Search-based Planning with Motion Primitives
Maxim Likhachev
Carnegie Mellon University
What is Search-based Planning

• generate a graph representation of the planning problem
• search the graph for a solution
• can interleave the construction of the representation with the search (i.e., construct only what is necessary)

2D grid-based graph representation for 2D \((x,y)\) search-based planning:

lattice-based graph representation for 3D \((x,y,\theta)\) planning:

motion primitives
Search-based Planning Library (SBPL)

- http://www.ros.org/wiki/sbpl

- SBPL is:
 - a library of domain-independent graph searches
 - a library of environments (planning problems) that represent the problems as graph search problems
 - designed to be so that the same graph searches can be used to solve a variety of environments (graph searches and environments are independent of each other)
 - a standalone library that can be used with or without ROS and under linux or windows
Search-based Planning Library (SBPL)

- http://www.ros.org/wiki/sbpl

- SBPL can be used to:
 - implement particular planning modules such as x,y,θ planning and arm motion planning modules within ROS
 - design and drop-in new environments (planning problems) that represent the problem as a graph search and can therefore use existing graph searches to solve them
 - design and drop-in new graph searches and test their performance on existing environments

Planning module

- receives map, pose and goal updates
- updates environment (graph)
- calls graph search to re-plan

![Diagram of planning module](image)
Currently implemented graph searches within SBPL:
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- R* - a randomized version of A* (hybrid between deterministic searches and sampling-based planning)

Currently implemented environments (planning problems) within SBPL:
- 2D (x,y) grid-based planning problem
- 3D (x,y,θ) lattice-based planning problem
- 3D (x,y,θ) lattice-based planning problem with 3D (x,y,z) collision checking
- N-DOF planar robot arm planning problem

ROS packages that use SBPL:
- SBPL lattice global planner for (x,y,θ) planning for navigation
- SBPL cart planner for PR2 navigating with a cart
- SBPL motion planner for PR2 arm motions
- default move_base invokes SBPL lattice global planner as part of escape behavior

Unreleased ROS packages and other planning modules that use SBPL:
- SBPL door planning module for PR2 opening and moving through doors
- SBPL planning module for navigating in dynamic environments
- 4D planning module for aerial vehicles (x,y,z,θ)
...
What I will talk about

- Graph representations (implemented as environments for SBPL)
 - 3D \((x,y,\theta)\) lattice-based graph (within SBPL)
 - 3D \((x,y,\theta)\) lattice-based graph for 3D \((x,y,z)\) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)

- Graph searches (implemented within SBPL)
 - ARA* - anytime version of A*
 - Anytime D* - anytime incremental version of A*
 - R* - a randomized version of A* (will not talk about)

- Heuristic functions (implemented as part of environments)

- Overview of how SBPL code is structured

- What’s coming
Lattice-based Graphs for Navigation

- Problems with (very popular) pure grid-based planning

2D grid-based graph representation for 2D (x,y) search-based planning:

\[\text{discretize:} \quad \text{construct the graph:} \quad \text{search the graph for solution:} \]

\[S_1 \quad S_2 \quad S_3 \quad S_4 \quad S_5 \quad S_6 \]

sharp turns do not incorporate the kinodynamics constraints of the robot
Lattice-based Graphs for Navigation

- Problems with (very popular) pure grid-based planning

2D grid-based graph representation for 2D \((x,y)\) search-based planning:

3D-grid \((x,y,\theta)\) would help a bit but won’t resolve the issue
Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko & Kelly, ‘05]

outcome state is the center of the corresponding cell in the underlying \((x,y,\theta,...)\) cell

set of motion primitives pre-computed for each robot orientation (action template)

each transition is feasible (constructed beforehand)

replicate it online by translating it
Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko & Kelly, '05]
 - pros: sparse graph, feasible paths, can incorporate a variety of constraints
 - cons: possible incompleteness

set of motion primitives
pre-computed for each robot orientation
(action template)

replicate it
online
by translating it
Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko & Kelly, ‘05]
 - pros: sparse graph, feasible paths, can incorporate a variety of constraints
 - cons: possible incompleteness

planning on 4D ($<x,y,orientation,velocity>$) multi-resolution lattice using Anytime D*
[Likhachev & Ferguson, ‘09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko & Kelly, ‘05]
 - pros: sparse graph, feasible paths, can incorporate a variety of constraints
 - cons: possible incompleteness

planning in 8D (foothold planning) lattice-based graph for quadrupeds [Vernaza et al., ’09]
using R* search [Likhachev & Stentz, ‘08]
Lattice-based Graphs for Navigation

