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Abstract:   In  this  chapter  we  describe  an  end-to-end  workflow  management 
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terms, then maps and executes the workflows in an efficient and reliable manner 
on  distributed  resources.  We  describe  Pegasus  and  DAGMan  and  various 
workflow  restructuring  and  optimizations  they  perform  and  demonstrate  the 
scalability  and  reliability  of  the  approach  using  applications  from  astronomy, 
gravitational-wave physics, and earthquake science.
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Introduction

Scientific workflows are becoming an enabler of complex scientific analyses. They 
provide  a  representation  of  complex  analyses  composed  of  heterogeneous  models 
designed by groups of scientists.  At the same time, workflows have also become a 
useful representation that is used to manage the execution of large-scale computations. 
This  representation  not  only  facilitates  overall  creation  and  management  of  the 
computation  but  also builds  a  foundation  upon which  results  can  be  validated  and 
shared.  Since  workflows formally describe  the sequence  of  computational  and data 
management tasks, it is easy to trace back how particular data were derived. Workflows 
have also become a tool capable of bringing sophisticated analysis to a broad range of 
users,  enhancing  scientific  collaboration  and education.   There  are  many workflow 
systems  currently  being  developed  [7].  In  this  chapter  we  concentrate  on  two 
complimentary systems Pegasus [28, 31] and DAGMan [22, 34] that together enable 
efficient  and  robust  execution  of  large-scale  scientific  workflows  in  distributed 
environments.

In order to facilitate workflow creation, scientists need to be allowed to formulate 
the workflows in a way that is meaningful to them using high-level abstractions that 
specify the overall structure of the analysis and the data to be operated on (via a visual 
or   textual  interface)  in  a  resource-independent  way.  This  abstract  workflow  (or 
workflow  instance)  is  important  because  it  uniquely  identifies  the  analysis  to  be 
conducted at the application level without including operational details of the execution 



environment. The instance can thus be published along with the results to describe how 
a particular data product was obtained. 

In  order  to  support  the  abstract  workflow  specifications  which  let  scientists 
concentrate  on  the  science  rather  than  on  the  operational  aspects  of  the 
cyberinfrastructure (such as the Open Science Grid [2] or the TeraGrid [1]), mapping 
technologies are needed to automatically interpret and map the user-defined workflows 
onto the available resources.  This is  an approach analogous  to traditional  computer 
programming  methods,  where  high-level  languages  are  used  to  describe  the 
computation  without  needing  to  specify  the  use  of  specific  registers  or  memory 
locations. In this analogy, the “workflow mapping engine” is a compiler that translates 
between  the  high-level  specifications  and  the  underlying  execution  system  and 
optimizing  the  executables  based  on  the  target  architecture.  The  mapping  includes 
finding the appropriate software and computational resources where the execution can 
take place as well as finding copies of the data indicated in the workflow instance. The 
mapping process can also involve workflow restructuring geared towards optimizing 
the overall workflow performance as well as workflow transformation geared towards 
data management  and provenance  information generation.   The mapping process  is 
usually automated and in our work it is done by Pegasus [28, 31].  

The  result  of  the  mapping  process  is  an  executable  workflow,  which  can  be 
executed by a workflow engine that follows the dependencies defined in the workflow 
and  executes  the  activities  defined  in  the  workflow  nodes.  DAGMan  [35],  our 
workflow engine relies on the resources (compute, storage, and network) defined in the 
workflow to perform the necessary actions. As part of the execution, data are generated 
along with their associated metadata and any provenance information that is collected. 

The separation of concerns between workflow generation, workflow mapping, and 
workflow execution allows us to design software in a modular way and to optimize the 
components  based on their functionality.  Additionally it  allows us to interface to a 
variety of workflow generation systems.

In  this  chapter  we describe Pegasus  and DAGMan and illustrate  the workflow 
optimizations  and  restructuring  techniques  and  their  use  in  large-scale  scientific 
applications.

1. Pegasus and DAGMan

Currently, Pegasus takes a workflow description in a form of a Directed Acyclic 
Graph in XML format (DAX). We recognize that not every scientist would be willing 
to write workflows in XML (or write scripts to generate XML), and that users may 
want  to  use  simple  languages  or  point  and  click  GUIs.  Thus  we  have  integrated 
Pegasus into a variety of workflow instance generation systems such as VDL (Virtual 
Data Language) [33], Wings [36], Triana [52], and most recently we have developed a 
prototype integration with Kepler [44].  

