15-780: Graduate AI Lecture 1. Logic

Geoff Gordon (this lecture)
Tuomas Sandholm

TAs Erik Zawadzki, Abe Othman

Logic

Why logic?

- Search: can compactly write down, solve problems like Sudoku
- Reasoning: figure out consequences of the knowledge we've given our agent
- ... and, logical inference is a special case of probabilistic inference

Propositional logic

- Constants: Tor F
- Variables: x, y (values Tor F)
- Connectives: $\wedge, ~ \vee, ~ ᄀ$
- Can get by w/ just NAND

George Boole 1815-1864

- Sometimes also add others:

$$
\oplus, \Rightarrow, \Leftrightarrow, \ldots
$$

Propositional logic

- Build up expressions like $\neg x \Rightarrow y$
- Precedence: $\neg, \wedge, \vee, \Rightarrow$
- Terminology: variable or constant with or w/o negation = literal
- Whole thing = formula or sentence

Expressive variable names

- Rather than variable names like x, y, may use names like "rains" or "happy(John)"
- For now, "happy(John)" is just a string with no internal structure
- there is no "John"
- happy(John) \Rightarrow ᄀhappy(Jack) means
the same as $x \Rightarrow \neg y$

But what does it mean?

- A formula defines a mapping
(assignment to variables) $\mapsto\{T, F\}$
- Assignment to variables $=$ model
- For example, formula $\neg x$ yields mapping:

x	$\neg x$
T	F
F	T

More truth tables

x	y	$x \wedge y$
T	T	T
T	F	F
F	T	F
F	F	F

x	y	$x \vee y$
T	T	T
T	F	T
F	T	T
F	F	F

Truth table for implication

- $(a \Rightarrow b)$ is logically equivalent to $(\neg a \vee b)$
- If a is True, b must be True too
- If a False, no requirement on b
- E.g., "if I go to the movie I will have popcorn": if no movie, may or may not have popcorn

a	b	$a \Rightarrow b$
T	T	T
T	F	F
F	T	T
F	F	T

Complex formulas

- To evaluate a bigger formula
- $(x \vee y) \wedge(x \vee \neg y)$ when $x=F, y=F$
- Build a parse tree
- Fill in variables at leaves using model
- Work upwards using truth tables for connectives

Another example

$(x \vee y) \Rightarrow z \quad \mathrm{x}=\mathrm{F}, \mathrm{y}=\mathrm{T}, \mathrm{z}=\mathrm{F}$

Questions about models and sentences

- How many models make a sentence true?
- Sentence is satisfiable if true in some model (famous NP-complete problem)
- If not satisfiable, it is a contradiction (false in every model)
- A sentence is valid if it is true in every model (called a tautology)

Questions about models and sentences

- How is the variable X set in $\{$ some, all $\}$ satisfying models?
- This is the most frequent question an agent would ask: given my assumptions, can I conclude X? Can I rule X out?
- SAT answers all the above questions

Bigger

Examples

3-coloring

Sudoku

SuDoku Puzzle								
		6	3			4	7	
		5	8		7			
1							2	3
	6		1	9				
4	9							
						1	9	8
6					3	5		
		8		5				2
	7	4			6		8	

http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html

Constraint satisfaction problems

- Like SAT, but:

$\wedge(\overline{a r} \cup \overline{b D}) \sim(\overline{a B} \cup \overline{b B}) \wedge(\bar{G} \cup \bar{b})$ $\wedge(\overline{a R} \cup \overline{Z R})$
- variable domains are arbitrary (vs.TF)
- complex constraints (vs. $a \vee b \vee \neg c$)
- Sudoku: "at most one 3 in row 5"
- Can translate $S A T \Leftrightarrow C S P$
- often CSP more compact

Minesweeper

image courtesy Andrew Moore

Propositional planning

init: have(cake)
goal: have(cake), eaten(cake)
eat(cake):
pre: have(cake)
eff: -have(cake), eaten(cake)
bake(cake):

> pre: -have(cake)
> eff: have(cake)

Other important logic problems

- Scheduling (e.g., of factory production)
- Facility location
- Circuit layout
- Multi-robot planning

Handling uncertainty

- Minesweeper: what if no safe move?
- Say each mine initially present w/ prob p
- Common situation: independent "Nature" choices, deterministic rules thereafter
- Logic represents deterministic rules \Rightarrow use logical reasoning as subroutine

		1			1			1	
1	1	1	1	1	1	1	1	1	

Handling uncertainty

- Minesweeper: what if no safe move?
- Say each mine initially present w/ prob p
- Common situation: independent "Nature" choices, deterministic rules thereafter
- Logic represents deterministic rules \Rightarrow use logical reasoning as subroutine