- 3D \((x,y,\theta)\) lattice-based graph representation (*environment_navxythetalat.h/cpp in SBPL*)
 - takes set of motion primitives as input (.mprim files generated within matlab/mprim directory using corresponding matlab scripts):

 \(\text{unicycle model} \quad \text{or} \quad \text{unicycle with sideways motions} \quad \text{or} \quad \ldots\)

- takes the footprint of the robot defined as a polygon as input
Lattice-based Graphs for Navigation

- 3D \((x,y,\theta)\) lattice-based graph representation for 3D \((x,y,z)\) spaces
 (\textit{environment_navxythetamlevlat.h/cpp in SBPL})
 - takes set of motion primitives as input
 - takes \(N\) footprints of the robot defined as polygons as input.
 - each footprint corresponds to the projection of a part of the body onto \(x,y\) plane.
 - collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map
Graph Representation for Cart Planning

[Scholz, Marthi, Chitta & Likhachev, in submission]

- 3D \((x,y,\theta,\theta_{cart})\) lattice-based graph representation (in a separate Cart Planner package)
 - takes set of motion primitives feasible for the coupled robot-cart system as input (arm motions generated via IK)
 - takes footprints of the robot and the cart defined as polygons as input
Graph Representation for Arm Planning
[Cohen, Chitta & Likhachev, ICRA’10; Cohen et al., in submission]

- 7D (joint angles) lattice-based graph representation (in a separate SBPL Arm Planner package)
 - takes set of motion primitives defining joint angle changes as input
 - takes joint angle limits and link widths
 - goal is a 6 DoF pose for the end-effector
Graph Representation for Door Opening Planning

[Chitta, Cohen & Likhachev, ICRA’10]

• 4D \((x, y, \theta, \text{door interval})\) graph representation (in a separate SBPL Door Planner package)
 - takes set of motion primitives defining feasible \(x, y, \theta, \text{door angles}\) in the door frame as input
 - goal is for the door to be fully open
 - suitable for pushing/pulling doors
What I will talk about

- Graph representations (implemented as environments for SBPL)
 - 3D \((x, y, \theta)\) lattice-based graph (within SBPL)
 - 3D \((x, y, \theta)\) lattice-based graph for 3D \((x, y, z)\) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)

- Graph searches (implemented within SBPL)
 - ARA* - anytime version of A*
 - Anytime D* - anytime incremental version of A*
 - R* - a randomized version of A* (will not talk about)

- Heuristic functions (implemented as part of environments)

- Overview of how SBPL code is structured

- What’s coming
Searching Graphs

• Once a graph is given (defined by environment file in SBPL), we need to search it for a path that minimizes cost as much as possible
• Many searches work by computing optimal g-values for relevant states

- $g(s)$ – an estimate of the cost of a least-cost path from s_{start} to s

- Optimal values satisfy: $g(s) = \min_{s'' \in \text{pred}(s)} g(s'') + c(s'', s)$

![Diagram of searching graphs](image)
• Many searches work by computing optimal g-values for relevant states

- \(g(s) \) – an estimate of the cost of a least-cost path from \(s_{start} \) to \(s \)

- optimal values satisfy:
 \[
 g(s) = \min_{s'' \in \text{pred}(s)} g(s'') + c(s'', s)
 \]

the cost \(c(s_1, s_{goal}) \) of an edge from \(s_1 \) to \(s_{goal} \)
• Least-cost path is a greedy path computed by backtracking:

 - start with s_{goal} and from any state s move to the predecessor state s' such that

 $$
 s' = \arg \min_{s'' \in \text{pred}(s)} (g(s'') + c(s'', s))
 $$

![Diagram of searching graphs](image-url)
A* Search

- Computes optimal g-values for relevant states at any point of time:

\[\text{the cost of a shortest path from } S_{\text{start}} \text{ to } s \text{ found so far} \]

\[g(s) \]

\[h(s) \]

an (under) estimate of the cost of a shortest path from \(s \) to \(s_{\text{goal}} \)
A* Search

- Computes optimal g-values for relevant states at any point of time:

one popular heuristic function – Euclidean distance
A* Search

• Heuristic function must be:
 – admissible: for every state s, $h(s) \leq c^*(s,s_{goal})$
 – consistent (satisfy triangle inequality):
 \[h(s_{goal},s_{goal}) = 0 \text{ and for every } s \neq s_{goal}, h(s) \leq c(s,\text{succ}(s)) + h(\text{succ}(s)) \]
 – admissibility follows from consistency and often consistency follows from admissibility
A* Search

