I 5-780: Grad AI Lec. 8: Linear programs, Duality

Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

Admin

- Test your handin directories
 - /afs/cs/user/aothman/dropbox/USERID/
 - where USERID is your Andrew ID
- Poster session:
 - Mon 5/2, I:30–4:30PM, room TBA
- Readings for today & Tuesday on class site

Project idea

• Answer the question: what is fairness?

In case anyone thinks of slacking off

LPs, ILPs, and their ilk

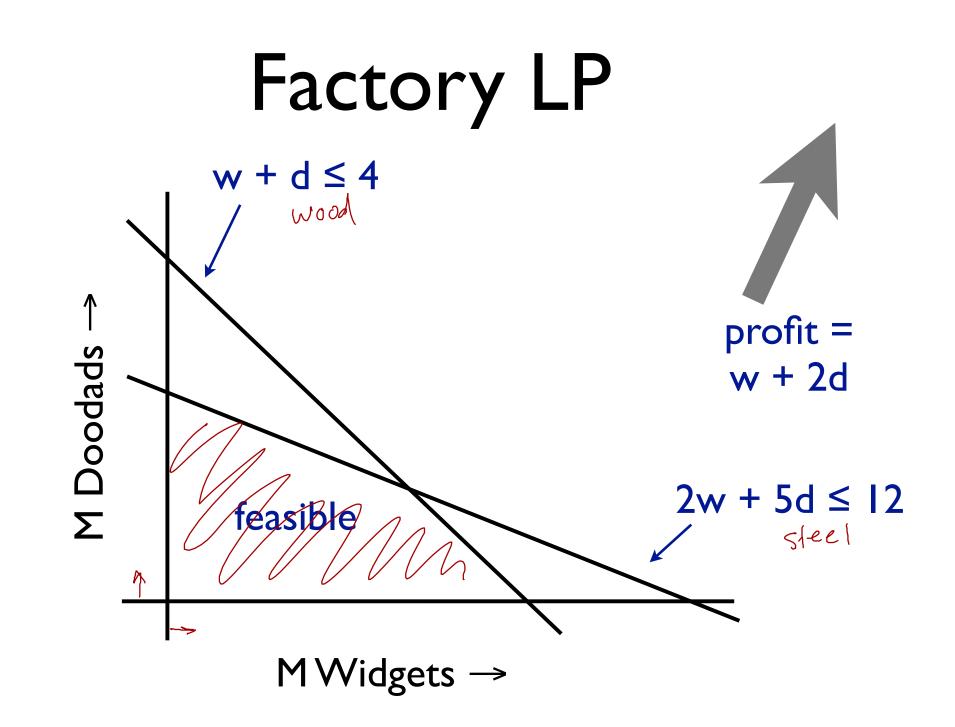
Boyd & Vandenberghe. Convex Optimization. Sec 4.3 and 4.3.1.

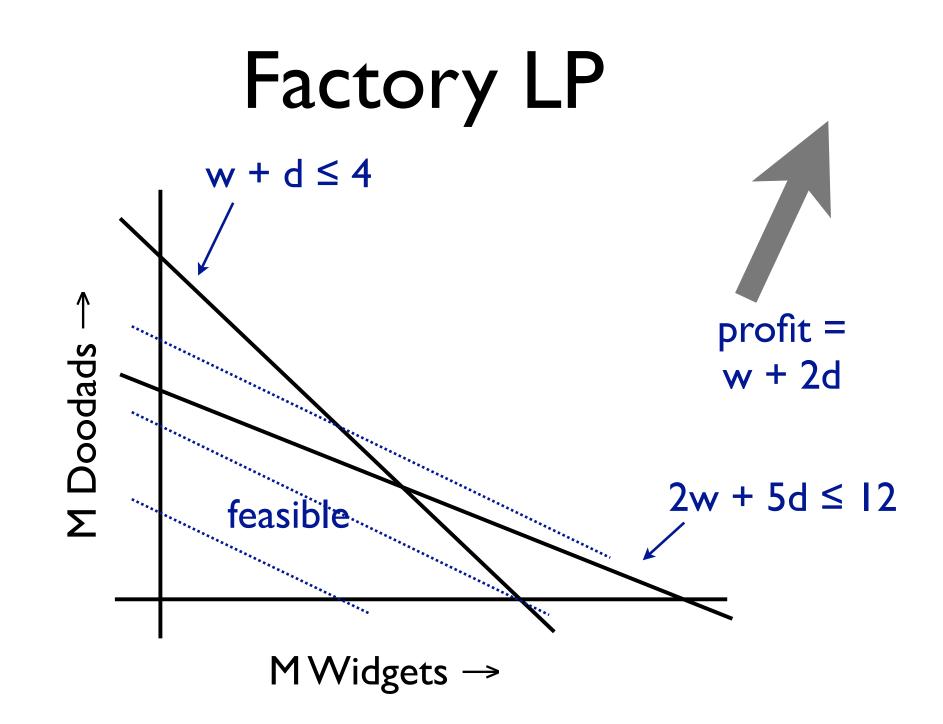
((M)I)LPs

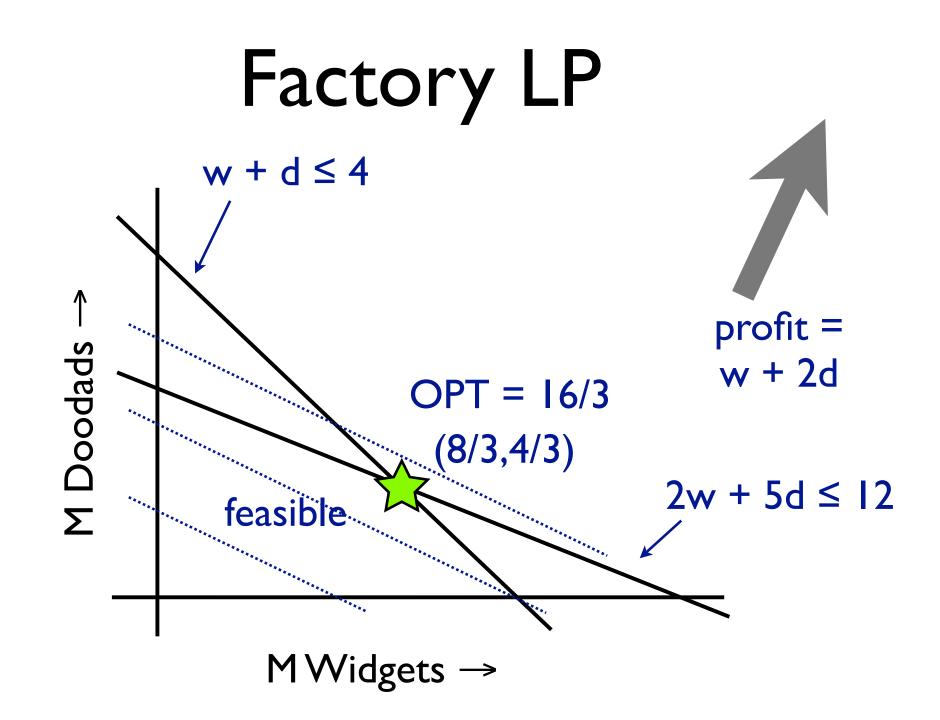
- Linear program: min 3x + 2y s.t. $x + 2y \le 3$ $x \le 2$ $x, y \ge 0$
- Integer linear program: constrain $x, y \in \mathbb{Z}$
- Mixed ILP: $x \in \mathbb{Z}, y \in \mathbb{R}$

