
15-441: Computer Networks

Project 1: A Web Server Called Liso

TAs: Matt Mukerjee <mukerjee@cs.cmu.edu>
David Naylor <dnaylor@cs.cmu.edu>

Ben Wasserman <benjamin@cmu.edu>

Assigned: September 3, 2013
Checkpoint 1 due: September 10, 2013
Checkpoint 2 due: September 24, 2013
Final version due: October 8, 2013

1 Introduction

The purpose of this project is to give you experience in developing concurrent network
applications. You will use the Berkeley Sockets API to write a web server using a subset
of the HyperText Transport Protocol (HTTP) 1.1 Request for Comment—RFC 2616 [1].
Your web server will also implement HyperText Transport Protocol Secure (HTTPS) via
Transport Layer Security (TLS) as described in RFC 2818 [2]. The final part of the project
will implement the Common Gateway Interface (CGI) as described in RFC 3875 [3]. This
set of features forms the core of the Liso web server’s capabilities and will be the focus of
the first part of the course.

Why are we doing this? Because web applications are becoming increasingly important
today. Many startups and businesses are based entirely on web applications. Understanding
HTTP, how web servers work, HTTPS, and CGI will give you a deep understanding of the
core web technologies underlying and fueling much of the Internet’s growth. In addition, your
Liso web server will be fully functional and capable of running interactive web applications
via its CGI interface. At the end of the project the final test will be running a simple web
blog written using the Python Flask microframework [4].

Be prepared: this is a single person project and it has a lot of depth—your skills will
be exercised (perhaps to their limits). So start early and feel more than welcome to ask
questions. This is a hard project, we have an implementation in mind, so both TAs and
the instructors will be more than welcome to help you debug, design, and provide hints in
working on this project.

1

mailto:mukerjee@cs.cmu.edu
mailto:dnaylor@cs.cmu.edu
mailto:benjamin@cmu.edu


2 Logistics

• Source materials for this project may be found in hosted here:
http://www.cs.cmu.edu/~prs/15-441-F13/project1/project1.tar.gz

• This is a solo project. You must implement and submit your own code.

• All of your project files and submissions must be stored on AFS in the 441 course
directory (/afs/andrew/course/15/441-641/) as a git-backed repository. You should
have a subdirectory in that folder named the same as your Andrew ID where you must
store your git repo (i.e., if your Andrew ID is mmukerje then store your git repo at
/afs/andrew/course/15/441-641/mmukerje/).

• Checkpoint 1: (1) Create a git repo on AFS named <andrewID>-15-441-project-1
(mkdir <andrewID> -15-441-project-1; cd <andrewID> -15-441-project-1; git init),
(2) code a select()-based echo server handling multiple clients at once (building on
the supplied echo server), and (3) tag your submission by the deadline and include all
needed tag files as outlined in §6.

• Checkpoint 2: (1) Implement an HTTP 1.1 parser and persistent connections with
HEAD, GET, and POST working and (2) tag your submission by the deadline.

• Checkpoint 3/Final Submission: (1) implement HTTPS handshaking and persis-
tent connections via TLS, (2) implement CGI server-side, and (3) tag your submission
by the deadline.

3 The Liso Server

Your server will implement HEAD, GET (both needed for HTTP 1.1 general purpose server
compliance), and POST, which we are adding. This should comply with the specification in
the RFC [1]. After this we will move on into implementing TLS, and finally CGI.

HTTP 1.1

• GET – requests a specified resource; it should not have any other significance other
than retrieval

• HEAD – asks for an identical response as GET, without the actual body—no bytes
from the requested resource

• POST – submit data to be processed to an identified resource; the data is in the body
of this request; side-effects expected

2

http://www.cs.cmu.edu/~prs/15-441-F13/project1/project1.tar.gz


For all other commands, your server must return “501 Method Unimplemented.” If you
are unable to implement one of the above commands (perhaps you ran out of time), your
server must return the error response “501 Method Unimplemented,” rather than failing
silently (or not so silently). While you develop, you may want to just return this error
response always until features are implemented—no matter what you will have a valid HTTP
1.1 server!

