
Published as: Roger B. Dannenberg and Zhang Chi. “O2: Rethinking Open Sound Control,” in Proceedings of the 42nd International
Computer Music Conference, Utrecht: HKU University of the Arts Utrecht, 2016, pp. 493-496.

493 Proceedings of the International Computer Music Conference 2016

O2: Rethinking Open Sound Control

Roger B. Dannenberg Zhang Chi
Carnegie Mellon University

rbd@cs.cmu.edu
Carnegie Mellon and Tianjin University

zcdirk@gmail.com

ABSTRACT
O2 is a new communication protocol and implementation
for music systems that aims to replace Open Sound Con-
trol (OSC). Many computer musicians routinely deal with
problems of interconnection in local area networks, unre-
liable message delivery, and clock synchronization. O2
solves these problems, offering named services, automat-
ic network address discovery, clock synchronization, and
a reliable message delivery option, as well as inter-
operability with existing OSC libraries and applications.
Aside from these new features, O2 owes much of its de-
sign to OSC and is mostly compatible with and similar to
OSC. O2 addresses the problems of inter-process com-
munication with a minimum of complexity.

1. INTRODUCTION
Music software and other artistic applications of com-

puters are often organized as a collection of communi-
cating processes. Simple protocols such as MIDI [7] and
Open Sound Control (OSC) [1] have been very effective
for this, allowing users to piece together systems in a
modular fashion. Shared communication protocols allow
implementers to use a variety of languages, apply off-the-
shelf applications and devices, and interface with low-
cost sensors and actuators. We introduce a new protocol,
O2, in order to provide some important new features.

A common problem with existing protocols is initializ-
ing connections. For example, typical OSC servers do not
have fixed IP addresses and cannot be found via DNS
servers as is common with Web servers. Instead, OSC
users usually enter IP addresses and port numbers manu-
ally. The numbers cannot be “compiled in” to code be-
cause IP addresses are dynamically assigned and could
change between development, testing, and performance.
O2 allows programmers to create and address services
with fixed human-readable names.

Another desirable features is timed message deliveries.
One powerful method of reducing timing jitter in net-
works is to pre-compute commands and send them in
advance for precise delivery according to timestamps. O2
facilitates this forward synchronous approach [6] with
timestamps and clocks.

Finally, music applications often have two conflicting
requirements for message delivery. Sampled sensor data

should be sent with minimum latency. Lost data is of
little consequence since a new sensor reading will soon
follow. This calls for a best-effort delivery mechanism
such as UDP. On the other hand, some messages are crit-
ical, e.g. “stop now.” These critical messages are best
sent with a reliable delivery mechanism such as TCP.

Our goal has been to create a simple, extensible com-
munication mechanism for modern computer music (and
other) systems. O2 is inspired by OSC, but there are some
important differences. While OSC does not specify de-
tails of the transport mechanism, O2 uses TCP and UDP
over IP (which in turn can use Ethernet, WiFi, and other
data link layers). By assuming a common IP transport
layer, it is straightforward to add discovery, a reliable
message option, and accurate timing.

In the following section, we describe O2, focusing on
novel features. Section 3 presents related work. Then, in
Sections 4 and 5, we describe the design and implementa-
tion, and in Section 6, we describe how O2 interoperates
with other technologies. Section 7 describes our current
implementation status, and a summary and conclusions
are presented in Section 8.

2. O2 FEATURES AND API
The main organization of O2 is illustrated in Figure 1.
Communication takes place between “services” which are
addressed by name using an extension of OSC addressing
in which the first node is considered a service name. For
example, "/synth/filter/cutoff" might address a node
in the "synth" service. To create a service, one writes

o2_initialize(“application”); // one-time startup
o2_add_service(“service”); // per-service startup
o2_add_method(“address”, “types”, handler, data);

where “application” is an application name, used so
that multiple O2 applications can co-exist on one net-
work, and o2_add_method is called to install a handler
for each node, where each “address” includes the service
name as the first node.

Services are automatically detected and connected by
O2. This solves the problem of manually entering IP ad-
dresses and port numbers. In addition, O2 runs a clock
synchronization service to establish a shared clock across
the distributed application. The master clock is provided
to O2 by calling:

o2_set_clock(clock_callback_fn, info_ptr);
where clock_callback_fn is a function pointer that pro-
vides a time reference, and info_ptr is a parameter to pass
to the function. The master clock can be the local system
time of some host, an audio sample count converted to

Copyright: © 2016 Roger B. Dannenberg and Zhang Chi. This is an
open-access article distributed under the terms of the Creative Commons
Attribution License 3.0 Unported, which permits unrestricted use, distri-
bution, and reproduction in any medium, provided the original author
and source are credited.

 Proceedings of the International Computer Music Conference 2016 494

seconds (for synchronizing to audio), SMPTE time code,
GPS, or any other time reference.

