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Policies, Scores, and the Optimal Policy

Some systems can operate in a range of conditions; a good
controller should adapt to the changes. The goal of this work is
to train a good control policy in the lab -- where environmental
conditions can be set -- that has good performance when tested
In the field -- where the environment is not controlled.
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Expensive Optimization
using Surrogate Functions

Expensive System Examples
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Surrogate Function Method:

1) Initial Objection Samples

2) Fit Function (Gaussian process)
3) Use Fit to Select Next Sample
4) Repeat steps 2 and 3
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Problem Definition

Experiment Selection:

iIn X, x X,, so as to
maximize performance S
of the selected policy A.

Proposed Methods

Policy Selection
A Gaussian process is fit to the existing data, providing

Sequentially select and
evaluate a series of x'

Policy Selection:

Given n evaluations of f,
choose the policy A with the
highest expected performance.

an estimate f of the true f. This f can be searched cheaply
to optimize S(A); alternatively a lower confidence bound can

be used as fto produce a more robust policy.
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Experimental Results
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Empirical Results: Compared score of policies generated from
samples selected by each metric; average score over 20 trials
for analytic test functions, and over 1 trial for robot test.
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