Example LP

- Factory makes widgets and doodads
- Each widget takes I unit of wood and 2 units of steel to make
- Each doodad uses I unit wood, 5 of steel
- Have 4M units wood and 12M units steel
- Maximize profit: each widget nets \$1, each doodad nets \$2

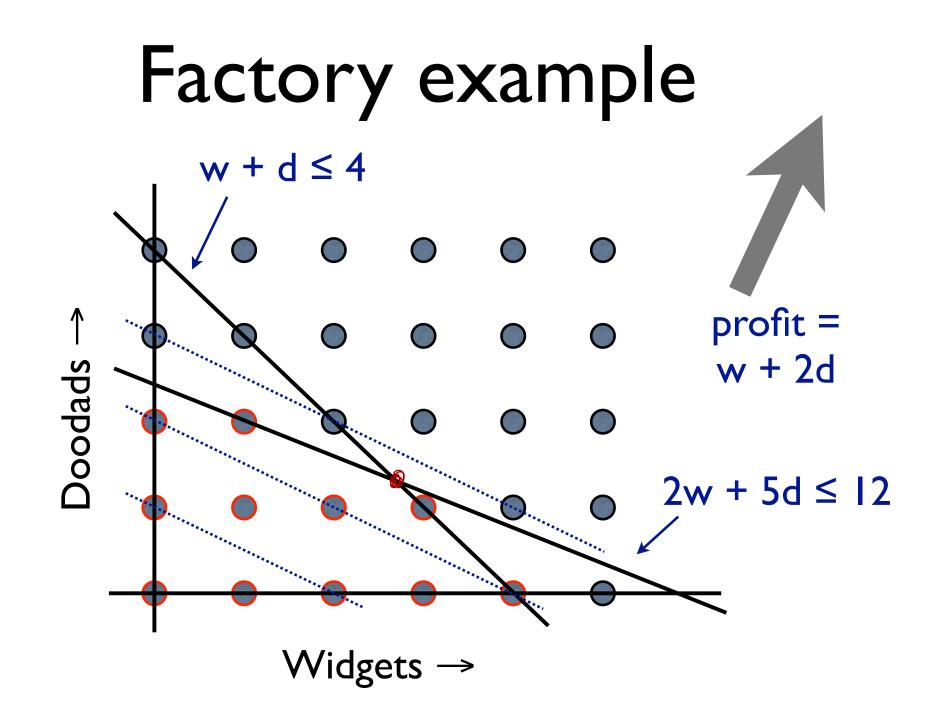


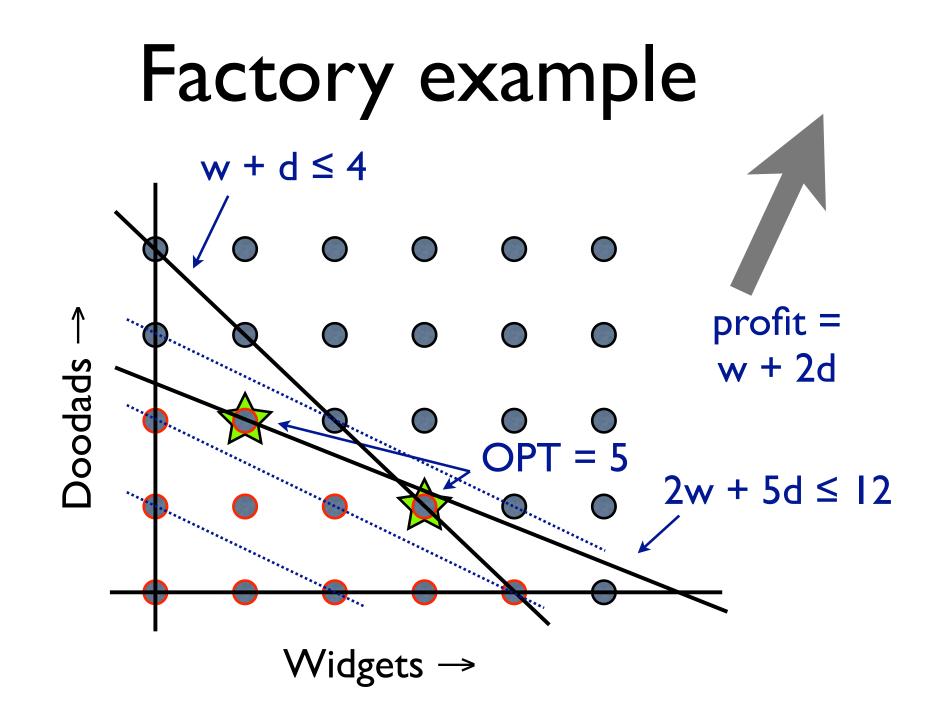




Example ILP

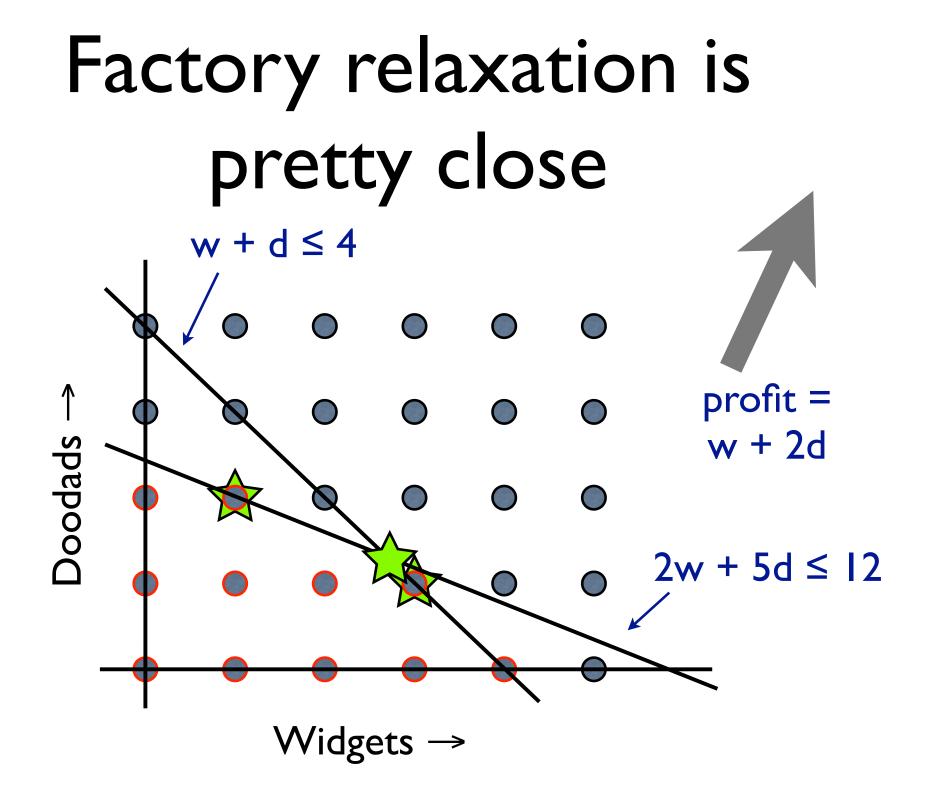
 Instead of 4M units of wood, I2M units of steel, have 4 units wood and I2 units steel