Messages can be sent either with lowest latency or reli-
ably using two “flavors” of send function:

 o2_send (“address”, time, “types”, val1, val2, …);
o2_send_cmd (“address”, time, “types”, val1, val2, …);

where “types” (in the C implementation) specifies the
types of parameters, e.g. "if" means val1 is an integer
and val2 is a float. The first form uses UDP, which is
most common for OSC, and the second form sends a
“command” using TCP, ensuring that the message will be
delivered. Notice that every send command specifies a
delivery time.

Figure 1. A distributed O2 application showing pro-
cesses connected by TCP/IP (wireless and/or wired)
over a local area network, running multiple services,
with additional single-hop links over Bluetooth, ZigBee,
etc. to both services and simple clients that do not re-
ceive messages. Services on Process A may run within a
single process or in separate processes, and all process-
es may act as clients, sending messages to any service.

3. RELATED WORK
Open Sound Control (OSC) has been extremely suc-

cessful as a communication protocol for a variety of mu-
sic and media applications. The protocol is simple, exten-
sible, and supported by many systems and implementa-
tions. The basic design supports a hierarchical address
space of variables that can be set to typed values using
messages. The messages can convey multiple values, and
thus OSC may be viewed as a remote function or method
invocation protocol. One very appealing quality of OSC,
as compared to distributed object systems (such as COR-
BA [2]), is that OSC is very simple. In particular, the
OSC address space is text-based and similar to a URL. It
has been argued that OSC would be more efficient if it
used fixed-length binary addresses, but OSC addresses
are usually human-readable and do not require any pre-
processing or run-time lookup that would be required by
more efficient message formats. The success of OSC
suggests that users are happy with the speed and general-
ly are not interested in greater efficiency at the cost of
more complexity.

Clock synchronization techniques are widely known.
Madgwick et al. [5] describe one for OSC that uses
broadcast from a master and assumes bounds on clock
drift rates. Brandt and Dannenberg describe a round-trip
method with proportional-integral controller [6]. OSC

itself supports timestamps, but only in message bundles,
and there is no built-in clock synchronization.

Discovery in O2 automatically shares IP addresses and
port numbers to establish connections between processes.
The liboscqs1 and OSCgroups2 library and osctools3 pro-
ject support discovery through zeroconf [3] and other
systems. Also, Eales and Foss explored discovery proto-
cols in connection with OSC for audio control [4], how-
ever their emphasis is on querying the structure of an
OSC address space rather than discovery of servers on
the network.

Software developers have also discussed and imple-
mented OSC over TCP for reliable delivery. Systems
such as liblo4 offer either UDP or TCP, but not both un-
less multiple servers are set up, one for each protocol.

4. DESIGN DETAILS
In designing O2, we considered that networking, embed-
ded computers, laptops, and mobile devices have all ad-
vanced considerably since the origins of OSC. In particu-
lar, embedded computers running Linux or otherwise
supporting TCP/IP are now small and inexpensive, and
the Internet of Things (IOT) will spur further develop-
ment of low-cost, low-power, networked sensors and
controllers. While OSC deliberately avoided dependency
on a particular transport technology to enable low-cost,
lightweight communication, O2 assumes that TCP/IP is
available to (most) hosts. O2 uses that assumption to of-
fer new features. We also use floating point for simple
clock synchronization calculations because floating point
hardware has become commonplace even on low-cost
microcontrollers, or at least microcontrollers are fast
enough to emulate floating point as needed.

4.1 Addresses in O2

In OSC, most applications require users to manually set
up connections by entering IP and port numbers. In con-
trast, O2 provides “services.” An O2 service is just a
unique name used to route messages within a distributed
application. O2 addresses begin with the service name,
making services the top-level node of a global address
space. Thus, while OSC might direct a message to
"/filter/cutoff" at IP 128.2.1.39, port 3, a complete
O2 address would be written simply as
"/synth/filter/cutoff", where "synth" is the service
name.

4.2 UDP vs. TCP for Message Delivery

The two main protocols for delivering data over IP are
TCP and UDP. TCP is “reliable” in that messages are
retransmitted until they are successfully received, and
subsequent messages are queued to insure in-order deliv-
ery. UDP messages are often more appropriate for real-
time sensor data because new data can be delivered out of

1 http://liboscqs.sourceforge.net
2 http://www.rossbencina.com/code/oscgroups
3 https://sourceforge.net/projects/osctools
4 http://liblo.sourceforge.net/

495 Proceedings of the International Computer Music Conference 2016

order rather than waiting for delivery or even retransmis-
sion of older data. O2 supports both protocols.

4.3 Time Stamps and Synchronization

O2 protocols include clock synchronization and time-
stamped messages. Unlike OSC, every message is time-
stamped, but one can always send 0.0 to mean “as soon
as possible.” Synchronization is initiated by clients,
which communicate independently with the master.

