
R* Search: The Proofs

Maxim Likhachev
Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

maximl@seas.upenn.edu

Anthony Stentz
The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

axs@rec.ri.cmu.edu

1 Introduction

The pseudocode in Figure 1 is slightly different from the one presented in
the main paper. In particular, every state s now maintains an additional
variable, v(s), which is initially set to ∞, and then is reset to the g-value of s
every time s is expanded. This modification simplifies the proofs. Otherwise,
the v-values are not used in the algorithm, and therefore it should be clear
that the pseudocode in Figure 1 is algorithmically identical to the pseudocode
of R* as presented in the main text of the paper.

Henceforth, all line numbers in the text of the proofs will refer to the
pseudocode in Figure 1.

2 Notations and Assumptions

• c(s, s′) > 0 - the cost of a transition between states s and s′ ∈ succ(s)
in the original graph

• ε - the inflation factor. We restrict that 1 ≤ ε < ∞.

• π(u, v) - a path from state u to state v in the original graph

• c(π(u, v)) - the actual cost of path π(u, v) which is the summation of
the costs of the transitions on the path

1

• πopt(u, v) = arg minπ(u,v) c(π(u, v)) - an optimal path from u to v in the
original graph

• c∗(u, v) = c(πopt(u, v)) - the cost of an optimal path from u to v in the
original graph

• h(s, s′) - heuristics. It (under) estimates the cost of an optimal path
from s to s′. It needs to be consistent: h(s, sgoal) ≤ c(s, s′)+h(s′, sgoal)
for any s and any successor s′ of s if s 6= sgoal and h(s, sgoal) = 0 if
s = sgoal.

• Γ - the graph of all states generated by R* plus sgoal if it hasn’t been
generated yet. Thus, initially Γ contains only sstart and sgoal. After-
wards, every time any state s is expanded, its successors - the states
that appear in the set SUCCS(s) on line 26 - and the edges from s to
these states are added to Γ

• c(paths,s′) - the actual cost of the path encoded in paths,s′ . It is assumed
to be infinite if paths,s′ = null.

• πΓ(u, v) - a path from u ∈ Γ to v ∈ Γ in graph Γ using the edges in Γ

• πΓ
bp(u, v) - a path πΓ(u, v) re-constructed using backpointers. In other

words, any two consecutive states si ∈ Γ and si+1 ∈ Γ on the path are
such that si = bp(si+1).

• clow(πΓ(u, v)) - the cost of the path πΓ(u, v) in which the cost of a
transition between any two consecutive states si ∈ Γ and si+1 ∈ Γ on
the path is equal to the variable clow(pathsi,si+1

). It is assumed to be
infinite, if πΓ

bp(u, v) contains a state s 6= u such that bp(s) = null.

• πΓ
opt(u, v) = arg minπΓ(u,v) clow(πΓ(u, v)) - an optimal path in between

states u and v in terms of costs clow

• c(πΓ(u, v)) - the actual cost of the path πΓ(u, v) in which the cost of a
transition between any two consecutive states si ∈ Γ and si+1 ∈ Γ on
the path is equal to c(pathsi,si+1

) - the actual cost of the path pathsi,si+1
.

It is assumed to be infinite, if πΓ
bp(u, v) contains a state s 6= u such that

bp(s) = null.

2

• c∗(πΓ(u, v)) - the cost of the path πΓ(u, v) in which the cost of a tran-
sition between any two consecutive states si ∈ Γ and si+1 ∈ Γ on the
path is equal to c∗(pathsi,si+1

) - the cost of an optimal path from si

to si+1 in the original graph. It is assumed to be infinite, if πΓ
bp(u, v)

contains a state s 6= u such that bp(s) = null.

Let us also define gε(s) = mins′|s∈SUCC(s′)(v(s′)+ε c(s′, s)) if s 6= sstart and
gε(s) = 0 otherwise. We also assume that min operation over an empty set
returns a vector of the expected dimensions in which each of its dimensions
is set to ∞. For example, mins∈OPEN(k(s)) = [∞;∞] if OPEN = ∅.

Finally, we also assume the following about the TryToComputeLocalPath
function.