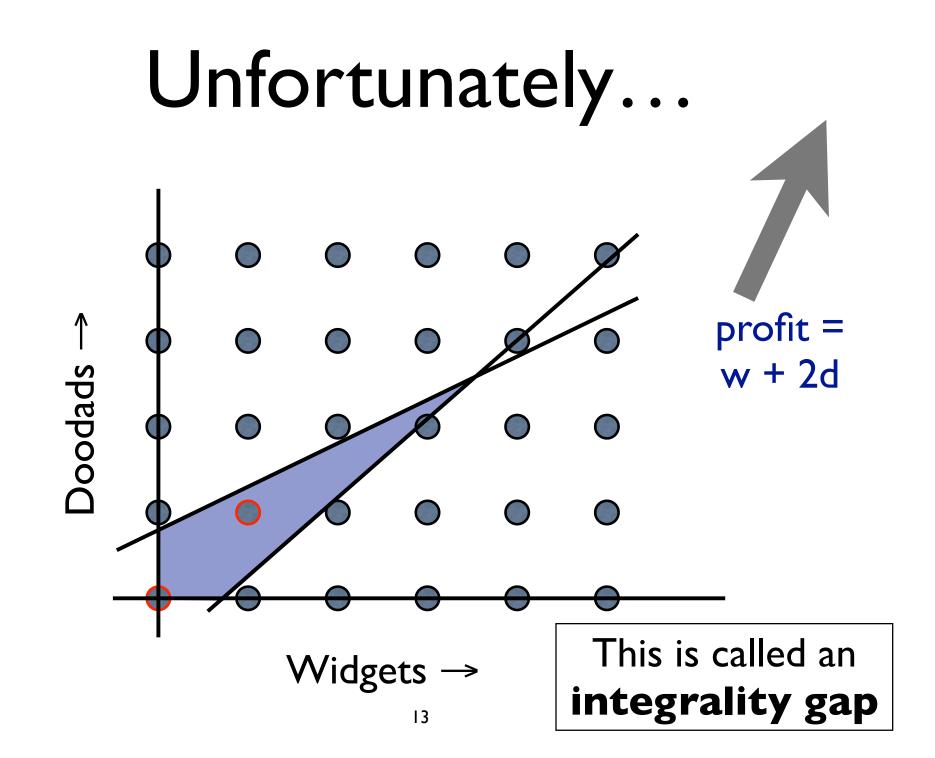




LP relaxations

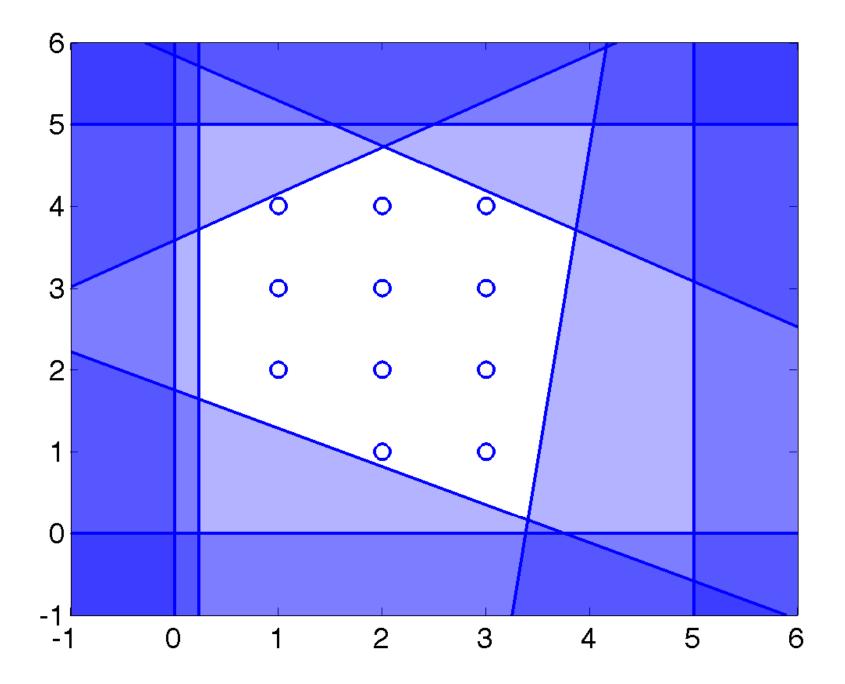
- Above LP and ILP are the same, except for constraint w, $d \in \mathbb{Z}$
- LP is a **relaxation** of ILP
- Adding any constraint makes optimal value same or worse
- So, OPT(relaxed) ≥ OPT(original) (in a maximization problem)