5. IMPLEMENTATION
The O2 implementation is small and leverages existing
functionality in TCP/IP. In this section, we describe the
implementation of the important new features of O2.

5.1 Service Discovery

To send a message, an O2 client must map the service
name from the address (or address pattern) to an IP ad-
dress and port number. We considered existing discovery
protocols such as ZeroConf (also known as Rendezvous
and Avahi), but decided a simpler protocol based on UDP
broadcast messages would be smaller, more portable to
small systems, and give more flexibility if new require-
ments arise.

The O2 discovery protocol uses 5 fixed “discovery”
port numbers. We use 5 because we cannot guarantee any
one port is unallocated and multiple O2 applications (up
to 5) might run on a single host, each requiring a port.
When O2 is initialized, O2 allocates a server port and
broadcasts the server port, host IP address, local service
names and an application name to the 5 discovery ports.
Any process running an instance of O2 with the same
application name will receive one of these broadcasts,
establish TCP and IP sockets connected to the remote
process, and store the service name and sockets in a table.
Multiple independent applications can share the same
local area network without interference if they have dif-
ferent application names. O2 retransmits discovery in-
formation periodically since there is no guarantee that all
processes receive the first transmissions.

To direct a message to a service, the client simply
looks in the lookup table for the appropriate socket and
sends the message using TCP or UDP. O2 allows multi-
ple services within a single process without confusion
because every message contains its destination service
name.

5.2 Timestamps and Clock Synchronization

O2 uses its own protocol to implement clock synchroni-
zation. O2 looks for a service named "_cs" and when
available, sends messages to "/_cs/ping" with a reply-to
address and sequence number. The service sends the cur-
rent time and sequence number to the reply-to address.
The client then estimates the server’s time as the reported
time plus half the round-trip time. All times are IEEE
standard double-precision floats in units of seconds since
the start of the clock sync service. O2 does not require or
provide absolute date and time values.

5.3 Replies and Queries

Normally, O2 messages do not send replies, and we do
not propose any built-in query system at this time, mainly
because queries never caught on in OSC implementa-
tions. Unlike classic remote procedure call systems im-
plementing synchronous calls with return values, real-
time music systems are generally designed around asyn-
chronous messages to avoid blocking to wait for a reply.

Rather than build in an elaborate query/reply mecha-
nism, we advocate a very simple application-level ap-
proach where the “query” sends a reply-to address string.
The handler for a query sends the reply as an ordinary
message to a node under the reply-to address. For exam-
ple, if the reply-to address in a "/synth/cpuload/get"
message is "/control/synthload", then the handler for
"/synth/cpuload/get" sends the time back to (by con-
vention) "/control/synthload/get-reply". Optionally,
an error response could be sent to "/control/synth-
load/get-error", and other reply addresses or protocols
can be easily constructed at the application level.

5.4 Address Pattern Matching and Message Delivery

To facilitate the implementation of O2, we (mostly) ad-
here to OSC message format. Notice that an O2 server
can scan an address string for the “/” after the service
name to obtain an OSC-style address pattern. This sub-
string, type information, and data can be passed to many
existing OSC implementations for further processing,
eliminating the need to implement an all-new message
parser. Similarly, existing OSC marshaling code (which
converts data to/from messages) can be used to construct
messages for O2.

OSC has been criticized for the need to perform poten-
tially expensive parsing and pattern matching to deliver
messages. O2 adds a small extension for efficiency: The
client can use the form "!synth/filter/cutoff",
where the initial “!” means the address has no “wild-
cards.” If the “!” is present, the receiver can treat the en-
tire remainder of the address, “synth/filter/cutoff” as a
key and do a hash-table lookup of the handler in a single
step. This is merely an option, as a node-by-node pattern
match of "/synth/filter/cutoff" should return the
same handler function.

6. INTEROPERATION
OSC is widely used by existing software. OSC-based
software can be integrated with O2 with minimal effort,
providing a migration path from OSC to O2. O2 also of-
fers the possibility of connecting over protocols such as
Bluetooth5, MIDI [7], or ZigBee6.

6.1 Receiving from OSC

To receive incoming OSC messages, call
o2_create_osc_port("service", port_num);

which tells O2 to begin receiving OSC messages on
port_num, directing them to service, which is normally

5 http://www.bluetooth.org
6 http://www.zigbee.org

 Proceedings of the International Computer Music Conference 2016 496

local, but could also be remote. Since O2 uses OSC-
compatible types and parameter representations, this adds
very little overhead to the implementation. If bundles are
present, the OSC NTP-style timestamps must be convert-
ed to O2 timestamps before messages are handed off.