Your server should be able to support multiple clients concurrently. The only limit to the
number of concurrent clients should be the number of available file descriptors in the operat-
ing system (the min of ulimit -n and FD SETSIZE—both typically 1024). While the server
is waiting for a client to send the next command, it should be able to handle inputs from
other clients. Also, your server should not hang up if a client sends only a partial request. In
general, concurrency can be achieved using either select() or multiple threads. However, in
this project, you must implement your server using select() to support concurrent
connections. Threads are NOT permitted at all for the project. See the resources section
below for help on these topics. As a public server, your implementation should be robust to
client errors. For example, your server should be able to handle malformed requests which
do not have proper [CR][LF] line endings. It must not overflow any buffers when the client
sends a message that is “too long.” In general, your server should not be vulnerable to a
malicious client. This is something we will test for.

You are implementing a real, standards-compliant web server. Therefore, comparing
protocol exchanges to existing web servers is both valid and encouraged. Install Apache [5],
install Wireshark [6], and sniff the protocol exchanges and compare to your own—even use
captured web browser requests to replay from files you save as input to your implementation
of Liso.

4 Implementation Details and Usage

Your server must be written in the C programming language. You are not allowed to use
any custom socket classes or libraries, only the standard socket library and the provided
library functions. You may not use the csapp wrapper library from 15-213 or libpthread
for threading. We disallow csapp.c for two reasons: first, to ensure that you understand the
raw standard BSD sockets API, and, second, because csapp.c’s wrapper functions are not
suitable for robust servers. Temporary system call failures (e.g., EINTR) in functions such
as select() could cause the server to abort and utility functions like rio readlineb are
not designed for nonblocking code.

That said, we encourage the use of anything for testing. Use Wireshark [6], use telnet,
use real web browsers, use Python to script tests—for testing, the sky is the limit.

3



4.1 Compiling

You are responsible for making sure your code compiles and runs correctly on the Andrew
x86 machines running Linux (i.e., linux.andrew.cmu.edu / unix.andrew.cmu.edu). We
recommend using gcc to compile your program and gdb to debug it. You should use the
-Wall and -Werror flags when compiling to generate full warnings and to help debug. Other
tools available on the Andrew unix machines that are suggested are ElectricFence [12] (link
with -lefence) and Valgrind [13]—use this with full leak checking to ensure you have no
memory leaks. For this project, you will also be responsible for turning in a GNU
Make compatible Makefile. See the GNU make manual[10] for details. When we run
make we should end up with the Liso web server binary lisod.

4.2 Command Line Arguments

Liso will always have 8 arguments—functional or not:

usage: ./lisod <HTTP port> <HTTPS port> <log file> <lock file> <www folder>
<CGI script path> <private key file> <certificate file>

HTTP port – the port for the HTTP (or echo) server to listen on

HTTPS port – the port for the HTTPS server to listen on

log file – file to send log messages to (debug, info, error)

lock file – file to lock on when becoming a daemon process

www folder – folder containing a tree to serve as the root of a website

CGI script name (or folder) – for this project, this is a file that should be a script where you
redirect all /cgi/* URIs. In the real world, this would likely be a directory of executable
programs.

private key file – private key file path

certificate file – certificate file path

4.3 Running

The Liso server will be passed the ports to run on, what log file to use, what lock file to use
when daemonizing, folders to serve static data from as well as CGI applications, and TLS
private/public key pairs.

Not all of these options need to be functional at each stage of development. Only a port
is needed for the first checkpoint when implementing an echo server using select().

4



4.4 Framework Code

We will provide you with framework code that will, for example, help in forking a process for
proper CGI handling and setting up the environment, parse commandline arguments (and
sanity check them), daemonize a process, and stub protocol parsers in GNU Flex [7] and
GNU Bison [8].

DISCLAIMER: We reserve the right to change the support code as the project pro-
gresses to fix bugs and to introduce new features that will help you debug your code. You
are responsible for checking Piazza to stay up-to-date on these changes. We will assume that
all students in the class will read and be aware of any information posted to Piazza.

5 Testing

Code quality is of particular importance for server robustness in the presence of client errors
and malicious attacks. Thus, a large part of this assignment (and programming in general) is
knowing how to test and debug your work. There are many ways to do this; be creative. We
would like to know how you tested your server and how you convinced yourself it actually
works. To this end, you should submit your test code along with brief documentation
describing what you did to test that your server works. The test cases should include both
generic ones that check the server functionality and those that test particular corner cases.
If your server fails on some tests and you do not have time to fix it, this should also be
documented (we would rather know that you are aware of the limitations of your server than
think you missed a serious flaw). Several paragraphs (or even a bulleted list of things done
and why) should suffice for the test case documentation.