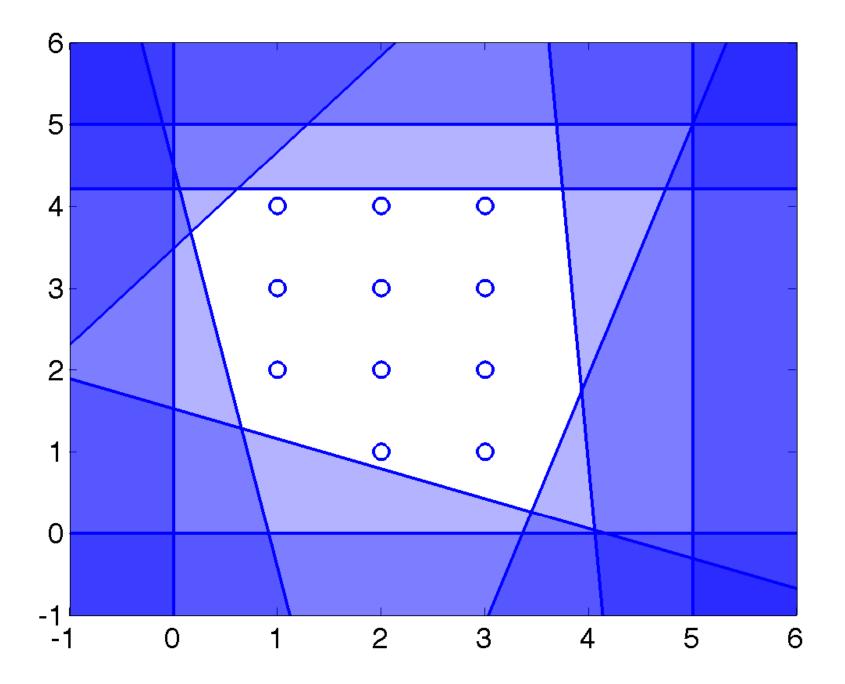


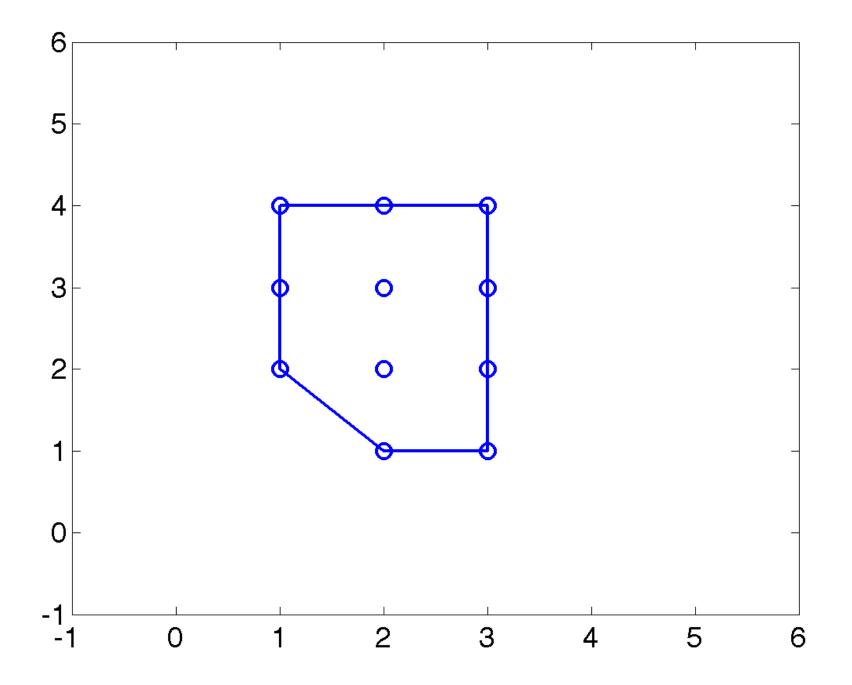


Falling into the gap

- In this example, gap is 3 vs 8.5, or about a ratio of 0.35
- Ratio can be arbitrarily bad
 - but, can sometimes bound it for classes of ILPs
- Gap can be different for different LP relaxations of "same" ILP







From ILP to SAT

- 0-1 ILP: all variables in {0, 1}
- SAT: 0-1 ILP, objective = constant, all constraints of form

 $x + (I-y) + (I-z) \ge I$

• MAXSAT: 0-1 ILP, constraints of form $x + (I-y) + (I-z) \ge s_j$ maximize $s_1 + s_2 + ...$

Pseudo-boolean inequalities

- Any inequality with integer coefficients on
 0-1 variables is a PBI
- Collection of such inequalities (w/o objective): pseudo-boolean SAT
- Many SAT techniques work well on PB-SAT as well

Complexity

- Decision versions of ILPs and MILPs are NPcomplete (e.g., ILP feasibility contains SAT)
 - so, no poly-time algos unless P=NP
 - in fact, no poly-time algo can approximate
 OPT to within a constant factor unless P=NP
- Typically solved by search + smart techniques for ordering & pruning nodes
- E.g., branch & cut (in a few lectures)—like DPLL (DFS) but with more tricks for pruning

Complexity

- There are poly-time algorithms for LPs
 - e.g., ellipsoid, log-barrier methods
 - rough estimate: n vars, m constraints ⇒
 ~50–200 × cost of (n × m) regression
- No strongly polynomial LP algorithms known—interesting open question
 - simplex is "almost always" polynomial [Spielman & Teng]

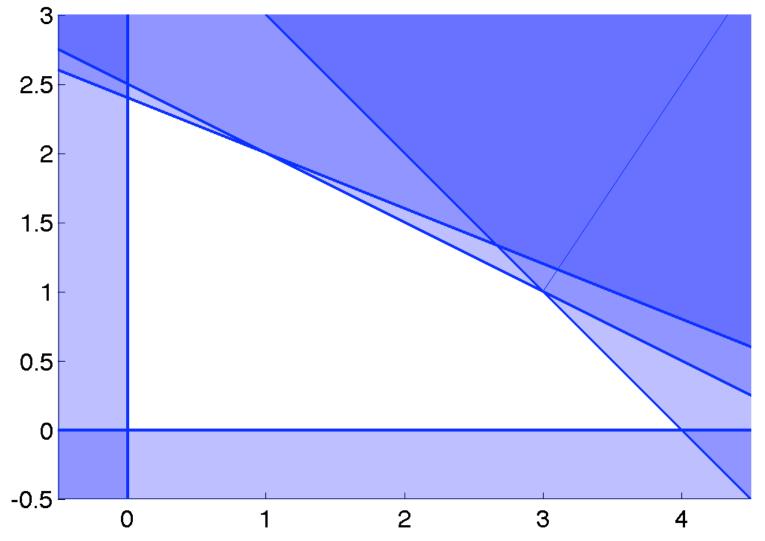
max 2x+3y s.t. $x + y \leq 4$ $2x + 5y \le 12$ $x + 2y \leq 5$ x, y ≥ 0