Of particular interest is the integration with Wings [37]. Wings uses rich semantic 
descriptions  of  components  and  workflow templates  expressed  in  terms  of  domain 
ontologies  and  constraints.   Wings  has  a  workflow  template  editor  to  compose 
components and their data flow. Wings assists the user by enforcing the constraints 
specified for the workflow components. Wings also helps with data selection to ensure 



the datasets selected conform to the requirements of the workflow template.  With this 
information, Wings generates a workflow instance that specifies the computations (but 
not  where  they will  take  place)  and  the  new data  products.   For  all  the  new data 
products, it generates metadata attributes by propagating metadata from the input data 
through the descriptions and constraints specified for each of the components.

In  some cases,  scientific applications want  to provide users  with an interface, 
which is only in the form of a metadata query. For example, in astronomy, users often 
do not want to know the details of the underlying system, instead they want to retrieve 
images  of an area  of  the sky of  interest  to them. In  such cases  Pegasus is  usually 
integrated into a portal environment where the user is presented with a web form to fill 
in the desired metadata attributes. Inside the portal, the workflow instance is generated 
automatically based on the user’s input and is given to Pegasus for mapping and then to 
DAGMan for execution [50]. Examples of this approach can be seen in the Montage 
project  (an  astronomy application)  [18,  40],  the  Telescience  portal  (a  neuroscience 
application)[42], and the Earthworks portal (an earthquake science application) [46]. 
In all these applications, Pegasus and DAGMan are being used to run the application 
workflows on national infrastructure such as the TeraGrid. 

Pegasus  can  map workflows  onto  a  variety  of  target  resources  such  as  those 
managed by PBS [39],  LSF [55],  Condor [32],  and individual  machines.  Figure  1 
shows an overview of the workflow generation and execution process. The executable 
workflow produced by Pegasus has directives to DAGMan for the execution of the 
workflow components. These directives include remote job execution, data movement, 
and data registration. Authentication to remote resources is done via GSI [54]. During 
the workflow execution, we capture provenance information about the execution tasks. 
Provenance  includes  a  variety  of  information  such  the  hosts  where  the  tasks  have 
executed, the runtime, environment variables, etc.  

 

Figure  1:  A  General  Overview  of  Pegasus  and  DAGMan  Managing  Workflows  on  the  National 
Cyberinfrastructure.



The workflow mapping and workflow optimizations we perform as well  as the 
scalability  and  robustness  of  our  workflow  execution  enable  us  to  efficiently  and 
reliably run large-scale scientific workflows. Below we describe some of these key 
features.

1.1.Automatically locating physical locations for both workflow components and data.

Mapping  the  workflow  instance  to  an  executable  form  involves  finding  the 
resources that are available and can perform the computations, the data that is used in 
the workflow, and the necessary software. We assume that data may be replicated in 
the environment and that users publish their data products into some data registry. This 
registry can be a private or community resource.  Some communities, such as Laser 
Interferometer  Gravitational-Wave  Observatory  (LIGO)  [13]  maintain  project-wide 
registries  of  the  data  coming off  the  detectors.  Pegasus  uses  the  logical  filenames 
referenced in the workflow to query a data registry service such as the Globus Replica 
Location Service (RLS) [21] to locate the replicas of the required data. Given the set of 
logical  filenames,  RLS  returns  a  corresponding  set  of  physical  file  locations. 
Optionally,  Pegasus  also  adds  nodes  to  the  workflow  to  register  the  final  and 
intermediate workflow data products into the registry. In this way, new data products 
can be easily discovered by the user, the community, or another workflow. In order to 
be  able  to  find  the  location  of  the  logical  application  component  names 
(transformations)  defined  in  the  workflow  instance,  Pegasus  queries  the 
Transformation  Catalog  (TC)  [25]  and  obtains  the  physical  locations  of  the 
transformations  (on  possibly  several  systems)  and  the  environment  variables  and 
libraries  necessary  for  the  proper  execution  of  the  software.  Pegasus  also supports 
staging of statically linked executables on demand.  In that case, the executables are 
treated  as  input  data  for  the  corresponding  workflow  tasks.  The  executables  are 
transferred to the remote grid sites along with other input data required by the jobs.

