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ABSTRACT 
O2 is a new communication protocol and implementation 
for music systems that aims to replace Open Sound Con-
trol (OSC). Many computer musicians routinely deal with 
problems of interconnection in local area networks, unre-
liable message delivery, and clock synchronization. O2 
solves these problems, offering named services, automat-
ic network address discovery, clock synchronization, and 
a reliable message delivery option, as well as inter-
operability with existing OSC libraries and applications. 
Aside from these new features, O2 owes much of its de-
sign to OSC and is mostly compatible with and similar to 
OSC. O2 addresses the problems of inter-process com-
munication with a minimum of complexity. 

1. INTRODUCTION 
Music software and other artistic applications of com-

puters are often organized as a collection of communi-
cating processes. Simple protocols such as MIDI [7] and 
Open Sound Control (OSC) [1] have been very effective 
for this, allowing users to piece together systems in a 
modular fashion. Shared communication protocols allow 
implementers to use a variety of languages, apply off-the-
shelf applications and devices, and interface with low-
cost sensors and actuators. We introduce a new protocol, 
O2, in order to provide some important new features. 

A common problem with existing protocols is initializ-
ing connections. For example, typical OSC servers do not 
have fixed IP addresses and cannot be found via DNS 
servers as is common with Web servers. Instead, OSC 
users usually enter IP addresses and port numbers manu-
ally. The numbers cannot be “compiled in” to code be-
cause IP addresses are dynamically assigned and could 
change between development, testing, and performance. 
O2 allows programmers to create and address services 
with fixed human-readable names. 

Another desirable features is timed message deliveries. 
One powerful method of reducing timing jitter in net-
works is to pre-compute commands and send them in 
advance for precise delivery according to timestamps. O2 
facilitates this forward synchronous approach [6] with 
timestamps and clocks. 

Finally, music applications often have two conflicting 
requirements for message delivery. Sampled sensor data 

should be sent with minimum latency. Lost data is of 
little consequence since a new sensor reading will soon 
follow. This calls for a best-effort delivery mechanism 
such as UDP. On the other hand, some messages are crit-
ical, e.g. “stop now.” These critical messages are best 
sent with a reliable delivery mechanism such as TCP. 

Our goal has been to create a simple, extensible com-
munication mechanism for modern computer music (and 
other) systems. O2 is inspired by OSC, but there are some 
important differences. While OSC does not specify de-
tails of the transport mechanism, O2 uses TCP and UDP 
over IP (which in turn can use Ethernet, WiFi, and other 
data link layers). By assuming a common IP transport 
layer, it is straightforward to add discovery, a reliable 
message option, and accurate timing. 

In the following section, we describe O2, focusing on 
novel features. Section 3 presents related work. Then, in 
Sections 4 and 5, we describe the design and implementa-
tion, and in Section 6, we describe how O2 interoperates 
with other technologies. Section 7 describes our current 
implementation status, and a summary and conclusions 
are presented in Section 8. 

2. O2 FEATURES AND API 
The main organization of O2 is illustrated in Figure 1. 
Communication takes place between “services” which are 
addressed by name using an extension of OSC addressing 
in which the first node is considered a service name. For 
example, "/synth/filter/cutoff" might address a node 
in the "synth" service. To create a service, one writes 

o2_initialize(“application”);  // one-time startup 
o2_add_service(“service”);    // per-service startup 
o2_add_method(“address”, “types”, handler, data); 

where “application” is an application name, used so 
that multiple O2 applications can co-exist on one net-
work, and o2_add_method is called to install a handler 
for each node, where each “address” includes the service 
name as the first node. 

Services are automatically detected and connected by 
O2. This solves the problem of manually entering IP ad-
dresses and port numbers. In addition, O2 runs a clock 
synchronization service to establish a shared clock across 
the distributed application. The master clock is provided 
to O2 by calling: 

o2_set_clock(clock_callback_fn, info_ptr); 
where clock_callback_fn is a function pointer that pro-
vides a time reference, and info_ptr is a parameter to pass 
to the function. The master clock can be the local system 
time of some host, an audio sample count converted to 
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seconds (for synchronizing to audio), SMPTE time code, 
GPS, or any other time reference. 

