## 15-780: Grad AI Lecture 18: Probability, planning, graphical models

## Geoff Gordon (this lecture) <br> Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

## Admin

- Reminder: project milestone reports due 2 weeks from today


## Review: probability

- Independence, correlation
- Expectation, conditional e., linearity of e., iterated e., independence \& e.
- Experiment, prior, posterior
- Estimators (bias, variance, asymptotic behavior)
- Bayes Rule
- Model selection


## Review: probability \& AI

# $\mathbb{Q}_{1} X_{1} \mathbb{Q}_{2} X_{2} \mathbb{Q}_{3} X_{3} \ldots F\left(X_{1}, X_{2}, X_{3}, \ldots\right)$ <br> each quantifier is max, min, or mean 

- PSTRIPS
- QBF and "QBF+"
- PSTRIPS to QBF+ translation


## Example: got cake?

- ᄀhave। $\wedge$ gatebake। $\wedge$ bake $_{2} \Leftrightarrow$ Cbake $_{2}$
- have ${ }_{\text {I }} \wedge$ gateeat $_{1} \wedge$ eat $_{2} \Leftrightarrow$ Ceat $_{2}$
- have ${ }_{1} \wedge$ eat $_{2} \Leftrightarrow$ Ceat' $_{2}$
- $\left[\right.$ Cbake $_{2} \Rightarrow$ have $\left._{3}\right] \wedge\left[\right.$ Ceat $_{2} \Rightarrow$ eaten $\left._{3}\right] \wedge$
[Ceat'2 $\Rightarrow$ 'have $_{3}$ ]
- 0.8:gatebake। $\wedge$ 0.9:gateeat।


## Example: got cake?

$\circ$ have $_{3} \Rightarrow\left[\right.$ Cbake $_{2} \vee\left(\neg\right.$ Ceat'2 $_{2} \wedge$ have $\left.\left._{)}\right)\right]$

- $\neg$ have $_{3} \Rightarrow\left[\right.$ Ceat'2 $_{2} \vee\left(\neg\right.$ Cbake $_{2} \wedge \neg$ have $)$ ]
$\circ$ eaten $_{3} \Rightarrow\left[\right.$ Ceat $_{2} \vee$ eaten 1$]$
$\circ$ ᄀeaten $_{3} \Rightarrow$ [ᄀeaten। ${ }^{\text {] }}$


## Example: got cake?

- ᄀbake $_{2} \vee$ ᄀeat $_{2}$
- (pattern from past few slides is repeated for each action level w/ adjacent state levels)


## Example: got cake?

- ᄀhave। ^ ᄀ eaten।
- havet $\wedge$ eatent


## Simple QBF+ example

## 


max
$x$
$\underset{y, z}{\#}$
$\max$

$$
\max _{x} \mathbb{E}_{y z} \max (\bar{x} \vee z) \wedge(\bar{y} \vee u)_{\wedge}(x \vee \bar{y})
$$

## How can we solve?

- Scenario trick
- transform to PBI or 0-I ILP
- Dynamic programming
- related to algorithms for SAT, \#SAT
- also to belief propagation in graphical models (next)


## Solving exactly by scenarios



- Replicate u to uYZ: u00, u0I, ul0, ull
- Replicate clauses: share $x$; set $y, z$ by index; replace $u$ by $u Y Z$; write aYZ for truth value
$\circ \mathrm{a} 00 \Leftrightarrow[(\neg \mathrm{x} \vee 0) \wedge(\neg 0 \vee u 00) \wedge(x \vee \neg 0)] \wedge$ $\mathrm{aOl} \Leftrightarrow[(\neg \mathrm{x} \vee \mathrm{I}) \wedge(\neg 0 \vee \mathrm{uOl}) \wedge(x \vee \neg 0)] \wedge \ldots$
- add a PBI: a00 + aOI + al $0+\mathrm{al\mid} \geq 4 *$ threshold


## Solving by sampling scenarios



- Sample a subset of the values of $y, z(e . g .,\{I I, 0 \mid\})$ :

$$
\begin{aligned}
& \vee \text { all } \Leftrightarrow[(\neg x \vee I) \wedge(\neg I \vee u l I) \wedge(x \vee \neg I)] \wedge \\
& \text { a0l } \Leftrightarrow[(\neg x \vee I) \wedge(\neg 0 \vee u 0 I) \wedge(x \vee \neg 0)]
\end{aligned}
$$

- Adjust PBI: all + alO 2 * threshold


## Combining PSTRIPS w/ scenarios

- Generate M samples of Nature (gatebake।, gateeat ${ }_{I}$, gatebake ${ }_{3}$, gateeat ${ }_{3}$, gatebake ${ }_{5}, \ldots$.
- Replicate state-level vars M times
- One copy of action vars bake 2 , eat 2 , bake e $^{2}$...
- Replicate clauses M times (share actions)
- Replace goal constraints w/ constraint that all goals must be satisfied in at least $y \%$ of scenarios (a PBI)
- Give to MiniSAT+ (fixed y) or CPLEX (max y)

Dynamic programming

- Consider the simpler problem (all $p=0.5$ ):

$$
\mathbb{X}_{x_{y z u v \omega}}(x \vee y \vee \bar{j}) \wedge(\bar{y} \vee \bar{u}) \wedge(z \vee \omega) \wedge(z \vee u \vee v)
$$

