

Adapting Control Policies for Expensive Systems to Changing Environments

Matthew Tesch, Jeff Schneider, and Howie Choset Robotics Institute, Carnegie Mellon University mtesch@cmu.edu

Policies, Scores, and the Optimal Policy

Some systems can operate in a range of conditions; a good controller should adapt to the changes. The goal of this work is to train a good *control policy* in the lab -- where environmental conditions can be set -- that has good performance when tested in the field -- where the environment is not controlled.

Control Policy Reward: f Control: XC Environment: X_e $\gamma \colon X_e \to X_c$

$$\gamma^* = \operatorname*{argmax}_{\gamma} \mathcal{S}(\gamma)$$
or
 $\gamma^*(x_e) = \operatorname*{argmax}_{x_c \in X_c} f(x_e, x_c)$

Recall *f* is expensive; can't calculate $S(\lambda)$, let alone directly search for λ^*

Expensive Optimization using Surrogate Functions

Surrogate Function Method:

- 1) Initial Objection Samples
- 2) Fit Function (Gaussian process)
- 3) Use Fit to Select Next Sample
- 4) Repeat steps 2 and 3

Expected Improvement Reward Control $EI(x) = \mathbb{E}\left(\max(y - \max(\tilde{Y}), 0)\right)$

Problem Definition

Experiment Selection:

Sequentially select and evaluate a series of x^i in $X_e \times X_c$, so as to maximize performance S of the selected policy λ .

Policy Selection:

Given n evaluations of f, choose the policy λ with the highest expected performance.

Proposed Methods

Policy Selection

A Gaussian process is fit to the existing data, providing an estimate \hat{f} of the true f. This \hat{f} can be searched cheaply to optimize $\hat{S}(\lambda)$; alternatively a lower confidence bound can be used as f to produce a more robust policy.

Experiment Selection

Experimental Results

Empirical Results: Compared score of policies generated from samples selected by each metric; average score over 20 trials for analytic test functions, and over 1 trial for robot test.