• Computes optimal g-values for relevant states

Main function
\[g(s_{start}) = 0; \text{ all other } g\text{-values are infinite}; \text{ OPEN } = \{ s_{start}\}; \]
ComputePath();
publish solution;

ComputePath function
while (\text{s}_{\text{goal}} \text{ is not expanded})
\hspace{1em} \text{remove } s \text{ with the smallest } [f(s) = g(s)+h(s)] \text{ from OPEN; }
\hspace{1em} \text{expand } s;

set of candidates for expansion

for every expanded state
\[g(s) \text{ is optimal} \]
(if heuristics are consistent)
A* Search

- Computes optimal g-values for relevant states

ComputePath function
while(s_{goal} is not expanded)
 remove s with the smallest [$f(s) = g(s)+h(s)$] from OPEN;
 expand s;

![A* Search Diagram]

- S_{start}
 - $g=0$
 - $h=3$

- S_2
 - $g=\infty$
 - $h=2$

- S_1
 - $g=\infty$
 - $h=1$

- S_4
 - $g=\infty$
 - $h=2$

- S_3
 - $g=\infty$
 - $h=1$

- S_{goal}
 - $g=\infty$
 - $h=0$
A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

 remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

tries to decrease $g(s')$ using the found path from s_{start} to s
A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if $g(s') > g(s) + c(s, s')$

$g(s') = g(s) + c(s, s')$;

insert s' into OPEN;

CLOSED = {}

OPEN = \{s_{start}\}

next state to expand: s_{start}
A* Search

- Computes optimal g-values for relevant states

\textbf{ComputePath function}

while (s_{goal} is not expanded)

\begin{itemize}
 \item remove s with the smallest $[f(s) = g(s)+h(s)]$ from $OPEN$;
 \item insert s into $CLOSED$;
 \item for every successor s' of s such that s' not in $CLOSED$
 \begin{itemize}
 \item if $g(s') > g(s) + c(s,s')$
 \begin{align*}
 g(s') &= g(s) + c(s,s');
 \text{insert } s' \text{ into } OPEN;
 \end{align*}
 \end{itemize}
\end{itemize}

$CLOSED = \{\}$

$OPEN = \{s_{start}\}$

next state to expand: s_{start}
A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;

insert s into CLOSED;

for every successor s' of s such that s' not in CLOSED

if $g(s') > g(s) + c(s,s')$

$g(s') = g(s) + c(s,s');$

insert s' into OPEN;

\[g=0 \]
\[h=3 \]
\[S_{start} \]

\[g=1 \]
\[h=2 \]
\[S_2 \]

\[g=\infty \]
\[h=1 \]
\[S_1 \]

\[g=\infty \]
\[h=0 \]
\[S_{goal} \]

\[g=\infty \]
\[h=2 \]
\[S_4 \]

\[g=\infty \]
\[h=1 \]
\[S_3 \]
A* Search

- Computes optimal g-values for relevant states

ComputePath function
while(s_{goal} is not expanded)

 remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

$CLOSED = \{s_{start}\}$
$OPEN = \{s_2\}$
next state to expand: s_2
A* Search

- Computes optimal g-values for relevant states

ComputePath function
while(s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

$CLOSED = \{s_{\text{start}}, s_2\}$
$OPEN = \{s_1, s_4\}$
next state to expand: s_1
• Computes optimal g-values for relevant states

ComputePath function
while(s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

$CLOSED = \{s_{start}, s_2, s_1\}$
$OPEN = \{s_4, s_{goal}\}$
next state to expand: s_4
A* Search

- Computes optimal g-values for relevant states

ComputePath function

while(s_{goal} is not expanded)

remove s with the smallest \(f(s) = g(s) + h(s) \) from $OPEN$;
insert s into $CLOSED$
for every successor s' of s such that s' not in $CLOSED$
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into $OPEN$;

$CLOSED = \{s_{start}, s_{2}, s_{1}, s_{4}\}$

$OPEN = \{s_{3}, s_{goal}\}$

next state to expand: s_{goal}
A* Search

- Computes optimal g-values for relevant states

ComputePath function
while(s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

$\text{CLOSED} = \{s_{\text{start}}, s_2, s_1, s_4, s_{\text{goal}}\}$
$\text{OPEN} = \{s_3\}$
done
A* Search

- Computes optimal g-values for relevant states

ComputePath function

while (s_{goal} is not expanded)

- remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;
- insert s into CLOSED;
- for every successor s' of s such that s' not in CLOSED
 - if $g(s') > g(s) + c(s,s')$
 - $g(s') = g(s) + c(s,s')$;
 - insert s' into OPEN;

for every expanded state $g(s)$ is optimal
for every other state $g(s)$ is an upper bound
we can now compute a least-cost path
A* Search

- Computes optimal g-values for relevant states

ComputePath function
while (s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s) + h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

for every expanded state $g(s)$ is optimal
for every other state $g(s)$ is an upper bound
we can now compute a least-cost path
A* Search

• Computes optimal g-values for relevant states

ComputePath function
while(s_{goal} is not expanded)
 remove s with the smallest $[f(s) = g(s)+h(s)]$ from OPEN;
 insert s into CLOSED;
 for every successor s' of s such that s' not in CLOSED
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into OPEN;

for every expanded state $g(s)$ is optimal
for every other state $g(s)$ is an upper bound
we can now compute a least-cost path
A* Search

- Is guaranteed to return an optimal path (in fact, for every expanded state) – optimal in terms of the solution

- Performs provably minimal number of state expansions required to guarantee optimality – optimal in terms of the computations

\[g = 0 \quad h = 3 \]
\[g = 2 \quad h = 2 \]
\[g = 3 \quad h = 1 \]
\[g = 5 \quad h = 0 \]
\[g = 0 \quad h = 3 \]
\[g = 2 \quad h = 2 \]
\[g = 5 \quad h = 1 \]
Effect of the Heuristic Function

• A* Search: expands states in the order of $f = g + h$ values
• Dijkstra’s: expands states in the order of $f = g$ values (pretty much)

• Intuitively: $f(s)$ – estimate of the cost of a least cost path from start to goal via s

* the cost of a shortest path from s_{start} to s found so far

* an (under) estimate of the cost of a shortest path from s to $s_{\text{goal}}
Effect of the Heuristic Function

- **A* Search**: expands states in the order of $f = g + h$ values.
- **Dijkstra’s**: expands states in the order of $f = g$ values (pretty much).
- **Weighted A***: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1 = \text{bias towards states that are closer to goal}$

The cost of a shortest path from s_{start} to $s_{\text{found so far}}$ is $g(s)$.

An (under) estimate of the cost of a shortest path from s to s_{goal} is $h(s)$.

\[\begin{align*}
S_{\text{start}} & \quad \rightarrow \quad S_1 \quad \rightarrow \quad \ldots \\
S_1 & \quad \rightarrow \quad S \quad \rightarrow \quad \ldots \\
S_2 & \quad \rightarrow \quad \ldots \\
\ldots & \\
S_{\text{goal}} & \quad \rightarrow \quad \ldots
\end{align*} \]
Effect of the Heuristic Function

- Dijkstra’s: expands states in the order of $f = g$ values
Effect of the Heuristic Function

- A* Search: expands states in the order of $f = g + h$ values
Effect of the Heuristic Function

- A* Search: expands states in the order of $f = g + h$ values

for large problems this results in A* quickly running out of memory (memory: $O(n)$)
Effect of the Heuristic Function

- Weighted A* Search: expands states in the order of $f = g + \varepsilon h$ values, $\varepsilon > 1$ = bias towards states that are closer to goal

key to finding solution fast: shallow minima for $h(s) - h^*(s)$ function
Effect of the Heuristic Function

- **Weighted A* Search:**
 - trades off optimality for speed
 - ε-suboptimal:
 \[
 \text{cost(solution)} \leq \varepsilon \cdot \text{cost(optimal solution)}
 \]
 - in many domains, it has been shown to be orders of magnitude faster than A*
 - research becomes to develop a heuristic function that has shallow local minima
Effect of the Heuristic Function

• Weighted A* Search:
 – trades off optimality for speed
 – ε-suboptimal:
 \[
 \text{cost(solution)} \leq \varepsilon \cdot \text{cost(optimal solution)}
 \]
 – in many domains, it has been shown to be orders of magnitude faster than A*
 – research becomes to develop a heuristic function that has shallow local minima
Effect of the Heuristic Function

- Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ε:

 $\varepsilon = 2.5$
 - 13 expansions
 - solution = 11 moves

 $\varepsilon = 1.5$
 - 15 expansions
 - solution = 11 moves

 $\varepsilon = 1.0$
 - 20 expansions
 - solution = 10 moves
Effect of the Heuristic Function

- Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ϵ:

$$\epsilon = 2.5$$
13 expansions
solution = 11 moves

$$\epsilon = 1.5$$
15 expansions
solution = 11 moves

$$\epsilon = 1.0$$
20 expansions
solution = 10 moves

- Inefficient because
 – many state values remain the same between search iterations
 – we should be able to reuse the results of previous searches
Effect of the Heuristic Function

• Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ε:

 $\varepsilon = 2.5$
 13 expansions
 solution = 11 moves

 $\varepsilon = 1.5$
 15 expansions
 solution = 11 moves

 $\varepsilon = 1.0$
 20 expansions
 solution = 10 moves

• ARA* [Likhachev, Gordon & Thrun, ‘04]
 - an efficient version of the above that reuses state values within any search iteration
 - uses incremental version of A*
Other Motivation for Incremental A*

- Reuse state values from previous searches

\[\text{cost of least-cost paths to } s_{\text{goal}} \text{ initially} \]

\[
\begin{array}{cccccccccccccccc}
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[\text{cost of least-cost paths to } s_{\text{goal}} \text{ after the door turns out to be closed} \]

\[
\begin{array}{cccccccccccccccc}
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]
Other Motivation for Incremental A*

- Reuse state values from previous searches

\[
\text{cost of least-cost paths to } s_{\text{goal}} \text{ initially}
\]

\[
\begin{array}{cccccccccccc}
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 6 & 6 & 6 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
\end{array}
\]

\[
\text{cost of least-cost paths to } s_{\text{goal}} \text{ after the door turns out to be closed}
\]

\[
\begin{array}{cccccccccccc}
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 \\
\end{array}
\]

These costs are optimal g-values if search is done backwards.
Other Motivation for Incremental A*

- Reuse state values from previous searches

\[\text{cost of least-cost paths to } s_{\text{goal}} \text{ initially} \]

<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

These costs are optimal g-values if search is done backwards.

Can we reuse these g-values from one search to another? – incremental A*

Cost of least-cost paths to \(s_{\text{goal}} \):

<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

These costs are optimal g-values if search is done backwards.

Can we reuse these g-values from one search to another? – incremental A*
Use of Incremental A* in D* Lite [Koenig & Likhachev, ‘02]

- Reuse state values from previous searches

initial search by backwards A

initial search by D Lite*

second search by backwards A

second search by D Lite*
A* with Reuse of State Values

• Alternative view of A*

all v-values initially are infinite;

ComputePath function
while(f(s_{goal}) > minimum f-value in OPEN)
 remove s with the smallest [g(s)+ h(s)] from OPEN;
 insert s into CLOSED;
 for every successor s’ of s
 if g(s’) > g(s) + c(s,s’)
 g(s’) = g(s) + c(s,s’);
 insert s’ into OPEN;

A* with Reuse of State Values

- Alternative view of A*

 all v-values initially are infinite;

 ComputePath function

 while ($f(s_{goal}) > \text{minimum } f\text{-value in OPEN}$)

 remove s with the smallest $[g(s) + h(s)]$ from OPEN;

 insert s into CLOSED;

 $v(s) = g(s);$

 for every successor s' of s

 if $g(s') > g(s) + c(s,s')$

 $g(s') = g(s) + c(s,s')$;

 insert s' into OPEN;

*v-value – the value of a state during its expansion (infinite if state was never expanded)
A* with Reuse of State Values

• Alternative view of A*

all \(v \)-values initially are infinite;

ComputePath function

while(\(f(s_{goal}) > \) minimum \(f \)-value in \(OPEN \))
 remove \(s \) with the smallest \([g(s) + h(s)] \) from \(OPEN \);
 insert \(s \) into \(CLOSED \);
\(v(s) = g(s) \);

for every successor \(s' \) of \(s \)
 if \(g(s') > g(s) + c(s,s') \)
 \(g(s') = g(s) + c(s,s') \);
 insert \(s' \) into \(OPEN \);

• \(g(s') = \min_{s'' \in \text{pred}(s')} v(s'') + c(s'',s') \)
A* with Reuse of State Values

• Alternative view of A*

all \(v \)-values initially are infinite;

ComputePath function

while \((f(s_{goal}) > \text{minimum } f\text{-value in } OPEN \))

remove \(s \) with the smallest \([g(s) + h(s)] \) from \(OPEN \);

insert \(s \) into \(CLOSED \);

\(v(s) = g(s) \);

for every successor \(s' \) of \(s \)

if \(g(s') > g(s) + c(s,s') \)

\(g(s') = g(s) + c(s,s') \);

insert \(s' \) into \(OPEN \);