We will be providing test scripts for each checkpoint and also the final finished server.
Here are some simple starting points for scripting your own external tests:

netcat
You may use netcat to send arbitrary files to your server and receive responses. Use

regular bash redirection (< and >) along with ncat to achieve this.
Read man ncat for more information.

expect
Quoting from the expect man page,
Expect is a program that “talks” to other interactive programs according to a script.

Following the script, Expect knows what can be expected from a program and what the cor-
rect response should be. An interpreted language provides branching and high-level control
structures to direct the dialogue.

Python socket
This is a very simple and easy to use Python module for creating and interacting with

sockets. We have used this in the first checkpoint testing script provided to you for testing

5



your implementation of an echo server. This will be used for creating future testing programs
which we will release leading the schedule for deadlines.

You can read about this module here: http://docs.python.org/library/socket.html.
In addition for testing HTTP, there is a urllib2 library in Python.

6 Hand-In

Handing in code for checkpoints and the final submission deadline will be done through your
project repositories. You are supposed to create your git repo on Andrew at
/afs/andrew/course/15/441-641/<andrew id> as part of Checkpoint 1. Every checkpoint
will be a git tag in this repo. To create a tag, run

git tag -a checkpoint-<num> -m <message> [<commit hash> ]

with appropriate checkpoint number and custom message filled in. (Put whatever you like
for the message — git won’t let you omit it.) The optional commit hash can be used to
specify a particular commit for the tag; it you omit it, the current commit is used. If you
choose to clone your repository onto your local machine for development, be sure to use git

push --tags to sync your work back to AFS; the standard git push doesn’t send tags.
Your repository should contain the minimum following files (with each tag!):

• Makefile – Make sure all the variables and paths are set correctly such that your
program compiles in the handin directory—not just a local machine or account. The
Makefile should, by default, always build an executable named lisod.

• All of your source code – (files ending with .c, .h, etc. only, no .o files and no
executables)

• readme.txt – File containing a brief description of your design of your current version
of lisod.

• tests.txt – File containing documentation of your test cases and any known issues you
have.

• replay.test – File containing input to send to the server testing the implementation

• replay.out – File containing expected server output matching input given in replay.test

• vulnerabilities.txt – File containing documentation of at least one vulnerability you
identify at each stage.

Late submissions will be handled according to the policy given in the course syllabus.

6

http://docs.python.org/library/socket.html


7 Grading

• Server core networking: 30 points

The grade in this section is intended to reflect your ability to write the “core” networking
code. This is the stuff that deals with setting up connections, reading/writing from/to
them (see the resources section below). Even if your server does not implement HTTP
1.1 etc., your project submission can get up to 30 points here. It is better to have
partial functionality working solidly than lots of code that doesn’t actually do anything
correctly.

Have a working select()-based foundation, and recieve full credit here.

• HTTP 1.1: 20 points

The grade in this section reflects how well you read, interpreted, and implemented
HTTP 1.1. We will test all the requests specified in Section 3: HEAD, GET and
POST. All requests sent to your server for this part of the testing will be valid. So
a server that completely and correctly implements the specified commands, even if it
does not check for invalid messages, will receive 20 points here.

We will extensively test correct behavior for HEAD, GET, POST, and persistent con-
nection handling. Feel free to check things via web browsers at this point.

• HTTPS via TLS: 15 Points

The grade in this section reflects how well you read, interpreted, and implemented the
TLS protocol for HTTP.

Point a web browser at your server: https://xxx.xxx.xxx.xxx and verify correct connec-
tion. Obviously you will not have Certificate Authority (CA) signed certificates, but
this stage should work with any web browser provided you acknowledge the security
warnings and ignore them. In addition, the standard requests HEAD, GET, POST,
and persistent connections should all work as before for the HTTP 1.1 implementation.

• CGI: 15 points

The grade in this section reflects how well you read, interpreted, and implemented the
CGI interface. This will be tested via a Python WSGI application which you can also
run to verify your implementation is correct. It’s a blog. Make sure you can perform
all the operations it supports (such as displaying blog entries and adding new entries).

• Robustness: 10 points

– Server robustness: 5 points

– Test cases: 5 points

7



Since code quality is of a high priority in server programming, we will test your pro-
gram in a variety of ways using a series of test cases. For example, we will send your
server very long messages to test if there is a buffer overflow. We will make sure that
your server does something reasonable when given an unknown request or a request
with invalid headers. We will verify that your server correctly handles clients that leave
abruptly without sending the proper “close” header line in HTTP 1.1. We will test
that your server correctly handles concurrent requests from multiple clients without
blocking inappropriately. The only exception is that your server may block while doing
DNS lookups, reads from the file system, or during the execution of CGI programs.