Assumption 1 Right after the execution of line 7 the following holds:

• clow(pathbp(s),s) ≤ ε c∗(bp(s), s) if pathbp(s),s = null;

• c(pathbp(s),s) ≤ clow(pathbp(s),s) ≤ ε c∗(bp(s), s) if pathbp(s),s 6= null;

3 Basic Theorems

Lemma 1 At line 17, the following holds for all s, s′ ∈ Γ such that s′ ∈
SUCCS(s):

• clow(paths,s′) ≤ ε c∗(s, s′) if paths,s′ = null;

• c(paths,s′) ≤ clow(paths,s′) ≤ ε c∗(s, s′) if paths,s′ 6= null;

Proof:
For each state s, the set SUCCS(s) is created on lines 23-26. Right

after it, for each member s′ of SUCCS(s), we set paths,s′ = null and
clow(paths,s′) = h(s, s′) ≤ c∗(s, s′) which is consistent with the theorem.

Afterwards, the only place where we can potentially modify either
path(s, s′) or clow(paths,s′) is on line 7. However, the modifications are con-
sistent with the statement of the theorem according to the assumption 1.

3

1 procedure UpdateState(s)

2 if (g(s) > ε h(sstart, s) OR
(pathbp(s),s = null AND path to s seems to be too hard to compute))

3 insert/update s in OPEN with priority k(s) = [1, g(s) + ε h(s, sgoal)];

4 else

5 insert/update s in OPEN with priority k(s) = [0, g(s) + ε h(s, sgoal)];

6 procedure ReevaluateState(s)

7 [pathbp(s),s, clow(pathbp(s),s)] = TrytoComputeLocalPath(bp(s), s);

8 if (pathbp(s),s = null OR g(bp(s)) + clow(pathbp(s),s) > ε h(sstart, s))

9 bp(s) = arg mins′|s∈SUCCS(s′)(g(s′) + clow(paths′,s));

10 g(s) = g(bp(s)) + clow(pathbp(s),s);

11 UpdateState(s);

12 procedure PESS()

13 g(sgoal) = v(sgoal) = ∞, bp(sgoal) = bp(sstart) = null, k(sgoal) = [1,∞];

14 OPEN = CLOSED = ∅;
15 g(sstart) = 0, v(sstart) = ∞;

16 insert sstart into OPEN with priority k(sstart) = [0, ε h(sstart, sgoal)];

17 while (k(sgoal) ≥ mins′∈OPEN k(s′) AND OPEN 6= ∅)
18 remove s with the smallest priority from OPEN ;

19 if s 6= sstart AND pathbp(s),s = null

20 ReevaluateState(s);

21 else

22 v(s) = g(s); insert s into CLOSED ;

23 let SUCCS be the set of K randomly chosen states at distance ∆ from s

24 if distance from sgoal to s is smaller than or equal to ∆

25 SUCCS(s) = SUCCS(s) ∪ {sgoal};
26 SUCCS(s) = SUCCS(s)− SUCCS(s) ∩ CLOSED

27 for each state s′ ∈ SUCCS(s)

28 [paths,s′ , clow(paths,s′)] = [null, h(s, s′)];

29 if s′ is visited for the first time

30 g(s′) = v(s′) = ∞, bp(s′) = null;

31 if bp(s′) = null OR g(s) + clow(paths,s′) < g(s′)

32 g(s′) = g(s) + clow(paths,s′); bp(s′) = s;

33 UpdateState(s′);

Figure 1: The pseudocode of R*

Lemma 2 At line 17, OPEN ∪CLOSED contains all and only states in Γ
except possibly for states with infinite g-values. Also, OPEN ∩CLOSED =
∅.

Proof: We prove by induction. By definition, Γ contains sstart, sgoal,
and all states generated on line 23. During the first execution of line 17, no
states other than sstart and sgoal have been generated, sstart in OPEN and
g(sgoal) = ∞. Thus, the theorem holds at this point.

4

Now suppose the theorem holds at the ith execution of line 17. We need
to show that it continues to hold during the next execution of line 17. First,
a state s is removed from OPEN on line 18, but then it is either reevaluated
on line 20, in which case it is inserted into OPEN at the end of the function,
or it is expanded and therefore is inserted into CLOSED on line 22. Thus, s
remains in either OPEN or CLOSED but not both.