1.2.Finding appropriate resources to execute the components 

Pegasus queries cyberinfrastructure monitoring services  (the Globus Monitoring 
and Discovery Service (MDS) [24], the OSG VORS system [6], or any information 
service)  to  find  the  available  resources  and  their  characteristics  (machine  load, 
scheduler queue length, available disk space, and others). This information is combined 
with information from the Transformation Catalog to make scheduling decisions. When 
making a resource assignment, Pegasus prefers to schedule the computation where the 
data  already  exist;  otherwise  it  makes  a  random choice  or  uses  simple  scheduling 
heuristics  such  as  min-min  [19],  or  HEFT [53].  Oftentimes  it  is  difficult  to  apply 
sophisticated  scheduling  algorithms  because  of  the  incomplete  or  out-of-date 
information  about  resources,  in-exact  or  missing  models  of  the  application 
performance, and the size of the workflows that may result in significant runtimes for 
the scheduling algorithms. 

Pegasus also uses information services to find information about the location of the 
data  movement  services  (GridFTP  [10],  RFT  [11],  or  SRB [14]  servers)  that  can 
perform wide-area  data  transfers,  job managers  [23]  that  can  schedule  jobs  on the 
remote  sites,  storage  locations,  where  data  can  be  pre-staged,  shared  execution 
directories,  site-wide  environment  variables,  etc.  This  information  is  necessary  to 



produce  the  executable  workflow  that  describes  the  necessary  data  movement, 
computation and catalog updates. Registries of code and data as well as information 
services  allow Pegasus to provide a level of abstraction to the user  and give it  the 
freedom to automatically optimize the workflow execution.

1.3.Performance optimization through workflow restructuring 

During  the  mapping  process,  Pegasus  is  able  to  restructure  the  workflow  to 
improve  the  overall  workflow  performance.  One  of  the  optimizations  involves 
clustering  of  workflow  tasks  so  that  they  are  treated  as  one  for  the  purpose  of 
submission to a remote site and where they are then expanded automatically into a 
sequence of tasks or a parallel set of tasks (via MPI [38]) for the purpose of execution. 

Pegasus  currently  implements  level-  and  label-  based  clustering.  In  level-based 
clustering, tasks at the same level can be clustered together. The user can specify either 
the number of clusters to be created per level or the number of tasks to be grouped in a 
cluster. We apply clustering techniques in applications such as Montage [5, 16, 17], an 
application, where there are often many (~10,000) short duration (order of seconds) 
tasks. This type of application usually incurs large overheads if each task is submitted 
individually.  Figure  2 shows a small  Montage  workflow in its  original  form (left), 
clustered with two clusters per level (middle) and two tasks per cluster (right). 

Figure 2. Montage workflow: original (left) clustered with two clusters per level (middle) and two tasks per 
cluster (right). 

In  label-based  clustering,  the  user  can  label  the  tasks  in  the  workflow  to  be 
clustered together. The tasks in the workflow with the same label are grouped into a 
single cluster. Figure 3(1) shows a workflow where tasks are labeled as cluster_1 and 
cluster_2 and the resulting clustered workflow is shown in Figure 3(2). Note that if the 
tasks in the clusters are executed sequentially implicit dependencies between tasks are 
added.  Any  clustering  scheme  can  be  implemented  using  an  appropriate  labeling 
scheme.

Each cluster whether generated using level- or label- based clustering must satisfy 
the convexity requirement that dictates that all paths between any two tasks in a cluster 
must be completely contained within it. The cluster shown in Figure 4 is non-convex 



since the path from t1 to t3 through t4 is not contained within the cluster. The difficulty 
here is that t4 must start execution after t1 has completed and before t3 starts execution. 
Thus it creates co-scheduling requirements between clusters. However, due to the best 
effort nature of the execution environment, it is not possible to achieve co-scheduling 
without explicit resource control. 

Figure 3. Example of label based clustering.



Figure 4. A non-convex cluster.

Pegasus does error checking to ensure that each cluster created by grouping the 
tasks with the same label satisfies the convexity requirement.  Note that the clusters 
generated using level-based clustering trivially satisfy the convexity requirement since 
all the tasks at a level are independent of each other and no path exists between them. 
Another restriction of clustering is that the tasks within a cluster be scheduled to the 
same resource.

Figure 5: Improving Workflow Scalability With the Use of Clustering Techniques [40].