- \(g(s') = \min_{s'' \in \text{pred}(s')} v(s'') + c(s'',s') \)
A* with Reuse of State Values

• Alternative view of A*

all \(v \)-values initially are infinite;

ComputePath function

while(\(f(s_{goal}) > \) minimum \(f \)-value in OPEN)

remove \(s \) with the smallest \[g(s) + h(s) \] from OPEN;

insert \(s \) into CLOSED;

\(v(s) = g(s) \);

for every successor \(s' \) of \(s \)

if \(g(s') > g(s) + c(s,s') \)

\(g(s') = g(s) + c(s,s') \);

insert \(s' \) into OPEN;

\(g(s') = \min_{s'' \in \text{pred}(s')} v(s'') + c(s'',s') \)

• OPEN: a set of states with \(v(s) > g(s) \)

all other states have \(v(s) = g(s) \)
A* with Reuse of State Values

• Alternative view of A*

all v-values initially are infinite;

ComputePath function

while($f(s_{goal}) > \text{minimum } f$-value in OPEN)

remove s with the smallest $[g(s) + h(s)]$ from OPEN;
insert s into CLOSED;
$v(s) = g(s)$;

for every successor s' of s

if $g(s') > g(s) + c(s,s')$

$g(s') = g(s) + c(s,s')$;
insert s' into OPEN;

$g(s') = \min_{s'' \in \text{pred}(s')} v(s'') + c(s'',s')$

• OPEN: a set of states with $v(s) > g(s)$
all other states have $v(s) = g(s)$
A* with Reuse of State Values

• Alternative view of A*

all \(v \)-values initially are infinite;

ComputePath function

while(\(f(s_{goal}) > \) minimum \(f \)-value in OPEN)

remove \(s \) with the smallest \([g(s)+ h(s)] \) from OPEN;

insert \(s \) into CLOSED;

\(v(s)=g(s) \);

for every successor \(s' \) of \(s \)

if \(g(s') > g(s) + c(s, s') \)

\(g(s') = g(s) + c(s, s') \);

insert \(s' \) into OPEN;

\(g(s') = \min_{s'' \in \text{pred}(s')} v(s'') + c(s'', s') \)

• OPEN: a set of states with \(v(s) > g(s) \)

all other states have \(v(s) = g(s) \)

• this A* expands overconsistent states in the order of their \(f \)-values
A* with Reuse of State Values

• Making A* reuse old values:

initialize $OPEN$ with all overconsistent states;

$ComputePathWithReuse$ function

while($f(s_{goal}) > \text{minimum } f\text{-value in } OPEN$)
 remove s with the smallest $[g(s) + h(s)]$ from $OPEN$;
 insert s into $CLOSED$;

$v(s)=g(s)$;

for every successor s' of s
 if $g(s') > g(s) + c(s,s')$
 $g(s') = g(s) + c(s,s')$;
 insert s' into $OPEN$;

• $g(s') = \min_{s'' \in \text{pred}(s')} v(s'') + c(s'',s')$

• $OPEN$: a set of states with $v(s) > g(s)$
 all other states have $v(s) = g(s)$

• this A* expands overconsistent states in the order of their f-values

all you need to do to make it reuse old values!
A* with Reuse of State Values

\[g(s') = \min_{s'' \in \text{pred}(s')} v(s'') + c(s'', s') \]

initially OPEN contains all overconsistent states

\[\text{CLOSED} = {} \]
\[\text{OPEN} = \{s_4, s_{\text{goal}}\} \]

next state to expand: \(s_4 \)
A* with Reuse of State Values

CLOSED = \{s_4\}
OPEN = \{s_3, s_{goal}\}
next state to expand: s_{goal}
A* with Reuse of State Values

CLOSED = \{s_4, s_{goal}\}

OPEN = \{s_3\}

done

after ComputePathwithReuse terminates:

all g-values of states are equal to final A* g-values
A* with Reuse of State Values

we can now compute a least-cost path
A* with Reuse of State Values

• Making weighted A* reuse old values:

initialize $OPEN$ with all overconsistent states;

ComputePathwithReuse function

while($f(s_{\text{goal}}) > \text{minimum } f\text{-value in } OPEN$)

remove s with the smallest $[g(s) + \varepsilon h(s)]$ from $OPEN$;

insert s into $CLOSED$;

$v(s) = g(s)$;

for every successor s' of s

if $g(s') > g(s) + c(s, s')$

$g(s') = g(s) + c(s, s')$;

if s' not in $CLOSED$ then insert s' into $OPEN$;

just make sure no state is expanded multiple times
Anytime Repairing A* (ARA*)

