15-780: Grad AI Lec. 8: Linear programs, Duality

Geoff Gordon (this lecture)
Tuomas Sandholm
TAs Erik Zawadzki, Abe Othman

Admin

- Test your handin directories
- /afs/cs/user/aothman/dropbox/USERID/
- where USERID is your Andrew ID
- Poster session:
- Mon 5/2, I:30-4:30PM, room TBA
- Readings for today \& Tuesday on class site

Project idea

- Answer the question: what is fairness?

In case anyone thinks of slacking off

LPs, ILPs, and their ilk

Boyd \& Vandenberghe. Convex Optimization. Sec 4.3 and 4.3.I

((M)I)LPs

- Linear program:

$$
\begin{aligned}
& \min 3 x+2 y \text { s.t. } \\
& x+2 y \leq 3 \\
& x \leq 2 \\
& x, y \geq 0
\end{aligned}
$$

- Integer linear program: constrain $x, y \in \mathbb{Z}$
- Mixed ILP: $x \in \mathbb{Z}, y \in \mathbb{R}$

Example LP

- Factory makes widgets and doodads
- Each widget takes I unit of wood and 2 units of steel to make
- Each doodad uses I unit wood, 5 of steel
- Have 4M units wood and I2M units steel
- Maximize profit: each widget nets \$I, each doodad nets \$2

Factory LP

\uparrow
n
n
0
0
0
0
\vdots
profit $=$ w + 2d

Factory LP

Factory LP

Example ILP

- Instead of 4 M units of wood, I2M units of steel, have 4 units wood and 12 units steel

Factory example

\uparrow
个
n
0
0
0
0
$w+d \leq 4$

Factory example

\uparrow
个
n
त
0
0
0
$w+d \leq 4$

LP relaxations

- Above LP and ILP are the same, except for constraint $w, d \in \mathbb{Z}$
- LP is a relaxation of ILP
- Adding any constraint makes optimal value same or worse
- So, OPT(relaxed) \geq OPT(original)
(in a maximization problem)

Factory relaxation is

Unfortunately...

\uparrow
n
0
0
0
0
0
0

This is called an integrality gap

Falling into the gap

- In this example, gap is 3 vs 8.5 , or about a ratio of 0.35
- Ratio can be arbitrarily bad
- but, can sometimes bound it for classes of ILPs
- Gap can be different for different LP relaxations of "same" ILP

From ILP to SAT

- 0-I ILP: all variables in $\{0, \mathrm{I}\}$
- SAT:0-I ILP, objective = constant, all constraints of form
$x+(I-y)+(I-z) \geq I$
- MAXSAT: 0-I ILP, constraints of form
$x+(I-y)+(I-z) \geq s_{j}$ maximize $\mathrm{s}_{1}+\mathrm{s}_{2}+\ldots$

Pseudo-boolean inequalities

- Any inequality with integer coefficients on $0-\mathrm{I}$ variables is a PBI
- Collection of such inequalities (w/o objective): pseudo-boolean SAT
- Many SAT techniques work well on PB-SAT as well

Complexity

- Decision versions of ILPs and MILPs are NPcomplete (e.g., ILP feasibility contains SAT)
- so, no poly-time algos unless $\mathrm{P}=\mathrm{NP}$
- in fact, no poly-time algo can approximate OPT to within a constant factor unless $\mathrm{P}=\mathrm{NP}$
- Typically solved by search + smart techniques for ordering \& pruning nodes
- E.g., branch \& cut (in a few lectures)—like DPLL (DFS) but with more tricks for pruning

Complexity

- There are poly-time algorithms for LPs
- e.g., ellipsoid, log-barrier methods
- rough estimate: n vars, m constraints \Rightarrow
$\sim 50-200 \times$ cost of $(\mathrm{n} \times \mathrm{m})$ regression
- No strongly polynomial LP algorithms known-interesting open question
- simplex is "almost always" polynomial [Spielman \& Teng]
$\max 2 x+3 y$ s.t.

$$
\begin{aligned}
& x+y \leq 4 \\
& 2 x+5 y \leq 12 \\
& x+2 y \leq 5 \\
& x, y \geq 0
\end{aligned}
$$

Finding the
 optimum

Finding the optimum

$\max 2 x+3 y$ s.t.

$$
x+y \leq 4
$$

$$
2 x+5 y \leq 12
$$

$$
x+2 y \leq 5
$$

$$
x, y \geq 0
$$

Where's my ball?

$$
\swarrow_{\min \rightarrow-\infty}^{m \times \infty}
$$

Unhappy ball $\min +\infty$

- min $2 x+3 y$ subject to
- $x \geq 5$
- $x \leq 1$

Transforming LPs

- Getting rid of inequalities (except variable bounds)

$$
x+2 y \geqslant 3 \quad \rightarrow \quad x+2 y=3+5 \quad 5 \geqslant 0
$$

- Getting rid of unbounded variables

$$
x \in \mathbb{R} \quad x=y-z \quad y, z \geqslant 0
$$

Standard form LP

- all variables are nonnegative
- all constraints are equalities
- E.g.: $q=(x y u v w)^{\top}$

A

$$
\begin{array}{ccccc}
x & y & u & v & w \\
1 & 1 & 1 & 0 & 0 \\
2 & 5 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1
\end{array}
$$

Why is standard form useful?