6.2 Sending to OSC

To forward messages to an OSC server, call
o2_delegate_to_osc("service", ip, port_num);

that tells O2 to create a virtual service (name given by the
service parameter), which converts incoming O2 mes-
sages to OSC messages and forwards them to the given ip
address and port_num. Now, any O2 client on the net-
work can discover and send messages to the OSC server.

6.3 Other Transports

Handling OSC messages from other communication
technologies poses two interesting problems: What to do
about discovery, and what exactly is the protocol? The
O2 API can also be supported directly on clients and
servers connected by non-IP technologies. As an exam-
ple, let us assume we want to use O2 on a Bluetooth de-
vice (we will call it Process D, see Figure 1) that offers
the “Sensor” service. We require a direct Bluetooth con-
nection to Process B running O2. Process B will claim to
offer the “Sensor” service and transmit that through the
discovery protocol to all other O2 processes connected
via TCP/IP. Any message to “Sensor” will be delivered
via IP to Process B, which will then forward the message
to Host D via Bluetooth. Similarly, programs running on
Host D can send O2 messages to Process B via Bluetooth
where the messages will either be delivered locally or be
forwarded via TCP/IP to their final service destination. It
is even possible for the destination to include a final for-
warding step though another Bluetooth connection to
another computer, for example there could be services
running on computers attached to Process C in Figure 1.

Non-IP networks are supported by optional libraries,
essentially giving O2 a “plug-in” architecture to ensure
both a small core and flexibility to create extensions.

In addition to addressing services, O2 sometimes
needs to address the O2 subsystem itself, e.g. clock syn-
chronization runs even in processes with no services.
Services starting with digits e.g. "128.2.60.110:8000",
are interpreted as an IP:Port pair. To reach an attached
non-IP host, a suffix may be attached, e.g. Host D in Fig-
ure 1 might be addressed by "128.2.60.110:8000:bt1".

7. CURRENT STATUS
A prototype of O2 in the C programming language is
running the discovery algorithm and sending messages.
Performance measurements show that CPU time is domi-
nated by UDP packet send and receive time, even when
messages are sent to another process on the same host (no
network link is involved). We were unable to measure
any impact of discovery or service lookup in a test where
two processes send a message back and forth as fast as
possible. In this test, total message delivery (real or
“wall”) time is about 13µs, or 77,000 messages per se-
cond, on a 2.4 GHz Intel Core i7 processor, which is fast-

er than OSC using liblo due to some minor differences in
the way messages are accepted from the network.

We believe O2 is a good candidate for OSC-like appli-
cations in the future. A number of extensions are possi-
ble, and future work includes extensions to allow discov-
ery beyond local area networks, audio and video stream-
ing, and dealing with network address translation (NAT).

O2 is available: https://github.com/rbdannenberg/o2.

8. SUMMARY AND CONCLUSIONS
O2 is a new protocol for real-time interactive music sys-
tems. It can be seen as an extension of Open Sound Con-
trol, keeping the proven features and adding solutions to
some common problems encountered in OSC systems. In
particular, O2 allows applications to address services by
name, eliminating the need to manually enter IP address-
es and port numbers to form connected components. In
addition, O2 offers a standard clock synchronization and
time-stamping system that is suitable for local area net-
works. O2 offers two classes of messages so that “com-
mands” can be delivered reliably and sensor data can be
delivered with minimal latency. We have implemented a
prototype of O2 that is similar in size, complexity and
speed to an Open Sound Control implementation. Alt-
hough O2 assumes that processes are connected using
TCP/IP, we have also described how O2 can be extended
over a single hop to computers via Bluetooth, ZigBee or
other communication links.

Acknowledgments

Thanks to Adrian Freed for comments on a draft of this
paper.

9. REFERENCES
[1] M. Wright, A. Freed and A. Momeni, “OpenSound

Control: State of the Art 2003,” in Proceedings of
the 2003 Conference on New Interfaces for Musical
Expression (NIME-03), Montreal, Canada, 2003, pp.
153-159.

[2] M. Henning, “The rise and fall of CORBA,” ACM
Queue, vol. 4, no. 5, 2006, pp. 29-34.

[3] E. Guttman, “Autoconfiguration for IP Networking:
Enabling Local Communication,” IEEE Internet
Computing, vol. 5, no. 3, 2001, pp. 81–86

[4] A. Eales and R. Foss, “Service discovery using
Open Sound Control,” AES 133rd Convention, San
Francisco, 2012.

[5] S. Madgwick, T. Mitchell, C. Barreto, and A. Freed,
“Simple synchronisation for open sound control.
41st International Computer Music Conference
2015, Denton, Texas, 2015, pp . 218-225.

[6] E. Brandt and R. Dannenberg, “Time in Distributed
Real-Time Systems,” Proceedings of the Interna-
tional Computer Music Conference , 1999.

[7] J. Rothstein, MIDI: A Comprehensive Introduction,
2nd ed., A-R Editions, 1995.