- Efficient series of weighted A* searches with decreasing ε:

 set ε to large value;

 $g(s_{start}) = 0$; v-values of all states are set to infinity; $OPEN = \{s_{start}\}$;

 while $\varepsilon \geq 1$

 \[
 CLOSED = \{\};
 \]
 ComputePathwithReuse();

 publish current ε suboptimal solution;

 decrease ε;

 initialize $OPEN$ with all overconsistent states;
ARA*

Efficient series of weighted A* searches with decreasing ε:

set ε to large value;
$g(s_{\text{start}}) = 0$; v-values of all states are set to infinity; $OPEN = \{s_{\text{start}}\}$;
while $\varepsilon \geq 1$

$CLOSED = \{\}$;
ComputePathwithReuse();
publish current ε suboptimal solution;
decrease ε;
initialize $OPEN$ with all overconsistent states;

need to keep track of those
ARA*

- Efficient series of weighted A* searches with decreasing ε:

 initialize $OPEN$ with all overconsistent states;

 ComputePathwithReuse function

 while($f(s_{goal}) >$ minimum f-value in $OPEN$)

 remove s with the smallest $[g(s)+ \varepsilon h(s)]$ from $OPEN$;

 insert s into $CLOSED$;

 $v(s)=g(s)$;

 for every successor s' of s

 if $g(s') > g(s) + c(s,s')$

 $g(s') = g(s) + c(s,s')$;

 if s' not in $CLOSED$ then insert s' into $OPEN$;

 otherwise insert s' into $INCONS$

 • $OPEN \cup INCONS = \text{ all overconsistent states}$
ARA*

- Efficient series of weighted A* searches with decreasing ε:
 set ε to large value;
 $g(s_{\text{start}}) = 0; \ \nu$-values of all states are set to infinity; $OPEN = \{s_{\text{start}}\}$;
 while $\varepsilon \geq 1$
 $CLOSED = \{\}; \ \text{INCONS} = \{\}$;
 ComputePathwithReuse();
 publish current ε suboptimal solution;
 decrease ε;
 initialize $OPEN = OPEN U \text{INCONS}$;

all overconsistent states (exactly what we need!)
ARA*

• A series of weighted A* searches

\[\epsilon = 2.5 \]
13 expansions
solution = 11 moves

\[\epsilon = 1.5 \]
15 expansions
solution = 11 moves

\[\epsilon = 1.0 \]
20 expansions
solution = 10 moves

• ARA*

\[\epsilon = 2.5 \]
13 expansions
solution = 11 moves

\[\epsilon = 1.5 \]
1 expansion
solution = 11 moves

\[\epsilon = 1.0 \]
9 expansions
solution = 10 moves
What I will talk about

• Graph representations (implemented as environments for SBPL)
 - 3D \((x,y,\theta)\) lattice-based graph (within SBPL)
 - 3D \((x,y,\theta)\) lattice-based graph for 3D \((x,y,z)\) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)

• Graph searches (implemented within SBPL)
 - ARA* - anytime version of A*
 - Anytime D* - anytime incremental version of A*
 - R* - a randomized version of A* (will not talk about)

• Heuristic functions (implemented as part of environments)

• Overview of how SBPL code is structured

• What’s coming
Anytime and Incremental Planning

• **Anytime D**[^2008] [Likhachev et al., ‘2008]:
 - decrease ε and update edge costs at the same time
 - re-compute a path by reusing previous state-values

set ε to large value;
until goal is reached
 ComputePathwithReuse(); //modified to handle cost increases
 publish ε-suboptimal path;
 follow the path until map is updated with new sensor information;
 update the corresponding edge costs;
 set s_{start} to the current state of the agent;
 if significant changes were observed
 increase ε or replan from scratch;
 else
 decrease ε;
Anytime and Incremental Planning

• Anytime D* in Urban Challenge

planning on 4D (x,y,orientation,velocity) multi-resolution lattice using Anytime D*
[Likhachev & Ferguson, ‘09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race
Other Uses of Incremental A*

• Whenever planning is a repeated process:
 – improving a solution (e.g., in anytime planning)
 – re-planning in dynamic and previously unknown environments
 – adaptive discretization
 – many other planning problems can be solved via iterative planning
What I will talk about

- Graph representations (implemented as environments for SBPL)
 - 3D (x,y,θ) lattice-based graph (within SBPL)
 - 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)