	\otimes	1		\otimes	1		\otimes	1	
1	1	1	1	1	1	1	1	1	

Handling uncertainty

- Minesweeper: what if no safe move?
- Say each mine initially present w/ prob p
- Common situation: independent "Nature" choices, deterministic rules thereafter
- Logic represents deterministic rules \Rightarrow use logical reasoning as subroutine

\otimes		1	\otimes		1	\otimes		1	\otimes
1	1	1	1	1	1	1	1	1	

Handling uncertainty

- Minesweeper: what if no safe move?
- Say each mine initially present w/ prob p
- Common situation: independent "Nature" choices, deterministic rules thereafter
- Logic represents deterministic rules \Rightarrow use logical reasoning as subroutine

\otimes		1	\otimes		1	\otimes		1	
1	1	1	1	1	1	1	1	1	\otimes

Working with

formulas

Truth tables get big fast

x	y	z	$(x \vee y) \Rightarrow z$
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

Truth tables get big fast

x	y	z	a	$(x \vee y \vee a) \Rightarrow z$
T	T	T	T	
T	T	F	T	
T	F	T	T	
T	F	F	T	
F	T	T	T	
F	T	F	T	
F	F	T	T	
F	F	F	T	
T	T	T	F	
T	T	F	F	
T	F	T	F	
T	F	F	F	
F	T	T	F	
F	T	F	F	
F	F	T	F	
F	F	F	F	

Definitions

- Two sentences are equivalent, $A \equiv B$, if they have same truth value in every model
- (rains \Rightarrow pours $) \equiv(\neg$ rains \vee pours $)$
- reflexive, transitive, symmetric
- Simplifying = transforming a formula into a simpler, equivalent formula

Transformation rules

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \quad \text { double-negation elimination }
\end{aligned}
$$

$(\alpha \wedge(\beta \vee \gamma)) \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma))$ distributivity of \wedge over \vee $(\alpha \vee(\beta \wedge \gamma)) \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma))$ distributivity of \vee over \wedge

$$
\alpha, \beta, \gamma \text { are arbitrary formulas }
$$

More rules

$$
\begin{aligned}
& (\alpha \Rightarrow \beta) \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
& (\alpha \Rightarrow \beta) \equiv(\neg \alpha \vee \beta) \text { implication elimination } \\
& (\alpha \Leftrightarrow \beta) \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \text { biconditional elimination } \\
& \neg(\alpha \wedge \beta) \equiv(\neg \alpha \vee \neg \beta) \quad \text { de Morgan } \\
& \neg(\alpha \vee \beta) \equiv(\neg \alpha \wedge \neg \beta) \quad \text { de Morgan }
\end{aligned}
$$

α, β are arbitrary formulas

Still more rules...

- ...can be derived from truth tables

- For example:
- $(a \vee \neg a) \equiv$ True
- (True $\vee a) \equiv$ True (T elim)
- (False $\wedge a) \equiv$ False (F elim)

Example

$$
(a \vee \neg b) \wedge(a \vee \neg c) \wedge(\neg(b \vee c) \vee \neg a)
$$

Forms

Normal forms

- A normal form is a standard way of writing a formula
- E.g., conjunctive normal form (CNF)
- conjunction of disjunctions of literals
- $(x \vee y \vee \neg z) \wedge(x \vee \neg y) \wedge(z)$
- Each disjunct called a clause
- Any formula can be transformed into CNF w/o changing meaning

CNF cont'd

$$
\begin{aligned}
& \text { happy }(\text { John }) \wedge \\
& (\neg \text { happy }(\text { Bill }) \vee \text { happy }(\text { Sue })) \wedge \\
& \operatorname{man}(\text { Socrates }) \wedge \\
& (\neg \text { man }(\text { Socrates }) \vee \text { mortal }(\text { Socrates }))
\end{aligned}
$$

- Often used for storage of knowledge database - called knowledge base or KB
- Can add new clauses as we find them out
- Each clause in KB is separately true (if KB is)

Another normal form: DNF

- DNF = disjunctive normal form = disjunction of conjunctions of literals
- Doesn't compose the way CNF does: can't just add new conjuncts w/o changing meaning of $K B$
(rains \vee pours $) \wedge(\neg$ pours \Rightarrow fishing $)$

Transforming to CNF or DNF

- Naive algorithm:
- replace all connectives with $\wedge \vee \neg$
- move negations inward using De Morgan's laws and double-negation
- repeatedly distribute over \wedge over \vee for

DNF (v over \wedge for $C N F$)

Example

- Put in CNF:

$$
(a \vee \neg c) \wedge \neg(a \wedge b \wedge d \wedge \neg e)
$$

Discussion

- Problem with naive algorithm: it's exponential! (Space, time, size of result.)
- Each use of distributivity can almost double the size of a subformula

A smarter transformation

- Can we avoid exponential blowup in CNF?
- Yes, if we're willing to introduce new variables
- G. Tseitin. On the complexity of derivation in propositional calculus. Studies in Constrained Mathematics and Mathematical Logic, 1968.