- Easy to find corners
- Easy to manipulate via row operations
- Basis of simplex algorithm

Bertsimas and Tsitsiklis. Introduction to Linear Optimization. Ch. 2-3.

Finding corners

Row operations

- Can replace any row with linear combination of existing rows
- as long as we don't lose independence
- Elim. x from 2 nd and 3 rd rows of A

x	y	u	v	w	RUS
1	1	1	0	0	4
2	5	0	1	0	12
1	2	0	0	1	5
2	3	0	0	0	\uparrow

- And from c:

$$
c^{\prime}=01-100
$$

Presto change-o

- Which are the slacks now?

- vars that appear in 1 constr

x	y	u	v	w	RHS
1	1	1	0	0	4
0	3	-2	1	0	4
0	1	-1	0	1	1
0	1	-2	0	0	\uparrow

- Terminology:"slack-like" variables are called basic

The "new" LP

$\max y-2 u$
$y+u \leq 4$

\mathbf{x}	y	u	v	w	RHS
1	1	1	0	0	4
0	3	-2	1	0	4
0	1	-1	0	1	1
0	1	-2	0	0	\uparrow

Many different-looking but equivalent LPs, depending on which variables we choose to make into slacks

Or, many corners of same LP

Basis

- Which variables can we choose to make basic?
cols must spay Rang

x	y	u	v	w	RHS
1	1	1	0	0	4
2	2	0	1	0	5
3	3	0	0	1	9
2	1	0	0	0	\uparrow

Nonsingular

- We can assume

- $\mathrm{n} \geq \mathrm{m}$ (at least as many vars as constrs)
- A has full row rank
- Else, drop rows (w/o reducing rank) until true: dropped rows are either redundant or impossible to satisfy
- easy to distinguish: pick a corner of reduced LP, check dropped = constraints
- Called nonsingular standard form LP
- means basis is an invertible $m \times m$ submatrix

Naïve (slooow) algorithm

- Iterate through all subsets B of ${ }_{\text {m vars }}$
- if m constraints, how many subsets? in vars
- Check each B for
- full rank ("basis-ness")
- feasibility (A(:,B) \RHS ≥ 0)
- If pass both tests, compute objective
- Maintain running winner, return at end

Degeneracy

- Not every set of m variables yields a corner
- some have rank < m (not a basis)
- some are infeasible
- Can the reverse be true? Can two bases yield the same corner? (Assume nonsingular standard-form LP.)

Degeneracy

x	y	u	v	w	RHS
1	1	1	0	0	4
2	5	0	1	0	12
1	2	0	0	1	$16 / 3$

1	0	0	-2	5	$8 / 3$
0	1	0	1	-2	$4 / 3$
0	0	1	1	-3	0

1	0	2	0	-1	$8 / 3$
0	1	-1	0	1	$4 / 3$
0	0	1	1	-3	0

Degeneracy in 3D

Degeneracy in 3D

Neighboring bases

- Two bases are neighbors if they share (m-l) variables
- Neighboring feasible bases correspond to vertices connected by an edge (note: degeneracy)
x y z u v w RHS
$\begin{array}{lllllll}1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{lllllll}0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{lllllll}0 & 0 & 1 & 0 & 0 & 1 & 1\end{array}$

Improving our search

- Naïve: enumerate all possible bases
- Smarter: maybe neighbors of good bases are also good?
- Simplex algorithm: repeatedly move to a neighboring basis to improve objective
- important advantage: rank-I update is fast

Example

 $\max 2 x+3 y$ s.t. $x+y \leq 4$$2 x+5 y \leq 12$
$x+2 y \leq 5$

elim $y \rightarrow$ next

Example

 $\max 2 x+3 y$ s.t. $x+y \leq 4$$2 x+5 y \leq 12$
$x+2 y \leq 5$

$$
\begin{gathered}
\frac{2.11}{4}=6=80.5 \\
\sqrt{, 6 / 0.6}=813 \\
+211^{2}=1
\end{gathered}
$$

x	y	s	$\mathrm{t}^{.2}$	u	RHS
0.4	1	0	0.2	0	2.4
0.6	0	1	-0.2	0	1.6
0.2	0	0	-0.4	1	0.2
0.8	0	0	-0.6	0	\uparrow

Example

 $\max 2 x+3 y$ s.t. $x+y \leq 4$$2 x+5 y \leq 12$
$x+2 y \leq 5$

x	y	s	t	u	RUS
1	0	0	-2	5	1
0	1	0	1	-2	2
0	0	1	1	-3	1
0	$\rightarrow 2$				
0	0	0	1	-4	\uparrow

use 5 row $\left(3^{\text {cd }}\right)$ to slim t from otter rows

Example

 $\max 2 x+3 y$ s.t. $x+y \leq 4$$2 x+5 y \leq 12$
$x+2 y \leq 5$

x	y	s	t	u	RHS
1	0	2	0	-1	3
0	1	-1	0	1	1
0	0	1	1	-3	1
0	0	-1	0	-1	\uparrow