Figure 5 shows the results of the application of this optimization to Montage. The 
figure shows the results when Pegasus groups the nodes of the workflow into as many 
tasks per cluster as there are processors. Pegasus then schedules the clusters through 
DAGMan. Each cluster is executed as an MPI job on the TeraGrid. The figure shows a 
good speedup of  approximately 15 on 32 processors.  As the number  of  processors 
increases, the speedup decreases due to sequential aspects of the Montage workflow 
structure. 



1.4.Workflow footprint optimization

 In many execution environments, data storage available for executing applications 
can be limited. In our recent work [48, 51] we are studying mechanisms for minimizing 
the  amount  of  disk  space  a  particular  workflow  requires  by  adding  nodes  to  the 
workflow to explicitly remove the data when they are no longer needed. The purpose of 
the cleanup job is to delete the data file from a specified computational resource to 
make  room  for  the  subsequent  computations.  Since  a  data  file  can  be  potentially 
replicated on multiple resources (in case the compute tasks are mapped to multiple 
resources)  the decisions to add cleanup jobs are made on a per-resource basis. The 
algorithm is applied after  the executable  workflow has  been created but  before  the 
workflow is  executed.  Details  of  the  algorithm are  described  in  [51],  here  we just 
provide a simple illustration. 

Figure  6  shows  an  executable  workflow  containing  7  compute  jobs  {0,1,..,6} 
mapped  to  two  resources  {0,1}.  The  algorithm  first  creates  a  subgraph  of  the 
executable workflow for each execution resource used in the workflow. The subgraph 
of the workflow on resource 0 contains jobs {0,1,3,4} and the subgraph on resource 1 
contains jobs {2,5,6}.  The cleanup nodes added to this workflow using our algorithm 
are shown in Figure 7. The cleanup job for removing file f on resource r is denoted as 
Cfr. 

Figure 6: The Original Executable Workflow Mapped by Pegasus to Two resources.



Figure 7: The Workflow with Dynamic Cleanup Nodes Added.

For each task in the subgraph, a list of files either required or produced by the task 
is constructed. For example, the list of files for task 1 mapped to resource 0 contains 
files b and c. For each file in the list, a cleanup job for that file on that resource is 
created (if it does not already exist) and the task is made the parent of the cleanup job. 
Thus, a cleanup job, Cc0, which will remove file c on resource 0 is created and task 1 is 
made the parent of this cleanup job. The cleanup jobs for some files might already have 
been created as a result of parsing previous tasks. For example, the cleanup job Cb0 for 
removing file b on resource 0 already exists (as a result of parsing task 0). In this case 
the task being parsed is added as a parent of the cleanup job. Thus, task 1 is added as a 
parent of cleanup job Cb0.  When the entire subgraph has been traversed, there exists 
one cleanup job for every file required or produced by tasks mapped to the resource. If 
a file required by a task is being staged-in from another resource, then the algorithm 
makes the cleanup job for the file on the source resource a child of the stage-in job, 
ensuring that the file is not cleaned up on the source resource before it is transferred to 
the target  resource.  For example,  file b required by task 2 mapped to resource 1 is 
being staged-in from resource 0 using stage-in job Ib012, and so the cleanup job for file b 
on resource 0 (Cb0) is made a child of Ib012. Finally, if a file produced by a task is being 
staged-out to a storage location, the cleanup job is made a child of the stage-out job. 
For instance, the cleanup job Ch0 for removing file h on resource 0 is made a child of 
the  stage-out  job  Soh that  stages  out  file  h  to  permanent  storage.  By  adding  the 
appropriate  dependencies,  the algorithm makes sure that  the file is cleaned up only 
when it  is  no longer  required by any task in the workflow.   In  this version of the 
algorithm  there  are  as  many  cleanup  jobs  as  there  are  files.  For  large  scientific 
workflows, this solution is not scalable, so for the final version of the algorithm, we 
reduced the number of clean up jobs to be at most as many as there are computational 
tasks in the workflow.



Figure 8: Actual Data Space Optimization for a Montage Workflow.  The figure shows the amount of space 
used by a workflow over time on resources of Open Science Grid with and without space optimization[51].