Messages can be sent either with lowest latency or reli-
ably using two “flavors” of send function: 

       o2_send (“address”, time, “types”, val1, val2, …); 
o2_send_cmd (“address”, time, “types”, val1, val2, …); 

where “types” (in the C implementation) specifies the 
types of parameters, e.g. "if" means val1 is an integer 
and val2 is a float. The first form uses UDP, which is 
most common for OSC, and the second form sends a 
“command” using TCP, ensuring that the message will be 
delivered. Notice that every send command specifies a 
delivery time. 

 
Figure 1. A distributed O2 application showing pro-
cesses connected by TCP/IP (wireless and/or wired) 
over a local area network, running multiple services, 
with additional single-hop links over Bluetooth, ZigBee, 
etc. to both services and simple clients that do not re-
ceive messages. Services on Process A may run within a 
single process or in separate processes, and all process-
es may act as clients, sending messages to any service. 

3. RELATED WORK 
Open Sound Control (OSC) has been extremely suc-

cessful as a communication protocol for a variety of mu-
sic and media applications. The protocol is simple, exten-
sible, and supported by many systems and implementa-
tions. The basic design supports a hierarchical address 
space of variables that can be set to typed values using 
messages. The messages can convey multiple values, and 
thus OSC may be viewed as a remote function or method 
invocation protocol. One very appealing quality of OSC, 
as compared to distributed object systems (such as COR-
BA [2]), is that OSC is very simple. In particular, the 
OSC address space is text-based and similar to a URL. It 
has been argued that OSC would be more efficient if it 
used fixed-length binary addresses, but OSC addresses 
are usually human-readable and do not require any pre-
processing or run-time lookup that would be required by 
more efficient message formats. The success of OSC 
suggests that users are happy with the speed and general-
ly are not interested in greater efficiency at the cost of 
more complexity.  

Clock synchronization techniques are widely known. 
Madgwick et al. [5] describe one for OSC that uses 
broadcast from a master and assumes bounds on clock 
drift rates. Brandt and Dannenberg describe a round-trip 
method with proportional-integral controller [6]. OSC 

itself supports timestamps, but only in message bundles, 
and there is no built-in clock synchronization. 

Discovery in O2 automatically shares IP addresses and 
port numbers to establish connections between processes. 
The liboscqs1 and OSCgroups2 library and osctools3 pro-
ject support discovery through zeroconf [3] and other 
systems. Also, Eales and Foss explored discovery proto-
cols in connection with OSC for audio control [4], how-
ever their emphasis is on querying the structure of an 
OSC address space rather than discovery of servers on 
the network. 

Software developers have also discussed and imple-
mented OSC over TCP for reliable delivery. Systems 
such as liblo4 offer either UDP or TCP, but not both un-
less multiple servers are set up, one for each protocol. 

4. DESIGN DETAILS 
In designing O2, we considered that networking, embed-
ded computers, laptops, and mobile devices have all ad-
vanced considerably since the origins of OSC. In particu-
lar, embedded computers running Linux or otherwise 
supporting TCP/IP are now small and inexpensive, and 
the Internet of Things (IOT) will spur further develop-
ment of low-cost, low-power, networked sensors and 
controllers. While OSC deliberately avoided dependency 
on a particular transport technology to enable low-cost, 
lightweight communication, O2 assumes that TCP/IP is 
available to (most) hosts. O2 uses that assumption to of-
fer new features. We also use floating point for simple 
clock synchronization calculations because floating point 
hardware has become commonplace even on low-cost 
microcontrollers, or at least microcontrollers are fast 
enough to emulate floating point as needed.  

4.1 Addresses in O2 

In OSC, most applications require users to manually set 
up connections by entering IP and port numbers. In con-
trast, O2 provides “services.” An O2 service is just a 
unique name used to route messages within a distributed 
application. O2 addresses begin with the service name, 
making services the top-level node of a global address 
space. Thus, while OSC might direct a message to 
"/filter/cutoff" at IP 128.2.1.39, port 3, a complete 
O2 address would be written simply as 
"/synth/filter/cutoff", where "synth" is the service 
name. 

4.2 UDP vs. TCP for Message Delivery 

The two main protocols for delivering data over IP are 
TCP and UDP. TCP is “reliable” in that messages are 
retransmitted until they are successfully received, and 
subsequent messages are queued to insure in-order deliv-
ery. UDP messages are often more appropriate for real-
time sensor data because new data can be delivered out of 
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order rather than waiting for delivery or even retransmis-
sion of older data. O2 supports both protocols. 