The set of states in Γ is then grown on line 23. On line 26 we trim
SUCCS(s) to contain only the states that are not in CLOSED . By induction
then, if a state s′ ∈ SUCCS(s) then it is either in OPEN , or it has infinite
g-value, or it has never been generated before. In the latter case, its g-value is
set to ∞ right afterwards (line 30). Thus, now every state s′ ∈ SUCCS(s) is
either in OPEN or has infinite g-value. The g-values of states in SUCCS(s)
can potentially decrease (and become finite) on line 32. But then every
state whose g-value decreases is inserted into OPEN during the call to the
UpdateState function on on the next line. Thus, the theorem continues to
hold during the next execution of line 17 and holds during every execution
of this line by induction.

Lemma 3 Suppose state s is being expanded on line 22. Then the next time
line 17 is executed v(s) = g(s), where g(s) before and after the expansion of
s is the same. Afterwards, v(s) and g(s) remain the same until the algorithm
terminates.

Proof: v(s) is set to g(s) right on line 22. We thus only need to show
that g(s) does not change while s is being expanded. This follows from the
fact that at the time s is selected for expansion it is added to CLOSED .
Consequently, s can not be in the set SUCCS(s) since all states in CLOSED
are removed from SUCCS(s) on line 26. As a result, g(s) can not be changed
since the only states whose g-values get modified are those that are in the
set SUCCS(s).

Once state s gets inserted into CLOSED it is never removed from it.
Thus, from lemma 2 it follows that it never gets inserted into OPEN and
therefore can not be re-expanded. As a result, its v-value can not be modified
since it is only modified for states that are either expanded (line 22) or states
that have not been visited before (line 30). g(s) can not be modified either
since it is modified only for states selected from OPEN for reevaluation
(line 20) and for states that are successors of the state that is being expanded
(lines 30 and 32) and the set SUCCS does not contain any states that are

5

in CLOSED due to line 26. Thus, v(s) and g(s) remain the same until the
algorithm terminates.

Lemma 4 On line 17, for any state s ∈ Γ, v(s) ≥ g(s).

Proof: We prove by induction. The theorem clearly holds during the first
execution of line 17 since g(sstart) = 0 < v(sstart) = ∞, g(sgoal) = v(sgoal) =
∞ and there are no other states in Γ at this point.

Now suppose the theorem holds at the ith execution of line 17. We need
to show that it continues to hold during the next execution of line 17. All
the states added to Γ have their v-values set to ∞ on line 30. The only place
where a v-value is changed from infinity to a potentially finite value is line 22.
It is set there to the g-value of the state. However, on the same line, the state
is inserted into CLOSED and its g-value never changes afterwards according
to lemma 3. Thus, the theorem continues to hold during the next execution
of line 17 and holds during every execution of this line by induction.

Lemma 5 No state s ∈ Γ is selected more than once for expansion on
line 22.

Proof: Once a state s is selected for expansion on line 22, it is inserted
into CLOSED . Since it never gets removed from CLOSED , it will never re-
appear in OPEN according to lemma 2 and will therefore never again will
be selected for re-expansion.

Lemma 6 At line 17, for any state s ∈ OPEN it holds that if the first
element of k(s) is 0, then g(s) ≤ ε h(sstart, s).

Proof: The statement holds during the first execution of line 17 because
OPEN contains only sstart whose g-value is 0.

Afterwards, every time a g-value of any state s is modified (lines 10
and 32) or initialized (line 30), the function UpdateState is called on it which
updates k(s) to be consistent with the statement of the theorem.

Theorem 1 At line 17, g(sstart) = 0, and for ∀s ∈ Γ such that s 6= sstart,
the following inequality holds

• g(s) = v(bp(s)) + clow(pathbp(s),s) if bp(s) 6= null;

6

• g(s) = ∞ if bp(s) = null;

and at least one of the following inequalities holds:

• g(s) ≤ ε h(sstart, s)

• g(s) = mins′|s∈SUCCS(s′)(v(s′) + clow(paths′,s))

Proof:
Let us first prove the first part of the theorem: g(sstart) = 0 and for every

other state s ∈ Γ, g(s) = v(bp(s)) + clow(pathbp(s),s) if bp(s) 6= null and
g(s) = ∞ otherwise. We prove by induction. This holds during the first
execution of line 17 because g(sstart) = 0, g(sgoal) = ∞, bp(sgoal) = null and
there are no other states in Γ.

