the CPTs

For each RV (say X), 
there is one CPT 
specifying P(X | pa(X))

P(Metal) = 0.9
P(Rains) = 0.7
P(Outside) = 0.2
P(Wet | Rains, Outside)
" TT: 0.9" TF: 0.1
" FT: 0.1" FF: 0.1
P(Rusty | Metal, Wet) =
" TT: 0.8" TF: 0.1
" FT: 0"" FF: 0



Interpreting it



Benefits

11 v. 31 numbers

Fewer parameters to learn

Efficient inference = computation of 
marginals, conditionals ⇒ posteriors



Comparison to prop logic + 
random causes

Can simulate any Bayes net w/ propositional 
logic + random causes—one cause per CPT 
entry

E.g.:



Inference Qs

Is Z > 0?

What is P(E)?

What is P(E1 | E2)?

Sample a random configuration according to   
P(.) or P(. | E)

Hard part: taking sums over r.v.s (e.g., sum 
over all values to get normalizer)



Inference example

P(M, Ra, O, W, Ru) = 

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Find marginal of M, O



Independence

Showed M ⊥ O

Any other independences?

Didn’t use CPTs: some independences depend 
only on graph structure

May also be “accidental” independences

‣ i.e., depend on values in CPTs



Conditional independence

How about O, Ru?  O   Ru

Suppose we know we’re not wet

P(M, Ra, O, W, Ru) = 

P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

Condition on W=F, find marginal of O, Ru



Conditional independence

This is generally true

‣ conditioning can make or break independences

‣ many conditional independences can be derived 
from graph structure alone

‣ accidental ones often considered less interesting

We derived them by looking for factorizations

‣ turns out there is a purely graphical test

‣ one of the key contributions of Bayes nets



Blocking

Shaded = observed (by convention)



Example: explaining away

Intuitively:



Markov blanket

Markov blanket of 
C = minimal set of 
obs’ns to make C 
independent of rest 
of graph



Learning Bayes nets
(see 10-708)

M Ra O W R
uT F T T F

T T T T T
F T T F F
T F F F T
F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =



Laplace smoothing

M Ra O W R
uT F T T F

T T T T T
F T T F F
T F F F T
F F T F T

P(Ra) =

P(M) =

P(O) =

P(W | Ra, O) =

P(Ru | M, W) =



Advantages of Laplace

No division by zero

No extreme probabilities 

‣ No near-extreme probabilities unless lots of 
evidence



Limitations of counting and 
Laplace smoothing

Work only when all variables are observed in 
all examples

If there are hidden or latent variables, more 
complicated algorithm—see 10-708

‣ or just use a toolbox!


