I 5-780: Grad Al Lecture I 8: Probability, planning, graphical models

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

 Reminder: project milestone reports due 2 weeks from today

Review: probability

- Independence, correlation
- Expectation, conditional e., linearity of e., iterated e., independence & e.
- Experiment, prior, posterior
- Estimators (bias, variance, asymptotic behavior)
- Bayes Rule
- Model selection

Review: probability & Al

$\mathbb{Q}_1 X_1 \mathbb{Q}_2 X_2 \mathbb{Q}_3 X_3 \ldots F(X_1, X_2, X_3, \ldots)$

each quantifier is max, min, or mean

- PSTRIPS
- QBF and "QBF+"
- PSTRIPS to QBF+ translation

- $\circ \neg$ have₁ \land gatebake₁ \land bake₂ \Leftrightarrow Cbake₂
- have \land gateeat \land eat $_2 \Leftrightarrow Ceat_2$
- have \land eat $_2 \Leftrightarrow$ Ceat' $_2$
- [Cbake₂ ⇒ have₃] ∧ [Ceat₂ ⇒ eaten₃] ∧
 [Ceat'₂ ⇒ ¬have₃]
- $\circ \ 0.8: gatebake_{1} \ \land \ 0.9: gatebak_{1}$

• have₃
$$\Rightarrow$$
 [Cbake₂ \vee (\neg Ceat'₂ \wedge have₁)]

•
$$eaten_3 \Rightarrow [Ceat_2 \lor eaten_1]$$

° ¬eaten₃ \Rightarrow [¬eaten₁]

 $\circ \neg bake_2 \lor \neg eat_2$

 (pattern from past few slides is repeated for each action level w/ adjacent state levels)

A COLORIAN A COLORIANA A

- $\circ \neg have_{1} \land \neg eaten_{1}$

Simple QBF+ example

The state of the s

max E max (XVZ) ~ (JVU) ~ (XVJ) YZ U ×

How can we solve?

- Scenario trick
 - transform to PBI or 0-1 ILP
- Dynamic programming
 - related to algorithms for SAT, #SAT
 - also to belief propagation in graphical models (next)

Solving exactly by scenarios

- Replicate u to uYZ: u00, u01, u10, u11
- Replicate clauses: share x; set y, z by index; replace u by uYZ; write aYZ for truth value
- a00 ⇔ [(¬x ∨ 0) ∧ (¬0 ∨ u00) ∧ (x ∨ ¬0)] ∧

a0I \Leftrightarrow [(¬x \lor I) \land (¬0 \lor u0I) \land (x \lor ¬0)] \land ...

• add a PBI: a00 + a01 + a10 + a11 ≥ 4 * threshold

Solving by sampling scenarios

- Sample a subset of the values of y, z (e.g., {11,01}):
 - ▶ all \Leftrightarrow [(¬x ∨ I) ∧ (¬I ∨ uII) ∧ (x ∨ ¬I)] ∧

a01 \Leftrightarrow [(¬x \lor I) \land (¬0 \lor u0I) \land (x \lor ¬0)]

• Adjust PBI: $all + all \ge 2 *$ threshold

Combining PSTRIPS w/ scenarios

- Generate M samples of Nature (gatebake1, gateeat1, gatebake3, gateeat3, gatebake5, ...)
- Replicate state-level vars M times
- One copy of action vars bake₂, eat₂, bake₄, ...
- Replicate clauses M times (share actions)
- Replace goal constraints w/ constraint that all goals must be satisfied in at least y% of scenarios (a PBI)
- Give to MiniSAT+ (fixed y) or CPLEX (max y)

Dynamic programming

• Consider the simpler problem (all p=0.5):

• This is essentially an instance of #SAT

Dynamic programming for variable elimination

ZZZZZA A(xyz)B(yn)C(zw)D(znv)

Variable elimination

In general

- Pick a variable ordering
- Repeat: say next variable is z
 - move sum over z inward as far as it goes
 - make a new table by multiplying all old tables containing z, then summing out z
 - arguments of new table are "neighbors" of z
- Cost: O(size of biggest table * # of sums)
 - sadly: biggest table can be exponentially large
 - but often not: low-treewidth formulas

Connections

- Scenarios are related to your current HW
- DP is related to belief propagation in graphical models (next)
- Can generalize DP for multiple quantifier types (not just sum or expectation)
 - handle PSTRIPS

Graphical models

Why do we need graphical models?