In real experiments using the resources of the Open Science Grid, we were able to 
reduce  the  workflow  data  footprint  of  a  2  square  degree  Montage  workflow  by 
approximately  48% [51].  Figure  8 shows the  storage  space  used  by  the  workflow 
without and with cleanup during the execution of the workflow. Cleanup opportunities 
are widespread in the workflow as can be seen by the execution of cleanup jobs in the 
figure leading to a significant reduction in maximum storage used. For some workflows 
such  as  LIGO  these  opportunities  might  be  concentrated  towards  the  end  of  the 
workflow execution resulting in relatively small savings in the storage space. For these 
workflows we use restructuring techniques in order to minimize the amount of storage 
space used. We are currently evaluating those techniques using real applications and 
cyberinfrastructure deployments.

1.5.Adapting to the changing execution environment

Very large workflows (on the order of thousands of tasks) should not be mapped 
all at once as the state and the availability resources can change significantly over the 
execution time of the workflow. Rather, portions of the workflow need to mapped and 
executed before the remaining portions are mapped and executed. In our work we have 
developed  a  workflow  partitioning  technique  where  the  workflow  is  divided  into 
smaller sub-workflows [26]. The partitioning algorithm is a pluggable component of 
Pegasus.  The only restriction is  that  the partition preserves  the dependencies  in the 
original  workflow  and  that  there  cannot  be  any  cyclic  dependencies  between  the 
partitions,  or  in  other  words,  the  partitions  need  to  be  convex  as  defined  in  the 
clustering section. Currently, we have implemented three basic partitioning algorithms: 
level-based, which creates partitions based on the depth of the workflow—all tasks at 
the  same depth  are  in  the  same partition;  single-node  where  each  node  is  its  own 
partition, and label-based partitioning. Single node partitioning is equivalent to just-in-
time mapping, where each task is mapped to a resource only when it is ready to run. In 
label-based partitioning, the partitions are built based on the labels assigned to them 
allowing  for  a  flexible  partition  structure.  Figure  9  shows  how  a  label-based 



partitioning works. Figure 9 (a) shows the original workflow labeled for partitioning. 
Figure 9 (b) shows this workflow partitioning into three partitions. In this workflow 
Partition 1 will execute first, then the other two partitions can execute in parallel. We 
also  notice  that  although  this  partitioning  is  correct  as  it  does  not  violate  any 
dependencies, it does introduce additional dependencies, in particular between tasks C 
and D and task B.  This may result in performance degradation.
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L = 2 L = 3
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C D
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Figure 9: (a) A Workflow Labeled for Partitioning. (b) Resulting workflow.

Each  partition  is  mapped  by  Pegasus  and  executed  by  DAGMan  before  the 
dependent partitions are treated in the same fashion. The entire process of managing 
the  mapping  and  execution  of  workflows  and  following  the  dependencies  between 
them is performed by DAGMan. The workflow partitioning approach combined with 
node clustering is often used by LIGO workflows running on the OSG and in SCEC 
workflows running on the TeraGrid to adjust to the dynamic grid conditions and to 
improve the overall workflow performance.

1.6.Support for reliable execution across a variety of platforms

Pegasus’ partitioning and data reuse play an important role in the reliability of the 
workflow execution, especially in very dynamic execution environments. Breaking up 
the workflow into smaller pieces and mapping and executing at that level of granularity 
enables  us  to  re-plan  and  re-execute  the  individual  partitions  when  failures  during 
execution occur [28]. If a partition fails during the mapping or the execution, we can 
trigger a retry (or several retries) of that partition. Additionally when the re-planning 
occurs within the partition, not everything needs to be re-executed because of the data-
reuse capabilities of Pegasus. If  for example the original sub-workflow consisted of 
three sequential tasks  t1, t2, t3, each producing file  f1, f2, f3 respectively and task t3 
failed, then upon re-planning, Pegasus would discover that files f1 and f2 already exist 
and thus tasks t1 and t2 do not need to be re-executed and the only task that will be re-
mapped and re-executed is task t3. 



Additional reliability is provided by the DAGMan execution engine. DAGMan sits 
as a layer "above" the batch system in the software stack.  DAGMan utilizes the batch 
system's standard API and logs in order to submit, query,  and manipulate jobs, and 
does not directly interact with the jobs independently. While DAGMan currently only 
works with Condor [43] as a batch system, it can uses Condor's grid abilities (known as 
Condor-G) to submit to many other batch and grid systems. DAGMan reads the logs of 
the underlying batch system to follow the status of submitted jobs rather than invoking 
interactive  tools  or  service  APIs.   Reliance  on  simpler,  file-based  I/O  allows 
DAGMan's own implementation to be simpler, more scalable and reliable across many 
platforms, and therefore more robust. For example, if DAGMan has crashed while the 
underlying batch system continues to run jobs, DAGMan can recover its state upon 
restart (by reading logs provided by the batch system) and there is no concern about 
missing  callbacks  or  gathering  information  if  the  batch  system  is  temporarily 
unavailable ─ it is all in the log file.