Afterwards, every time bp-value is set to null for newly generated states
on line 30, the g-value of the state is also set to∞ on the same line. A g-value,
v-value, bp-value and clow(paths′,s) may also change on line 22, lines 28-32
and during the call of the ReevaluateState function on line 20. In the first
case, we expand state s for the first time according to lemma 5 and therefore
there are no successors of s yet and the change to its v-value does not affect
any other states. Once the successors of s are generated on lines 23-26, the
execution of line 32 makes sure that g(s′) = g(bp(s′)) + clow(pathbp(s′),s′) if
bp(s′) = s. Moreover, according to lemma 3, g(s) = v(s). Thus, g(s′) =
v(bp(s′)) + clow(pathbp(s′),s′). s′ can not be sstart because sstart gets expanded
and inserted into OPEN at the beginning of the first iteration of the while
loop and therefore subsequent SUCCS(s) sets can not contain sstart because
of line 26. Therefore, g(sstart) continues to be zero. Thus, the theorem
continues to hold after a state is expanded.

In case of calling the ReevaluateState function on state s on line 20,
the execution of line 10 makes again certain that g(s) = v(bp(s)) +
clow(pathbp(s),s), because in order for s ∈ SUCCS(bp(s)), bp(s) must have
been expanded and therefore g(bp(s)) = v(bp(s)) according to lemma 3.
Also, bp(s) 6= null because bp-values are set to non-null values before each
call to UpdateState function which inserts states into OPEN . It also remains
that g(sstart) = 0 since the the ReevaluateState function could not have been
called on sstart because of the test on line 19. Thus, the first part of the
theorem continues to hold during the next execution of line 17 and holds
during every execution of this line by induction.

7

We now prove the second part of the theorem, namely that for every state
s ∈ Γ, s 6= sstart, either g(s) ≤ ε h(sstart, s) or g(s) = mins′|s∈SUCCS(s′)(v(s′) +
clow(paths′,s)), or both. We again prove by induction. It holds during the
first execution of line 17 because apart from sstart, Γ contains only sgoal and
g(sgoal) = ∞ = mins′|sgoal∈SUCCS(s′)(v(s′) + clow(paths′,sgoal

)).
Now suppose the second part of the theorem holds at the ith execution of

line 17. We need to show that it continues to hold during the next execution
of line 17.

This part of the theorem can be affected by changes in v-values, g-values
and clow-values. First, let us consider the changes in v-values. In the main
body of the while loop, there are two places where v-values change: line 22
and line 30. In the latter case, v is set to ∞ for states that have never been
visited and therefore could not have had any successors. This operation
therefore can not break the theorem. In the former case, v(s) is set to g(s).
However, for every successor s′ of s, its g-value is decreased so that it is
consistent with the statement of the theorem on line 32 since g(s) = v(s) at
this point because v(s) was set to g(s) on line 22 and g(s) remained the same
according to lemma 3.

Now let us consider the changes in g- and clow-values. They happen on
lines 28, 30, 32, 7 and 10. In case clow(paths,s′) is set on line 28, then g(s′)
is updated appropriately on lines 31-32, where g(s) = v(s) as we have just
shown. In case the g-value of a newly generated state is set to ∞ on line 30,
then it does not yet have any predecessors.

Now consider the changes on lines 7 and 10. Before entering the
ReevaluateState function, the theorem holds by induction. Suppose the
test on line 8 succeeds. Then the execution of line 10 results in g(s) =
mins′|s∈SUCCS(s′)(g(s′) + clow(paths′,s)) which is consistent with the theorem
since g(s′) = v(s′) because s′ must have been in CLOSED in order for it to
have s as a successor and all states in CLOSED have their g-values equal to
their v-values according to lemma 3.

Now suppose the test on line 8 fails. This means that g(bp(s)) +
clow(pathbp(s),s) ≤ ε h(sstart, s)) and therefore the execution of line 10 results
in g(s) ≤ ε h(sstart, s)). Thus, the second part of the theorem also continues
to hold during the next execution of line 17 and holds during every execution
of this line by induction.

Theorem 2 At line 17, for any state s ∈ Γ, c(πΓ
bp(sstart, s)) ≤ g(s) ≤ v(s).

8

Proof: v(s) ≥ g(s) holds according to Lemma 4. We thus only need to
show that c(πΓ

bp(sstart, s)) ≤ g(s). The statement follows if g(s) = ∞. We
thus assume a finite g-value.