- Graph searches (implemented within SBPL)
 - ARA* - anytime version of A*
 - Anytime D* - anytime incremental version of A*
 - R* - a randomized version of A* (will not talk about)

- Heuristic functions (implemented as part of environments)

- Overview of how SBPL code is structured

- What’s coming
Heuristic Functions

- 2D (x,y) Dijkstra’s taking into account all obstacles for:
 - 3D (x,y,θ) lattice-based graph
 - 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces
 - cart planning

- Angle distance to the fully open door for:
 - door opening planning

- 3D (x,y,z) Dijkstra’s for the end-effector taking into account all obstacles for:
 - lattice-based arm motion graph (separate SBPL-based motion planning module)
What I will talk about

- Graph representations (implemented as environments for SBPL)
 - 3D \((x,y,\theta)\) lattice-based graph (within SBPL)
 - 3D \((x,y,\theta)\) lattice-based graph for 3D \((x,y,z)\) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)

- Graph searches (implemented within SBPL)
 - ARA* - anytime version of A*
 - Anytime D* - anytime incremental version of A*
 - R* - a randomized version of A* (will not talk about)

- Heuristic functions (implemented as part of environments)

- Overview of how SBPL code is structured

- What’s coming
Structure of SBPL

- Example configuration files to run main.cpp on. These can be used to test planners outside of ROS, just running compiled test program in bin directory from the command line.

- Motion primitives used as input for 3D \((x,y,\theta)\) lattice-based planning and matlab files to generate new motion primitives.

- Few matlab scripts to visualize 3D paths and motion primitives.

- Environments (.cpp and .h files defining planning problems as graphs).

- Domain-independent graph searches.

- For compiling under Linux/Windows using CMake.

- For compiling under Windows using Visual Studio.
Structure of SBPL

Environment represented as a graph (<x,y,θ> planning, arm planning, etc.)
graph constructed on the fly

ID’s of start and goal states
ID’s of successor states, transition costs,…
heuristics

Graph search
(ARA*, Anytime D*, etc.)
memory allocated dynamically

request for ID’s of successors states and transition costs during graph search
requests for heuristics
plan as a sequence of state ID’s
Structure of SBPL

• Look at Main.cpp for examples for how to use SBPL:

```cpp
EnvironmentNAVXYTHETALAT environment_navxythetalat;
if(!environment_navxythetalat.InitializeEnv(argv[1], perimeterptsV, NULL))
{
    SBPL_ERROR("ERROR: InitializeEnv failed\n");
    throw new SBPL_Exception();
}
if(!environment_navxythetalat.InitializeMDPCfg(&MDPCfg))
{
    SBPL_ERROR("ERROR: InitializeMDPCfg failed\n");
    throw new SBPL_Exception();
}
//plan a path
vector<int> solution_stateIDs_V;
bool bforwardsearch = false;
ADPlanner planner(&environment_navxythetalat, bforwardsearch);
if(planner.set_start(MDPCfg.startstateid) == 0)
{
    SBPL_ERROR("ERROR: failed to set start state\n");
    throw new SBPL_Exception();
}
if(planner.set_goal(MDPCfg.goalstateid) == 0)
{
    SBPL_ERROR("ERROR: failed to set goal state\n");
    throw new SBPL_Exception();
}
planner.set_initialsolution_eps(3.0);

bRet = planner.replan(allocated_time_secs, &solution_stateIDs_V);
SBPL_PRINTF("size of solution=%d\n", (unsigned int)solution_stateIDs_V.size());
```
What I will talk about

- Graph representations (implemented as environments for SBPL)
 - 3D (x,y,θ) lattice-based graph (within SBPL)
 - 3D (x,y,θ) lattice-based graph for 3D (x,y,z) spaces (within SBPL)
 - Cart planning (separate SBPL-based package)
 - Lattice-based arm motion graph (separate SBPL-based motion planning module)
 - Door opening planning (separate SBPL-based package)

- Graph searches (implemented within SBPL)
 - ARA* - anytime version of A*
 - Anytime D* - anytime incremental version of A*
 - R* - a randomized version of A* (will not talk about)

- Heuristic functions (implemented as part of environments)

- Overview of how SBPL code is structured

- What’s coming
What’s coming

- Planning in Dynamic Environments
- Planning for Spring-loaded Doors
- ROS package for \((x,y,\theta)\) planning while accounting for the whole body of PR2 in 3D \((x,y,z)\)
http://www.ros.org/wiki/sbpl

Thanks to Willow Garage for the support of SBPL!