4.3 Time Stamps and Synchronization 

O2 protocols include clock synchronization and time-
stamped messages. Unlike OSC, every message is time-
stamped, but one can always send 0.0 to mean “as soon 
as possible.” Synchronization is initiated by clients, 
which communicate independently with the master. 

5. IMPLEMENTATION 
The O2 implementation is small and leverages existing 
functionality in TCP/IP. In this section, we describe the 
implementation of the important new features of O2. 

5.1 Service Discovery 

To send a message, an O2 client must map the service 
name from the address (or address pattern) to an IP ad-
dress and port number. We considered existing discovery 
protocols such as ZeroConf (also known as Rendezvous 
and Avahi), but decided a simpler protocol based on UDP 
broadcast messages would be smaller, more portable to 
small systems, and give more flexibility if new require-
ments arise. 

The O2 discovery protocol uses 5 fixed “discovery” 
port numbers. We use 5 because we cannot guarantee any 
one port is unallocated and multiple O2 applications (up 
to 5) might run on a single host, each requiring a port. 
When O2 is initialized, O2 allocates a server port and 
broadcasts the server port, host IP address, local service 
names and an application name to the 5 discovery ports. 
Any process running an instance of O2 with the same 
application name will receive one of these broadcasts, 
establish TCP and IP sockets connected to the remote 
process, and store the service name and sockets in a table. 
Multiple independent applications can share the same 
local area network without interference if they have dif-
ferent application names. O2 retransmits discovery in-
formation periodically since there is no guarantee that all 
processes receive the first transmissions. 

To direct a message to a service, the client simply 
looks in the lookup table for the appropriate socket and 
sends the message using TCP or UDP. O2 allows multi-
ple services within a single process without confusion 
because every message contains its destination service 
name. 

5.2 Timestamps and Clock Synchronization 

O2 uses its own protocol to implement clock synchroni-
zation. O2 looks for a service named "_cs" and when 
available, sends messages to "/_cs/ping" with a reply-to 
address and sequence number. The service sends the cur-
rent time and sequence number to the reply-to address. 
The client then estimates the server’s time as the reported 
time plus half the round-trip time. All times are IEEE 
standard double-precision floats in units of seconds since 
the start of the clock sync service. O2 does not require or 
provide absolute date and time values. 

5.3 Replies and Queries 

Normally, O2 messages do not send replies, and we do 
not propose any built-in query system at this time, mainly 
because queries never caught on in OSC implementa-
tions. Unlike classic remote procedure call systems im-
plementing synchronous calls with return values, real-
time music systems are generally designed around asyn-
chronous messages to avoid blocking to wait for a reply. 

Rather than build in an elaborate query/reply mecha-
nism, we advocate a very simple application-level ap-
proach where the “query” sends a reply-to address string. 
The handler for a query sends the reply as an ordinary 
message to a node under the reply-to address. For exam-
ple, if the reply-to address in a "/synth/cpuload/get" 
message is "/control/synthload", then the handler for 
"/synth/cpuload/get" sends the time back to (by con-
vention) "/control/synthload/get-reply". Optionally, 
an error response could be sent to  "/control/synth- 
load/get-error", and other reply addresses or protocols 
can be easily constructed at the application level. 

5.4 Address Pattern Matching and Message Delivery 

To facilitate the implementation of O2, we (mostly) ad-
here to OSC message format. Notice that an O2 server 
can scan an address string for the “/” after the service 
name to obtain an OSC-style address pattern. This sub-
string, type information, and data can be passed to many 
existing OSC implementations for further processing, 
eliminating the need to implement an all-new message 
parser. Similarly, existing OSC marshaling code (which 
converts data to/from messages) can be used to construct 
messages for O2. 

OSC has been criticized for the need to perform poten-
tially expensive parsing and pattern matching to deliver 
messages. O2 adds a small extension for efficiency:  The 
client can use the form "!synth/filter/cutoff", 
where the initial “!” means the address has no “wild-
cards.” If the “!” is present, the receiver can treat the en-
tire remainder of the address, “synth/filter/cutoff” as a 
key and do a hash-table lookup of the handler in a single 
step. This is merely an option, as a node-by-node pattern 
match of "/synth/filter/cutoff" should return the 
same handler function. 

6. INTEROPERATION 
OSC is widely used by existing software. OSC-based 
software can be integrated with O2 with minimal effort, 
providing a migration path from OSC to O2. O2 also of-
fers the possibility of connecting over protocols such as 
Bluetooth5, MIDI [7], or ZigBee6.  