Workflow management includes not only job submission and monitoring but job 
preparation,  cleanup,  throttling,  retry,  and  other  actions  necessary  to  ensure  the 
successful  workflow execution.  DAGMan attempts to overcome or  work around as 
many execution errors  as  possible,  and in the face  of  errors  it  cannot overcome,  it 
allows the user to resolve the problem manually and then resume the workflow from 
the point where it  last left off.  This can be thought of as a "checkpointing" of the 
workflow, just as some batch systems provide checkpointing of jobs.

1.7.Scalability of Pegasus and DAGMan

The scalability of our workflow management system can be seen in the context of 
scientific applications that use our technologies.

The Southern California Earthquake Center (SCEC) [8] uses our tools to produce 
more accurate seismic hazard maps. These maps, generated as part of the CyberShake 
project  [45],  indicate  the  maximum  amount  of  shaking  expected  at  a  particular 
geographic location over a certain period of time. The hazard maps are used by civil 
engineers to determine building design tolerances. Figure 10 shows the results of one 
of two major CyberShake executions. The run was performed on the TeraGrid in the 
fall of 2005 and used Pegasus and DAGMan. The two workflows ran over a period of 
23 days and processed 20TB of data using 1.8 CPU Years. The total number of tasks in 
the two workflows was 261,823. CyberShake workflows have tasks with very varied 
runtimes as can be seen in Figure 11. The task times range from l minute to almost 70 
hours.



 
Figure 10: Execution of SCEC Workflows on the TeraGrid in 2005 [29, 30].

Figure 11: Distribution of Seismogram Tasks in the SCEC CyberShake Workflow. 

After  several  months  of  validation,  result  interpretation,  code  modification and 
improvement, SCEC conducted 10 more runs of CyberShake in the Spring of 2006. 
The total number of tasks was over 212,000 and the runtime was approximately 8 CPU 
months.   Since  then  the  scientists  have  been  analyzing  the  results  and  trying  to 
understand why the results differ from the traditional calculations. Now, a new wave of 
simulations  is  underway.  As  the  result  of  many simulations,  SCEC scientists  now 
believe  that  CyberShake  may be more  accurate  than traditional  methods because  it 
models  rupture  directivity  and  sedimentary  basin  effects  which  contribute  to  the 
shaking experienced at different geographic locations. As a result more accurate hazard 
maps can be created.  SCEC is also using Pegasus and DAGMan in the Earthworks 
Portal [46], a TeraGrid Science Gateway, hosted at Washington University that allows 
users to configure and execute earthquake wave propagation simulations structured as 
workflows through a simple portal interface. 



Pegasus  and  DAGMan  are  used  in  the  LIGO  project  to  map  binary  inspiral 
analysis  workflows  onto  the  OSG  [20].  A  month  of  LIGO  data  requires  many 
thousands of jobs, running for days on hundreds of CPUs. Figure 12 illustrates the use 
of OSG for the LIGO workflows over the period of November 2006 to early January 
2007. The figure was created using the Monalisa monitoring software used on OSG [9]. 
The workflows were run across several OSG sites and used a total of 2.5 CPU years of 
computing over a period of two months.

Figure 12: LIGO's CPU Hours Usage of OSG Resources.

Currently DAGMan is also used by a broad range of application in both scientific 
and commercial domains.  Some examples of DAGMan use in science are in the areas 
of  bioinformatics,  machine  translation,  computational  fluid  dynamics,  high-energy 
physics, and others. In particular DAGMan is used in production by BioMagResBank 
(BMRB)  [3]  at  UW-Madison  to  execute  BLAST  workflows,  which  consist  of 
approximately  500  nodes  and  run  for  approximately  24  hours  on  100  processors. 
During a workflow run, the BMRB's BLAST setup compares 4,000 sequences against 
multiple databases containing a total of ~4.5 million entries. Another use of DAGMan 
is the NMI build and test infrastructure [4].  This infrastructure automatically builds a 
set of software packages every day on a variety of platforms and performs automated 
tests on the resulting builds. The builds are represented as DAGMan workflows, where 
the dependencies reflect the dependencies between the builds of the software packages. 
Figures 13 and 14 show some of the details of the execution of the workflows over 28 
months  starting  in  October  of  2004.   Over  that  time  period  there  were  ~2,800 
workflows  submitted  each  month,  with  a  total  of  over  105,000  workflow  tasks 
executed each month.