Tseitin example

- Put the following formula in CNF:

$$
(a \wedge b) \vee((c \vee d) \wedge e)
$$

Tseitin transformation

- Introduce temporary variables

$$
\begin{aligned}
& \text { - } x=(a \wedge b) \\
& \circ y=(c \vee d) \\
& \circ z=(y \wedge e)
\end{aligned}
$$

Tseitin transformation

- To ensure $x=(a \wedge b)$, want

$$
\begin{aligned}
& \circ x \Rightarrow(a \wedge b) \\
& \circ(a \wedge b) \Rightarrow x
\end{aligned}
$$

Tseitin transformation

$$
\begin{aligned}
& \circ x \Longrightarrow(a \wedge b) \\
& (\neg x \vee(a \wedge b)) \\
& \circ(\neg x \vee a) \wedge(\neg x \vee b)
\end{aligned}
$$

Tseitin transformation

$$
\begin{aligned}
& \circ(a \wedge b) \Rightarrow x \\
& (\neg(a \wedge b) \vee x) \\
& (\neg a \vee \neg b \vee x)
\end{aligned}
$$

Tseitin transformation

- To ensure $y=(c \vee d)$, want

$$
\begin{aligned}
& \circ \Rightarrow(c \vee d) \\
& \circ(c \vee d) \Rightarrow y
\end{aligned}
$$

Tseitin transformation

$$
\begin{aligned}
& y \Rightarrow(c \vee d) \\
& (\neg y \vee c \vee d) \\
& (c \vee d) \Rightarrow y \\
& ((\neg c \wedge \neg d) \vee y) \\
& (\neg c \vee y) \wedge(\neg d \vee y)
\end{aligned}
$$

Tseitin transformation

$$
\begin{aligned}
& \text { - Finally } z=(y \wedge e) \\
& \text { - } z \Rightarrow(y \wedge e) \equiv(\neg z \vee y) \wedge(\neg z \vee e) \\
& \text { - }(y \wedge e) \Rightarrow z \equiv(\neg y \vee \neg e \vee z)
\end{aligned}
$$

Tseitin end result

$$
(a \wedge b) \vee((c \vee d) \wedge e) \equiv
$$

$$
(\neg x \vee a) \wedge(\neg x \vee b) \wedge(\neg a \vee \neg b \vee x) \wedge
$$

$$
(\neg y \vee c \vee d) \wedge(\neg c \vee y) \wedge(\neg d \vee y) \wedge
$$

$$
(\neg z \vee y) \wedge(\neg z \vee e) \wedge(\neg y \vee \neg e \vee z) \wedge
$$

$$
(x \vee z)
$$

Compositional

Semantics

Semantics

- Recall: meaning of a formula is a function

$$
\text { models } \mapsto\{T, F\}
$$

- Why this choice? So that meanings are compositional
- Write $[\alpha]$ for meaning of formula α
- $[\alpha \wedge \beta](M)=[\alpha](M) \wedge[\beta](M)$
- Similarly for \vee, \neg, etc.

Proofs

Entailment

- Sentence A entails sentence $B, A \vDash B$, if B is true in every model where A is - same as saying that $(A \Rightarrow B)$ is valid

Proof tree

- A tree with a formula at each node
- At each internal node, children \vDash parent
- Leaves: assumptions or premises
- Root: consequence
- If we believe assumptions, we should also believe consequence

Proof tree example
rains \Rightarrow pours
pours n outside \Rightarrow rusty
rains
outside

Proof by contradiction

- Assume opposite of what we want to prove, show it leads to a contradiction
- Suppose we want to show $K B \vDash S$
- Write $K B$ ' for $(K B \wedge \neg S)$
- Build a proof tree with
- assumptions drawn from clauses of $K B^{\prime}$
- conclusion $=F$
- $\operatorname{so},(K B \wedge \neg S) \models F($ contradiction $)$

Proof by contradiction
kB
rains \Rightarrow pours
pours n outside \Rightarrow rusty
rains
outside
Trusty
© negation of desired conclusion

Proof by contradiction kB

$$
\begin{aligned}
& \text { rains } \Rightarrow \text { pours } \Rightarrow \text { Fpours } \\
& \text { pours } \text { ourside } \Rightarrow \text { rusty } \\
& \text { rains } \\
& \text { oukside } \\
& \text { arusty } \\
& \text { Cegasty } \\
& \text { conclun of desined }
\end{aligned}
$$