6.1 Receiving from OSC 

To receive incoming OSC messages, call 
o2_create_osc_port("service", port_num); 

which tells O2 to begin receiving OSC messages on 
port_num, directing them to service, which is normally 
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local, but could also be remote. Since O2 uses OSC-
compatible types and parameter representations, this adds 
very little overhead to the implementation. If bundles are 
present, the OSC NTP-style timestamps must be convert-
ed to O2 timestamps before messages are handed off. 

6.2 Sending to OSC 

To forward messages to an OSC server, call 
o2_delegate_to_osc("service", ip, port_num); 

that tells O2 to create a virtual service (name given by the 
service parameter), which converts incoming O2 mes-
sages to OSC messages and forwards them to the given ip 
address and port_num. Now, any O2 client on the net-
work can discover and send messages to the OSC server. 

6.3 Other Transports 

Handling OSC messages from other communication 
technologies poses two interesting problems: What to do 
about discovery, and what exactly is the protocol? The 
O2 API can also be supported directly on clients and 
servers connected by non-IP technologies. As an exam-
ple, let us assume we want to use O2 on a Bluetooth de-
vice (we will call it Process D, see Figure 1) that offers 
the “Sensor” service. We require a direct Bluetooth con-
nection to Process B running O2. Process B will claim to 
offer the “Sensor” service and transmit that through the 
discovery protocol to all other O2 processes connected 
via TCP/IP. Any message to “Sensor” will be delivered 
via IP to Process B, which will then forward the message 
to Host D via Bluetooth. Similarly, programs running on 
Host D can send O2 messages to Process B via Bluetooth 
where the messages will either be delivered locally or be 
forwarded via TCP/IP to their final service destination. It 
is even possible for the destination to include a final for-
warding step though another Bluetooth connection to 
another computer, for example there could be services 
running on computers attached to Process C in Figure 1. 

Non-IP networks are supported by optional libraries, 
essentially giving O2 a “plug-in” architecture to ensure 
both a small core and flexibility to create extensions. 

In addition to addressing services, O2 sometimes 
needs to address the O2 subsystem itself, e.g. clock syn-
chronization runs even in processes with no services. 
Services starting with digits e.g. "128.2.60.110:8000", 
are interpreted as an IP:Port pair. To reach an attached 
non-IP host, a suffix may be attached, e.g. Host D in Fig-
ure 1 might be addressed by "128.2.60.110:8000:bt1". 

7. CURRENT STATUS 
A prototype of O2 in the C programming language is 
running the discovery algorithm and sending messages. 
Performance measurements show that CPU time is domi-
nated by UDP packet send and receive time, even when 
messages are sent to another process on the same host (no 
network link is involved). We were unable to measure 
any impact of discovery or service lookup in a test where 
two processes send a message back and forth as fast as 
possible. In this test, total message delivery (real or 
“wall”) time is about 13µs, or 77,000 messages per se-
cond, on a 2.4 GHz Intel Core i7 processor, which is fast-

er than OSC using liblo due to some minor differences in 
the way messages are accepted from the network. 

We believe O2 is a good candidate for OSC-like appli-
cations in the future. A number of extensions are possi-
ble, and future work includes extensions to allow discov-
ery beyond local area networks, audio and video stream-
ing, and dealing with network address translation (NAT). 

O2 is available: https://github.com/rbdannenberg/o2. 

8. SUMMARY AND CONCLUSIONS 
O2 is a new protocol for real-time interactive music sys-
tems. It can be seen as an extension of Open Sound Con-
trol, keeping the proven features and adding solutions to 
some common problems encountered in OSC systems. In 
particular, O2 allows applications to address services by 
name, eliminating the need to manually enter IP address-
es and port numbers to form connected components. In 
addition, O2 offers a standard clock synchronization and 
time-stamping system that is suitable for local area net-
works. O2 offers two classes of messages so that “com-
mands” can be delivered reliably and sensor data can be 
delivered with minimal latency. We have implemented a 
prototype of O2 that is similar in size, complexity and 
speed to an Open Sound Control implementation. Alt-
hough O2 assumes that processes are connected using 
TCP/IP, we have also described how O2 can be extended 
over a single hop to computers via Bluetooth, ZigBee or 
other communication links. 
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