Figure 13:  The Number of Workflow Submitted Each Month in Support of the NMI Build and Test. 

Figure 14: The Number of Workflow Tasks Submitted Each Month in Support of the NMI Build and Test.

1.8.Provenance Tracking

One  promising  area  in  large-scale  applications  in  general  and  in  workflow 
technologies in particular is the generation, management and querying of provenance 
which  provides  information  about  how data  was  produced.  In  our  current  system, 
Pegasus  stores  provenance  information  related  to  the  execution  of  the  workflow 
components. This information describes the execution environment of the tasks, where 



they were executed, how long the execution took place,  which files were used and 
generated  and  other  task-level  information.  We  are  also  exploring  the  use  of 
provenance tracking capabilities to record the workflow transformations performed by 
Pegasus during the workflow mapping process [41]. 

2. Other Applications Using Pegasus and DAGMan

Pegasus and DAGMan are used in astronomy, and in particular in the Montage 
application  which  delivers  science-grade  mosaics  of  the  sky.   Our  workflow 
technologies were used to transform a single-processor Montage code into a complex 
workflow  and  parallelized  computations  to  process  larger-scale  images.  Montage 
workflows mapped by Pegasus to the existing cyberinfrastructure are characterized by 
tens  of  thousands  of  executable  tasks  and  the  processing  of  thousands  of  images. 
Recently, Montage was used to make a scientific discovery: the verification of a bar in 
the spiral  galaxy M31 [15].  Although there  have been hints of a bar in M31 from 
optical data, none of the analyses were convincing because the effects of interstellar 
extinction at optical wavelengths were severe.  However,  the universe is much more 
transparent  in the infrared, and this enabled astronomers to overcome the effects  of 
interstellar extinction.   There was one more problem: the variable background in the 
infrared images hid the structure of the galaxy.   By using Montage, which was able to 
rectify the backgrounds to a common level, the astronomers were finally able to see the 
structure. 

Pegasus and DAGMan are also used in the Telescience project [42] and portal to 
support 3D reconstruction of electron tomography images. The UCSD scientists plan to 
continue to rely on our workflow technologies to expand the set of Grid applications 
they support within their portal environment and to develop new techniques that can 
provide real-time feedback from the 3D reconstruction to the scientists manipulating 
the instrument. Data mining and natural language processing applications are new user 
communities that are exploring the use of our workflow technologies to manage the 
large-scale computations on today’s cyberinfrastructure. 

Within GriPhyN [12],  Pegasus  was made available as  part  of  the Virtual  Data 
System (VDS) and interfaced with VDL. Today several applications use Pegasus and 
DAGMan it in that fashion. Among them are: a climate modeling application, where 
simulations which used to take 2.5 months to run manually, took only 2.5 days to run 
using our tools [47]. Another example is the GADU project (Genome Analysis and 
Database  Update)  [49],  where  the  researchers  at  Argonne  National  Laboratory  use 
Pegasus and DAGMan to conduct genome analysis on OSG. 

3. Conclusions

We have shown the ability of the end-to-end Pegasus/DAGMan to efficiently and 
robustly  execute  computational  workflows  in  a  variety  of  application  domains. 
Although we were able to address many issues faced by today’s large-scale analyses 
running on the distributed cyberinfrastructure resources, many challenges still remain.

Through our work with data-intensive computations, we have recognized that data 
management is at least just as important as computation scheduling. When data sets 



being processed or generated by workflows are significant—sometimes on the order of 
Terabytes, it is critical to employ workflow scheduling techniques that are aware of the 
storage necessary to support the successful workflow execution. 

Since many scientific collaborations are managing their experimental data across 
the distributed environment, it is also necessary for the workflows to be aware of these 
systems and collaborate with them in order to support the overall analysis. Examining 
these  data-versus  computation-placement  issues  that  are  being  implemented  by 
independent systems remains a challenge and we plan to continue our work in this area 
[27]. 
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