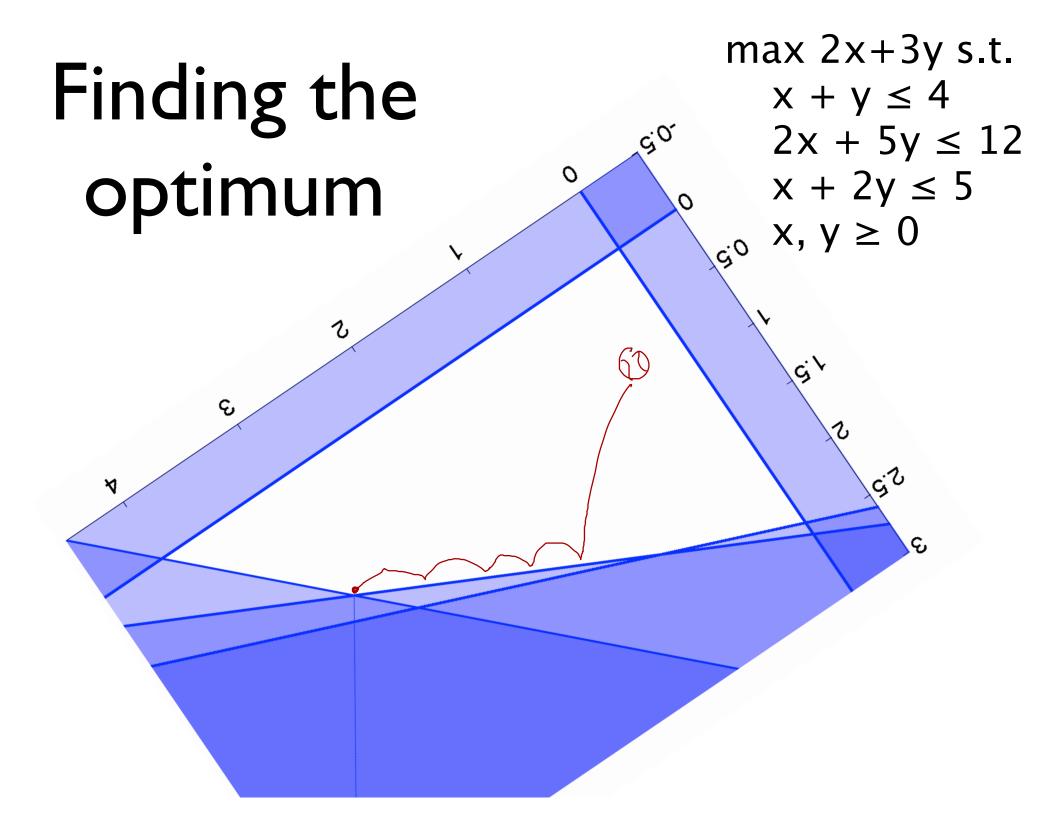
3 2.5 3 2 1.5 1 0.5 0 -0.5 0 2 3 4

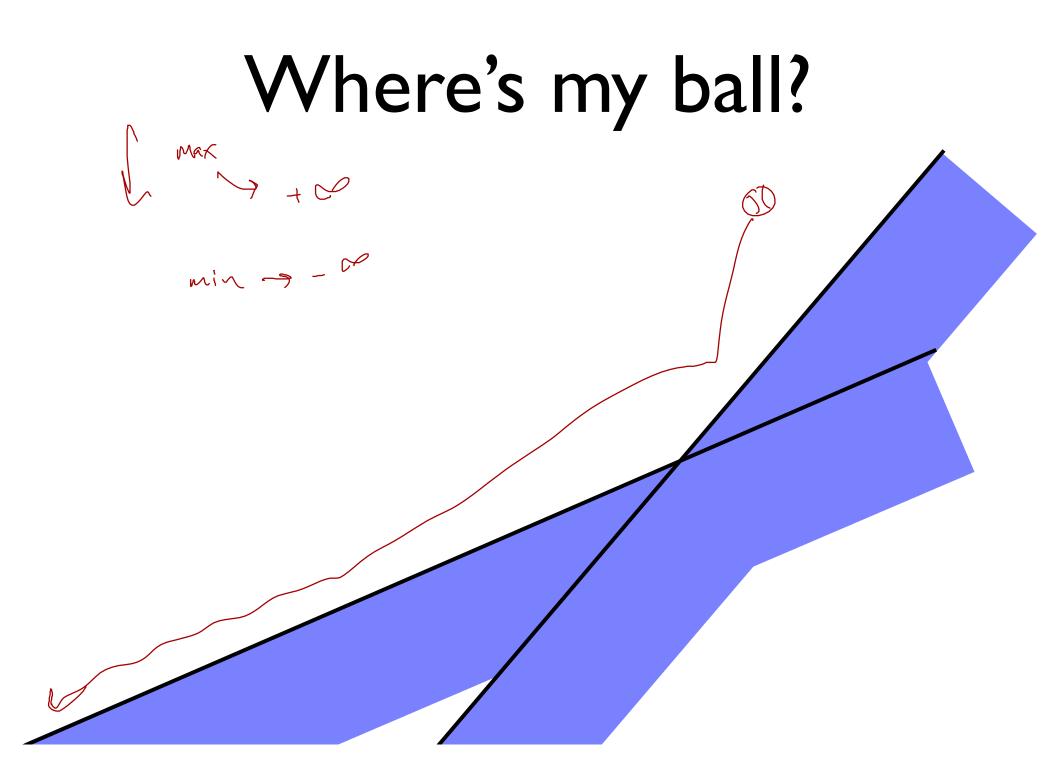
Terminology

Finding the optimum

max 2x+3y s.t. $x + y \le 4$ $2x + 5y \le 12$ $x + 2y \le 5$ $x, y \ge 0$







$\begin{array}{c} \text{Unhappy ball} \\ \text{max} \quad \sim \infty \\ \text{min} \quad + \infty \end{array}$

- min 2x + 3y subject to
- x ≥ 5
- ★ x ≤ |

Transforming LPs

Getting rid of inequalities (except variable bounds)

$$x_{+} 2y \ge 3 \longrightarrow x_{+} 2y \ge 3 + 5 \quad s \ge 0$$

• Getting rid of unbounded variables $x \in \mathbb{R}$ $x = y^{-2}$ $y^{-2} = y^{-2}$