Consider a path πΓ
bp(sstart, s) from sstart to s: s0 = sstart, s1, ..., sk = s,

where si ∈ Γ for all 0 ≤ i ≤ k. Then from the definition of such path
for any i > 0, g(si) = v(si−1) + clow(pathsi−1,si

) ≥ g(si−1) + clow(pathsi−1,si
)

from theorem 1 and lemma 4. For i = 0, g(si) = g(sstart) = 0. Thus,
g(s) = g(sk) ≥ g(sk−1) + clow(pathsk−1,sk

) ≥ g(sk−2) + clow(pathsk−2,sk−1
) +

clow(pathsk−1,sk
) ≥ ... ≥ ∑

j=1..k clow(pathsj−1,sj
). Moreover, from lemma 1 it

follows that g(s) ≥ ∑
j=1..k c(pathsj−1,sj

) = c(πΓ
bp(sstart, s)).

4 Main Theorems

For the purpose of the following few theorems we will introduce the following
set Q:

Q = {u | v(u) > gε(u) ∧ v(u) > ε ∗ c∗(πΓ
opt(sstart, u))} (1)

The set Q takes the place of the OPEN list in the next theorem. In
particular, Theorem 3 says that all states s in Γ which are ahead of Q have
their g-values within a factor of ε of c∗(πΓ

opt(sstart, s)). Theorem 4 builds on
this result by showing that OPEN is always a superset of Q, and therefore
the states which are ahead of OPEN are also ahead of Q.

Theorem 3 At line 17, let Q be defined according to the definition 1. Then
for any state s ∈ Γ with (g(s) + ε h(s, sgoal) ≤ g(u) + ε h(u, sgoal) ∀u ∈ Q), it
holds that g(s) ≤ ε c∗(πΓ

opt(sstart, s)).

Proof: We prove by contradiction. Suppose there exists an s such that
g(s)+ ε h(s, sgoal) ≤ g(u)+ ε h(u, sgoal) ∀u ∈ Q, but g(s) > ε c∗(πΓ

opt(sstart, s)).
The latter implies that c∗(πΓ

opt(sstart, s)) < ∞. We also assume that s 6= sstart

since otherwise g(s) = 0 = ε c∗(πΓ
opt(sstart, s)) from Theorem 1.

Consider a path πΓ
opt(sstart, s) from sstart to s, π(s0 = sstart, ..., sk = s).

Such path must exist since c∗(πΓ
opt(sstart, s)) < ∞. Our assumption that

g(s) > ε c∗(πΓ
opt(sstart, s)) ≥ ε h(sstart, s) means that there exists at least one

si ∈ π(s0, ..., sk−1) whose v(si) > ε c∗(πΓ
opt(sstart, si)). Otherwise,

g(s) = g(sk) = min
s′|s∈SUCCS(s′)

(v(s′) + clow(paths′,sk
)) ≤ //theorem 1

9

v(sk−1) + clow(pathsk−1,sk
) ≤

ε c∗(πΓ
opt(sstart, sk−1)) + clow(pathsk−1,sk

) ≤
ε (c∗(πΓ

opt(sstart, sk−1)) + c∗(sk−1, sk)) = //lemma 1

ε c∗(πΓ
opt(sstart, sk)) = ε c∗(πΓ

opt(sstart, s))

Let us now consider si ∈ π(s0, ..., sk−1) with the smallest index i ≥ 0
(that is, the closest to sstart) such that v(si) > ε c∗(πΓ

opt(sstart, si)). We will
now show that si ∈ Q. If i = 0 then gε(si) = gε(sstart) = 0 according to the
definition of the gε-values. Thus: v(si) > ε c∗(πΓ

opt(sstart, si)) = 0 = gε(si),
and si ∈ Q. If i > 0 then

v(si) > ε c∗(πΓ
opt(sstart, si)) =

ε c∗(πΓ
opt(sstart, si−1)) + ε c∗(si−1, si) ≥

v(si−1) + ε c∗(si−1, si)

since we picked si to be the closest state to sstart with v(si) >
ε c∗(πΓ

opt(sstart, si)). Thus,

v(si) > v(si−1) + ε c∗(si−1, si) ≥
min

s′|si∈SUCCS(s′)
(v(s′) + ε c∗(s′, si)) = gε(si)

As such, it must again be the case that si ∈ Q.
We will now also show that g(si) ≤ ε c∗(πΓ

opt(sstart, si)). It is clearly so
when i = 0 according to Theorem 1. For i > 0, if g(si) ≤ ε h(sstart, si)
then g(si) ≤ ε c∗(πΓ

opt(sstart, si)) due to the admissibility of heuristics and
otherwise, from theorem 1, it follows that

g(si) ≤ min
s′|si∈SUCCS(s′)