We will have tools that replay HTTP 1.1, TLS, and CGI interactions with your appli-
cation. In fact, each student must submit one test case for replaying against a protocol.
Each server will be tested against the whole battery of tests (our tests + your fellow
students’ tests). Note that there are many corner cases that the RFC does not specify.
You will find that this is very common in “real world” programming since it is difficult
to foresee all the problems that might arise. Therefore, we will not require your server
pass all of the test cases in order to get a full credit on any part of the assignment. We
will notify you of errors, though.

We will also look at your own documented test cases to evaluate how well you tested
your work.

• Style: 5 points

Poor design, documentation, or code structure will probably reduce your grade by mak-
ing it hard for you to produce a working program and hard for the grader to understand
it; egregious failures in these areas will cause your grade to be lowered even if your im-
plementation performs adequately.

Document code using Doxygen-style comments.

In some of our structured code examples, we showcase an underlying logging facility
that logs to a configured file. Use something similar to this to keep traces of your server
and debug.

• Checkpoints: 5 points each and 5 points from each feature due

Late policy DOES apply to the checkpoints. However, considering the fact that you
only have 2 late days for the entire semester, we strongly encourage you to plan ahead
and not to use late days for checkpoints.

8



8 Getting Started

This section gives suggestions for how to approach the project. Naturally, other approaches
are possible, and you are free to use them.

• Start early! The hardest part of getting started tends to be getting started. Remember
the 90-90 rule: the first 90% of the job takes 90% of the time; the remaining 10%
takes the other 90% of the time. Starting early gives you time to ask questions. For
clarifications on this assignment, post to Piazza and read project updates on the course
web page. Talk to your classmates. While you need to write your own original program,
we expect conversation with other people facing the same challenges to be very useful.
Come to office hours. The course staff is here to help you.

• Read the RFCs selectively. RFCs are written in a style that you may find unfamiliar.
However, it is wise for you to become familiar with it, as it is similar to the styles of
many standards organizations. We don’t expect you to read every page of the RFC,
especially since you are only implementing a small subset of the full protocol, but you
may well need to re-read critical sections a few times for the meaning to sink in.

• Begin by taking a cursory first pass over the RFCs. Do not focus on the details; just
try to get a sense of how they work at a high level. Understand the role of the server.
Understand what error conditions are possible, and how they are used. You may want
to print the RFCs, and mark them up to indicate which parts are important for this
project, and which parts are not needed. You may need to re-read these sections several
times.

• Next, take a second pass over the RFCs. You will want to read all of them together.
Again, do not focus on the details; just try to understand the requests and responses
at a high level. As before, you may want to mark up a printed copy to indicate which
parts of the RFCs are important for the project, and which parts are not needed.

• Now, go back and read with an eye toward implementation. Mark the parts which
contain details that you will need to write your server. Start thinking about the data
structures (input and output buffers, etc.) your server will need to maintain. What
information needs to be stored about each client while servicing requests (maybe an
HTTP 1.1 finite state machine per client, etc.)?

• Get started with a simple server that accepts connections from multiple clients. It
should take any message sent by any client, and “echo” that message back to its sender.
This server will not be compatible with HTTP clients, but the code you write for it will
be useful for your final server. Writing this simpler server will let you focus on the socket
programming aspects of a server without worrying about the details of the protocols.
Test this simple server with the simple provided Python script for Checkpoint 1. A
correct implementation of the simple server gives you approximately 30 points for the
core networking part.

9



• At this point, you are ready to write a standalone HTTP 1.1 server. But do not try to
write the whole server at once. Decompose the problem so that each piece is manageable
and testable. For each request, identify the different cases that your server needs to
handle. Find common tasks among different commands and group them into procedures
to avoid writing the same code twice. You might start by implementing the routines
that read and parse commands. Then implement commands one by one, testing each
with telnet.

• Thoroughly test your server. Use the provided scripts to test basic functionality. For
further testing, use telnet, a web browser, or replay scripts. Learn Python from our
scripts and as we go to make repeatable “regression tests”—every time you implement
a new feature you use regression tests to see if anything broke.

• Make sure to check the return code of all system calls and handle errors appropriately.
Temporary failures (e.g., EINTR) should not cause your server to abort or exit in failure.
Fatal errors can be dealt with via a perror() call and exiting—but try to clean up open
file descriptors and sockets nicely even when fatally exiting.