Standard form LP

- all variables are nonnegative
- all constraints are equalities

 \mathbf{b}

2 5

• E.g.:
$$q = (x y u v w)^T$$

$$\max 2x+3y \text{ s.t.}$$

$$x + y \le 4$$

$$2x + 5y \le 12$$

$$x + 2y \le 5$$

$$x, y \ge 0$$

$$(1)$$

$$\max c^{T}q \quad \text{s.t.}$$

$$Aq = b, q \ge 0$$

$$(componentwise)$$

$$C_{2} = 3 \quad 0 \quad 0 \quad 0$$

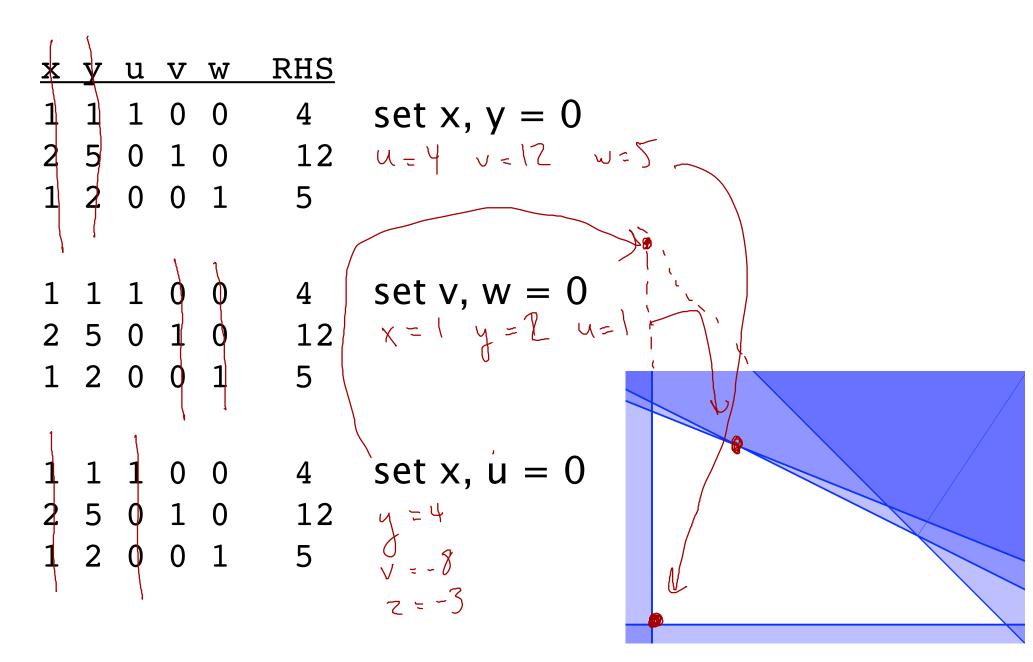
$$fablea$$

Why is standard form useful?

- Easy to find corners
- Easy to manipulate via row operations
- Basis of simplex algorithm

Bertsimas and Tsitsiklis. Introduction to Linear Optimization. Ch. 2–3.

Finding corners



Row operations

- Can replace any row with linear combination of existing rows
 - as long as we don't lose independence
- Elim. x from 2nd and 3rd rows of A

 $\begin{pmatrix}
 1 & 1 & 0 & 0 & 4 & 5 \\
 0 & 3 - 2 & 1 & 0 & 4 \\
 0 & 1 & -1 & 0 & 1 & 1
 \end{pmatrix}$

• And from c:

c' - 01-100

 x
 y
 u
 v
 w
 RHS

 1
 1
 1
 0
 0
 4

 2
 5
 0
 1
 0
 12

 1
 2
 0
 0
 1
 5

 2
 3
 0
 0
 0
 1

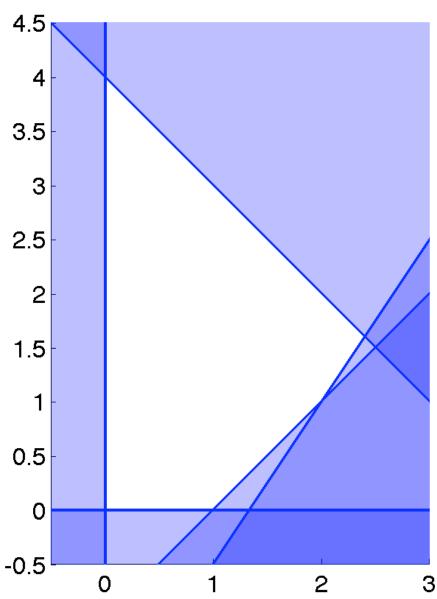
Presto change-o

- Which are the slacks now?
 ★ ↓ ↓
 - ▶ vars that appear in 1 constr ~ (coeff 1

<u>X</u>	<u>y</u>	u	V	W	RHS
1	1	1	0	0	4
0	3	-2	1	0	4
0	1	-1	0	1	1
0	1	-2	0	0	1

• Terminology: "slack-like" variables are called **basic**

The "new" LP



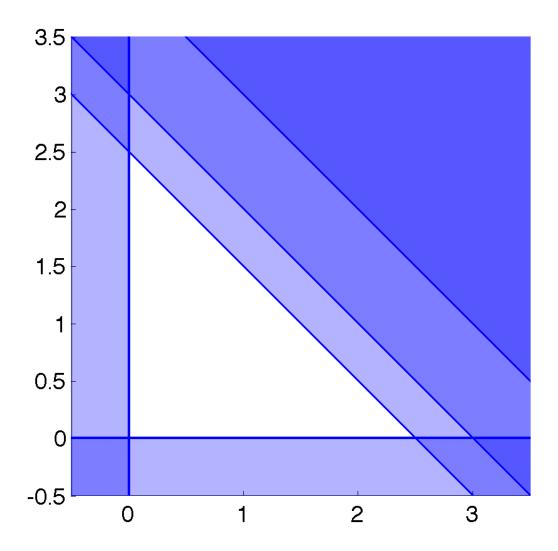
max y – 2u	<u>x</u>	y	u	v	W	RHS
y + u ≤ 4		_	1			4
$3y - 2u \leq 4$	0	3	-2	1	0	4
$\dot{y} - u \leq 1$	0	1	-1	0	1	1
, y, u ≥ 0	0	1	-2	0	0	1

Many different-looking but equivalent LPs, depending on which variables we choose to make into slacks

Or, many corners of same LP

Basis

• Which variables can we choose to make basic? cols must spay Range (A) RHS W u V Χ 1 1 10 0 4 2 2 0 1 0 5 <u>3</u> 3 0/ 9 0 1 2 1 0 0 0



Nonsingular

- We can assume M A
 - $n \ge m$ (at least as many vars as constrs)
 - A has full row rank
- Else, drop rows (w/o reducing rank) until true: dropped rows are either redundant or impossible to satisfy
 - easy to distinguish: pick a corner of reduced
 LP, check dropped = constraints
- Called *nonsingular* standard form LP
 - means basis is an invertible m × m submatrix

Naïve (slooow) algorithm

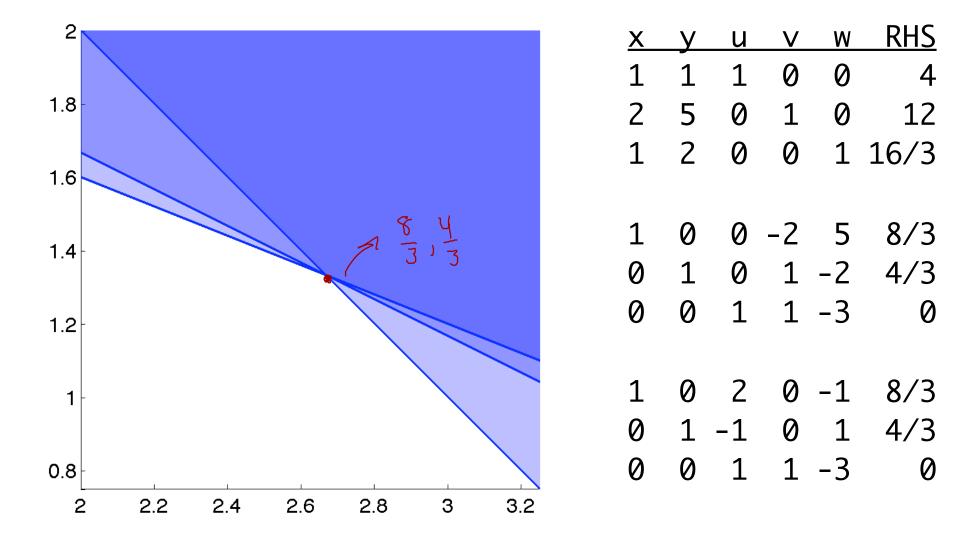
 $\begin{pmatrix} \uparrow \\ \mu \end{pmatrix}$