- So far, only way we've seen to write down a distribution is as a big table
- Gets unwieldy fast!
 - E.g., IO RVs, each w/ IO settings
 - Table size = 10^{10}
- Graphical model: way to write distribution compactly using diagrams & numbers
- Typical GMs are huge (10¹⁰ is a small one), but we'll use tiny ones for examples

Bayes nets

- Best-known type of graphical model
- Two parts: DAG and CPTs

Rusty robot: the DAG

Outside) Rains

Rusty robot: the CPTs

 For each RV (say X), there is one CPT specifying P(X | pa(X)) P(Metal) = 0.9P(Rains) = 0.7P(Outside) = 0.2P(Wet | Rains, Outside) TT: 0.9 TF: 0.1 FT: 0.1 FF: 0.1 P(Rusty | Metal, Wet) = TT: 0.8 TF: 0.1 FT: 0 FF: 0

Interpreting it

Metal Rains Outside Wetal Wet Rusty

Benefits

- II v. 31 numbers
- Fewer parameters to learn
- Efficient *inference* = computation of marginals, conditionals \Rightarrow posteriors

Comparison to prop logic + random causes

- Can simulate any Bayes net w/ propositional logic + random causes—one cause per CPT entry
- E.g.:

Inference Qs

- Is Z > 0?
- What is P(E)?
- What is $P(E_1 | E_2)$?
- Sample a random configuration according to P(.) or P(. | E)
- Hard part: taking sums over r.v.s (e.g., sum over all values to get normalizer)

Inference example

P(M, Ra, O, W, Ru) =
 P(M) P(Ra) P(O) P(W|Ra,O) P(Ru|M,W)

• Find marginal of M, O

Independence

- Showed $M \perp O$
- Any other independences?

- Didn't use CPTs: some independences depend only on graph structure
- May also be "accidental" independences
 i.e., depend on values in CPTs

Conditional independence

Metal

Rains

Outsid

- How about O, Ru? O Ru
- Suppose we know we're not wet
- P(M, Ra, O, W, Ru) =P(M) P(Ra) P(O) P(W|Ra, O) P(Ru|M, W)
- Condition on W=F, find marginal of O, Ru

Conditional independence

- This is generally true
 - conditioning can make or break independences
 - many conditional independences can be derived from graph structure alone
 - accidental ones often considered less interesting
- We derived them by looking for factorizations
 - turns out there is a purely graphical test
 - one of the key contributions of Bayes nets

Shaded = observed (by convention)

Example: explaining away

AND THE REAL AND THE A

• Intuitively:

Markov blanket

Markov blanket of C = minimal set of obs'ns to make C independent of rest of graph

P(Ru | M,W) =

$$P(M) =$$

 $P(Ra) =$
 $P(O) =$
 $P(W | Ra, O) =$

Μ	Ra	0	W	R
Т	F	Т	Т	F
Т	Т	Т	Т	Т
F	Т	Т	F	F
Т	F	F	F	Т
F	F	Т	F	Т

Learning Bayes nets (see 10-708)

P(Ru | M,W) =

$$P(P(P)) =$$

 $P(Ra) =$
 $P(O) =$
 $P(W | Ra, O) =$

D/NA) -

Μ	Ra	0	W	R
Т	F	Т	Т	F
Т	Т	Т	Т	Т
F	T	Т	F	F
Т	F	F	F	Η
F	F	Т	F	Т

Laplace smoothing

Advantages of Laplace

- No division by zero
- No extreme probabilities
 - No near-extreme probabilities unless lots of evidence

Limitations of counting and Laplace smoothing

- Work **only** when all variables are observed in all examples
- If there are *hidden* or *latent* variables, more complicated algorithm—see 10-708
 - or just use a toolbox!