• Be liberal in what you accept and conservative in what you send [11]. Following this
guiding principle of Internet design will help ensure your server works with many dif-
ferent and unexpected client behaviors.

• Code quality is important. Make your code modular and extensible where possible.
You should probably invest an equal amount of time in testing and debugging as you
do writing. Also, debug incrementally. Write in small pieces and make sure they work
before going on to the next piece. Your code should be readable and commented. Not
only should your code be modular, extensible, readable, etc, most importantly, it should
be your own!

• You may want to consider turning warnings into errors to avoid bad programming style.
Do this by passing -Werror to gcc during compilation.

• If you have a question about a project handout or a technical issue, there is an excellent
chance that other students have the same question. Please read Piazza to see if there
has been traffic and consider posting your questions there.

9 Resources

For information on network programming, the following may be helpful:

• Beej’s Guide [9]

• Class Textbook – Sockets, etc

• Class Piazza – Announcements, clarifications, etc

10



• Class Website – Announcements, errata, etc

• Computer Systems: A Programmer’s Perspective (CS 15-213 text book)[14]

• BSD Sockets: A Quick And Dirty Primer[15]

• An Introductory 4.4 BSD Interprocess Communication Tutorial[16]

• Unix Socket FAQ[17]

• Sockets section of the GNU C Library manual

– Installed locally: info libc

– Available online: GNU C Library manual[18]

• man pages

– Installed locally (e.g. man socket)

– Available online: the Single Unix Specification[19]

• Other Google Groups / Stackoverflow - Answers to almost anything[20]

References

[1] RFC 2616: http://www.ietf.org/rfc/rfc2616.txt

[2] RFC 2818: http://www.ietf.org/rfc/rfc2818.txt

[3] RFC 3875: http://www.ietf.org/rfc/rfc3875

[4] Flask: http://flask.pocoo.org/

[5] Apache: http://httpd.apache.org/

[6] Wireshark: http://www.wireshark.org/

[7] GNU Flex: http://flex.sourceforge.net/manual/

[8] GNU Bison: http://www.gnu.org/s/bison/manual/bison.html

[9] Beej’s Guide: http://beej.us/guide/bgnet/output/html/singlepage/bgnet.html

[10] GNU Make Manual: http://www.gnu.org/software/make/manual/make.html

[11] RFC 1122 http://www.ietf.org/rfc/rfc1122.txt, page 11

[12] ElectricFence: http://perens.com/FreeSoftware/ElectricFence/

[13] Valgrind: http://valgrind.org/

11

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc3875
http://flask.pocoo.org/
http://httpd.apache.org/
http://www.wireshark.org/
http://flex.sourceforge.net/manual/
http://www.gnu.org/s/bison/manual/bison.html
http://beej.us/guide/bgnet/output/html/singlepage/bgnet.html
http://www.gnu.org/software/make/manual/make.html
http://www.ietf.org/rfc/rfc1122.txt
http://perens.com/FreeSoftware/ElectricFence/
http://valgrind.org/


[14] CSAPP: http://csapp.cs.cmu.edu

[15] http://www.cis.temple.edu/~ingargio/old/cis307s96/readings/docs/sockets.
html

[16] http://docs.freebsd.org/44doc/psd/20.ipctut/paper.pdf

[17] http://www.developerweb.net/forum/forumdisplay.php?s=
f47b63594e6b831233c4b8ebaf10a614&f=70

[18] http://www.gnu.org/software/libc/manual/

[19] http://www.opengroup.org/onlinepubs/007908799/

[20] http://groups.google.com

12

http://csapp.cs.cmu.edu
http://www.cis.temple.edu/~ingargio/old/cis307s96/readings/docs/sockets.html
http://www.cis.temple.edu/~ingargio/old/cis307s96/readings/docs/sockets.html
http://docs.freebsd.org/44doc/psd/20.ipctut/paper.pdf
http://www.developerweb.net/forum/forumdisplay.php?s=f47b63594e6b831233c4b8ebaf10a614&f=70
http://www.developerweb.net/forum/forumdisplay.php?s=f47b63594e6b831233c4b8ebaf10a614&f=70
http://www.gnu.org/software/libc/manual/
http://www.opengroup.org/onlinepubs/007908799/
http://groups.google.com

	Introduction
	Logistics
	The Liso Server
	Implementation Details and Usage
	Compiling
	Command Line Arguments
	Running
	Framework Code

	Testing
	Hand-In
	Grading
	Getting Started
	Resources