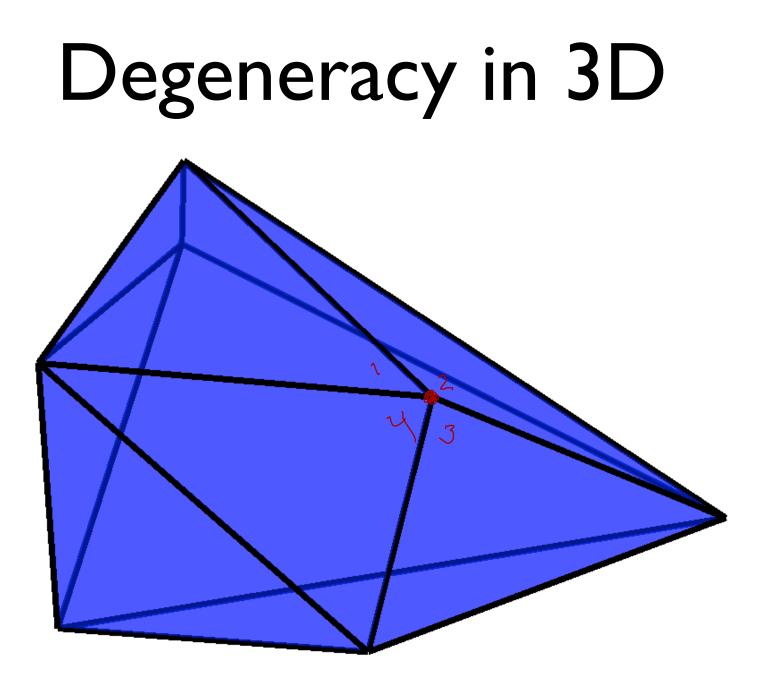
- Iterate through all subsets B of provide vars
 - if m constraints, how many subsets?
- Check each B for
 - full rank ("basis-ness")
 - feasibility $(A(:,B) \setminus RHS \ge 0)$
- If pass both tests, compute objective
- Maintain running winner, return at end

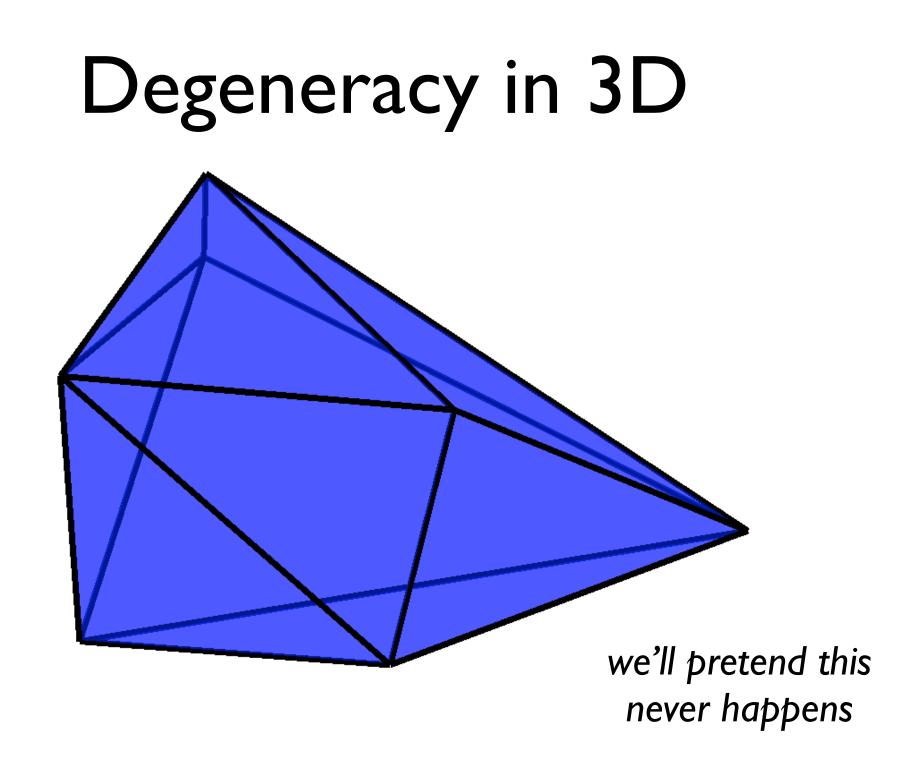
Degeneracy

- Not every set of m variables yields a corner
 - some have rank < m (not a basis)</p>
 - some are infeasible
- Can the reverse be true? Can two bases yield the same corner? (Assume nonsingular standard-form LP.)

Degeneracy



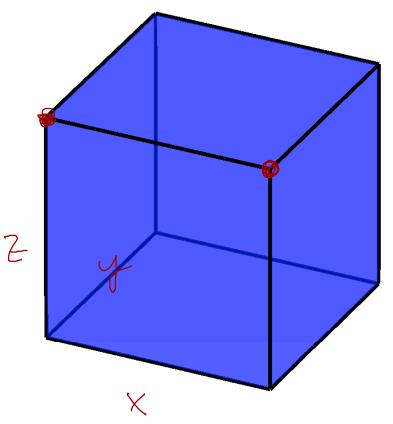




Neighboring bases

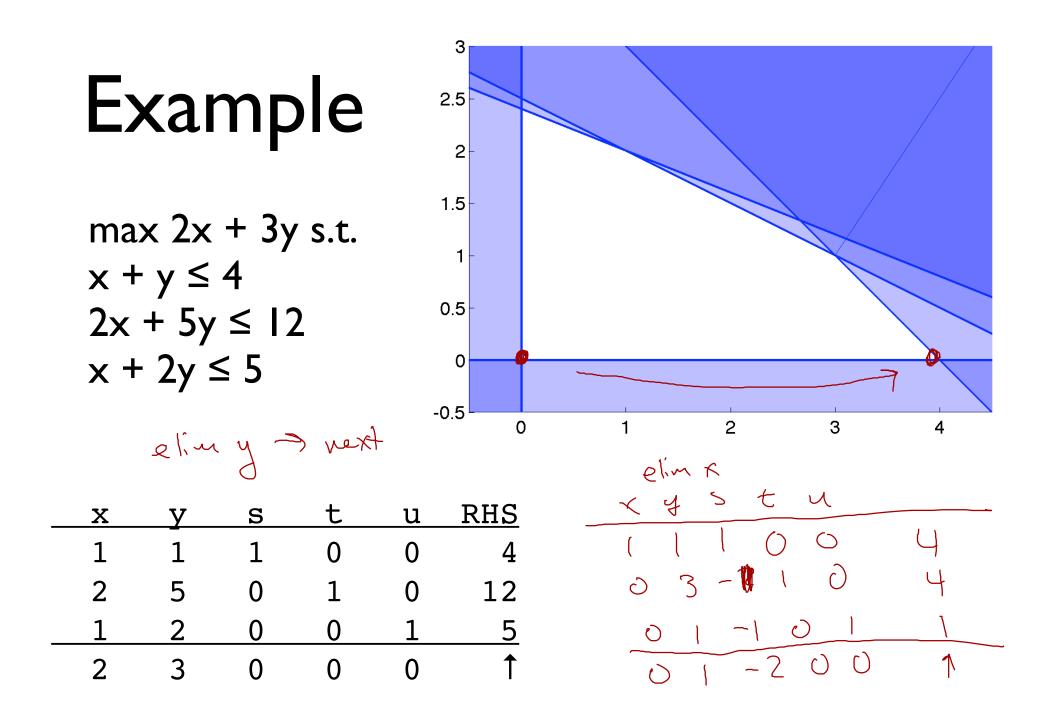
- Two bases are *neighbors* if they share (m–1) variables
- Neighboring feasible bases correspond to vertices connected by an edge (note: degeneracy)