- This is essentially an instance of \#SAT
- Structure:


Dynamic programming for variable elimination

$$
\sum_{x} \sum_{y} \sum_{z} \sum_{u} \sum_{v} \sum_{0} A(x y z) \beta(y u) C(z w) D(z u v)
$$



## Variable elimination

## In general

- Pick a variable ordering
- Repeat: say next variable is $z$
- move sum over zinward as far as it goes
- make a new table by multiplying all old tables containing z , then summing out z
- arguments of new table are "neighbors" of $z$
- Cost: O(size of biggest table * \# of sums)
- sadly: biggest table can be exponentially large
- but often not: low-treewidth formulas


## Connections

- Scenarios are related to your current HW
- DP is related to belief propagation in graphical models (next)
- Can generalize DP for multiple quantifier types (not just sum or expectation)
- handle PSTRIPS

$$
\begin{gathered}
\text { Graphical } \\
\text { models }
\end{gathered}
$$

## Why do we need graphical models?

- So far, only way we've seen to write down a distribution is as a big table
- Gets unwieldy fast!
- E.g., IO RVs, each w/ 10 settings
- Table size $=10^{10}$
- Graphical model: way to write distribution compactly using diagrams \& numbers
- Typical GMs are huge ( $10^{10}$ is a small one), but we'll use tiny ones for examples


## Bayes nets

- Best-known type of graphical model
- Two parts: DAG and CPTs

Rusty robot: the DAG


## Rusty robot: the CPTs


$P($ Metal $)=0.9$
$P($ Rains $)=0.7$
$\mathrm{P}($ Outside) $=0.2$
P(Wet | Rains, Outside)
TT:0.9 TF:0.I
FT:0.1 FF: 0.1

- For each RV (say X), there is one CPT specifying $P(X \mid p a(X))$

Interpreting it

## Benefits

- || v. 31 numbers
- Fewer parameters to learn
- Efficient inference = computation of marginals, conditionals $\Rightarrow$ posteriors


# Comparison to prop logic + random causes 

- Can simulate any Bayes net w/ propositional logic + random causes-one cause per CPT entry
- E.g.:


## Inference Qs

- Is Z > 0 ?
- What is $P(E)$ ?
- What is $P\left(E_{1} \mid E_{2}\right)$ ?
- Sample a random configuration according to $P($.$) or P(. \mid E)$
- Hard part: taking sums over r.v.s (e.g., sum over all values to get normalizer)


## Inference example

> - $P(M, R a, O, W, R u)=$ $\quad P(M) P(R a) P(O) P(W \mid R a, O) P(R u \mid M, W)$

- Find marginal of M, O


## Independence

- Showed M $\perp$ O
- Any other independences?

- Didn't use CPTs: some independences depend only on graph structure
- May also be "accidental" independences
- i.e., depend on values in CPTs


## Conditional independence

- How about O, Ru? O Ru
- Suppose we know we're not wet
- $P(M, R a, O, W, R u)=$ $\mathrm{P}(\mathrm{M}) \mathrm{P}(\mathrm{Ra}) \mathrm{P}(\mathrm{O}) \mathrm{P}(\mathrm{W} \mid \mathrm{Ra}, \mathrm{O}) \mathrm{P}(\mathrm{Ru} \mid \mathrm{M}, \mathrm{W})$
- Condition on W=F, find marginal of $\mathrm{O}, \mathrm{Ru}$


## Conditional independence

- This is generally true
- conditioning can make or break independences
- many conditional independences can be derived from graph structure alone
- accidental ones often considered less interesting
- We derived them by looking for factorizations
- turns out there is a purely graphical test
- one of the key contributions of Bayes nets


## Blocking

- Shaded = observed (by convention)


## Example: explaining away

- Intuitively:


## Markov blanket

Markov blanket of $\mathrm{C}=$ minimal set of obs'ns to make C independent of rest of graph


## Learning Bayes nets (see 10-708)

$$
\begin{aligned}
& P(M)= \\
& P(R a)= \\
& P(O)= \\
& P(W \mid R a, O)= \\
& P(R u \mid M, W)=
\end{aligned}
$$



| M | Ra | O | W | R |
| :---: | :---: | :---: | :---: | :---: |
| T | F | T | T | F |
| T | T | T | T | T |
| F | T | T | F | F |
| T | F | F | F | T |
| F | F | T | F | T |

## Laplace smoothing

$$
\begin{aligned}
& P(M)= \\
& P(R a)= \\
& P(O)= \\
& P(W \mid R a, O)=
\end{aligned}
$$



| M | Ra | O | W | R |
| :---: | :---: | :---: | :---: | :---: |
| T | F | T | T | F |
| T | T | T | T | T |
| F | T | T | F | F |
| T | F | F | F | T |
| F | F | T | F | T |

## Advantages of Laplace

- No division by zero
- No extreme probabilities
- No near-extreme probabilities unless lots of evidence


## Limitations of counting and Laplace smoothing

- Work only when all variables are observed in all examples
- If there are hidden or latent variables, more complicated algorithm-see 10-708
- or just use a toolbox!