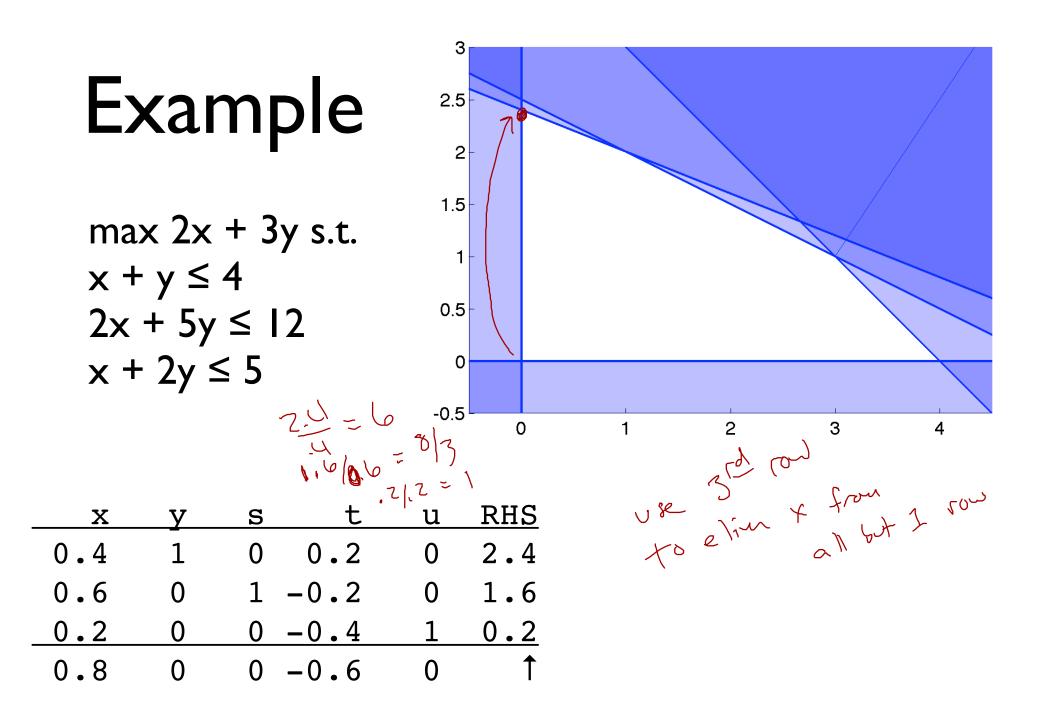
<u>X</u>	<u> </u>	Z	u	v	W	RHS
1	0	0	1	0	0	1
0	1	0	0	1	0	1
0	0	1	0	0	1	1

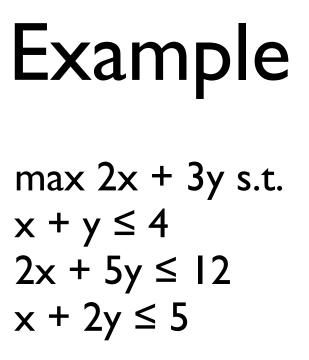


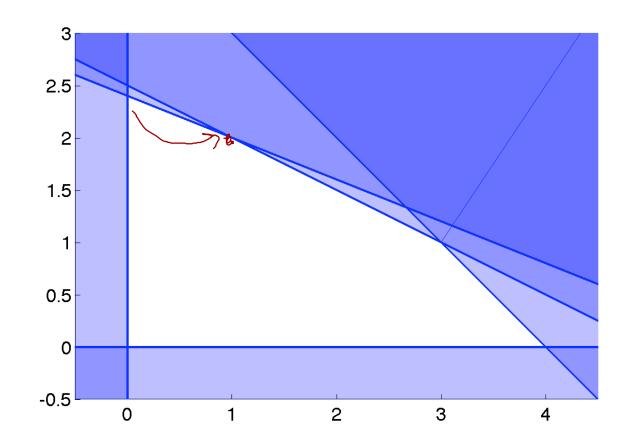
Improving our search

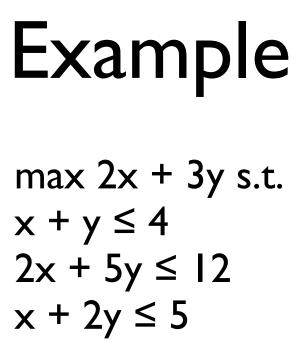
- Naïve: enumerate all possible bases
- Smarter: maybe neighbors of good bases are also good?
- **Simplex** algorithm: repeatedly move to a neighboring basis to improve objective
 - important advantage: rank-1 update is fast

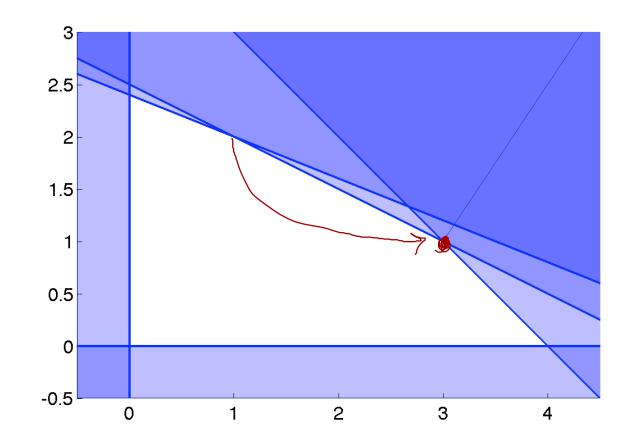












_X	Y	S	t	u	RHS
1	0	2	0	-1	3
0	1	-1	0	1	1
0	0	1	1	-3	1
0	0	-1	0	-1	1