(v(s′) + clow(paths′,si
)) ≤

v(si−1) + clow(pathsi−1,si
) ≤

ε c∗(πΓ
opt(sstart, si−1)) + clow(pathsi−1,si

) ≤
ε c∗(πΓ

opt(sstart, si−1)) + ε c∗(si−1, si) ≤
ε c∗(πΓ

opt(sstart, si))

We will now show that g(s)+ε h(s, sgoal) > g(si)+ε h(si, sgoal), and finally
arrive at a contradiction. According to our assumption

10

g(s) > ε c∗(πΓ
opt(sstart, s)) =

ε c∗(πΓ
opt(s0, si)) + ε c∗(πΓ

opt(si, sk)) ≥
g(si) + ε c∗(πΓ

opt(si, sk))

Adding ε h(s, sgoal) on both sides and using the consistency of heuristics:

g(s) + ε h(s, sgoal) >

g(si) + ε c∗(πΓ
opt(si, s)) + ε h(s, sgoal) ≥

g(si) + ε (c∗(si, s) + h(s, sgoal)) ≥
g(si) + ε h(si, sgoal)

The inequality g(s) + ε h(s, sgoal) > g(si) + ε h(si, sgoal) implies, however,
that si /∈ Q since g(s) + ε h(s, sgoal) ≤ g(u) + ε h(u, sgoal) ∀u ∈ Q. But this
contradicts to what we have proven earlier.

Theorem 4 At line 17, for any state s ∈ Γ with (g(s) + ε h(s, sgoal) ≤
g(u) + ε h(u, sgoal) ∀u ∈ OPEN), it holds that g(s) ≤ ε c∗(πΓ

opt(sstart, s)).

Proof: Let Q be defined according to the definition 1. Consider the very
first time line 17 gets executed. At this point, OPEN contains only sstart for
which g(sstart) = 0 ≤ ε c∗(πΓ

opt(sstart, sstart)) = 0. All other states in Γ, namely,
sgoal have infinite g-values. Thus, the theorem holds. Also, during the first
execution of line 17, CLOSED = ∅, and therefore, the following statement,
denoted by (*), holds: for any state s ∈ CLOSED v(s) ≤ ε c∗(πΓ

opt(sstart, s)).
We will now show by induction that the theorem continues to hold for

the consecutive executions of the line 17 within each call to the ImprovePath
function. Suppose the theorem and the statement (*) held during all the
previous executions of line 17, and they still hold when a state s is selected
on line 18. We need to show that the theorem holds the next time line 17 is
executed.

We first prove that the statement (*) still holds during the next execution
of line 17. If test on line 19 succeeds and s does not get expanded, then
nothing is added to CLOSED and therefore statement (*) continues to hold.
Otherwise, since the v-value of only s is being changed and only s is being

11

added to CLOSED, we only need to show that v(s) ≤ ε c∗(πΓ
opt(sstart, s))

during the next execution of line 17 (that is, after the expansion of s). If
the first element of k(s) is equal to 0, then according to lemma 6, g(s) ≤
ε h(sstart, s) ≤ ε c∗(πΓ

opt(sstart, s)). If the first element of k(s) is 1, then since
when s is selected on line 18 k(s) = min

u∈OPEN(k(u)), we have g(s) +
ε h(s, sgoal) ≤ g(u) + ε h(u, sgoal) ∀u ∈ OPEN. According to the assumptions
of our induction then g(s) ≤ ε c∗(πΓ

opt(sstart, s)). As a result, from lemma 3 it
then follows that the next time line 17 is executed v(s) ≤ ε c∗(πΓ

opt(sstart, s)),
and hence the statement (*) still holds.

We now prove that the theorem itself also holds during the next execution
of line 17. We prove it by showing that Q continues to be a subset of OPEN
the next time line 17 is executed. According to lemma 2, OPEN set contains
all states in Γ that are not in CLOSED except possibly for sgoal if its g-value is
infinite. Since, as we have just proved, the statement (*) holds the next time
line 17 is executed, all states s in CLOSED set have v(s) ≤ ε c∗(πΓ

opt(sstart, s)).
Thus, any state s that has v(s) > ε c∗(πΓ

opt(sstart, s)), except possibly for sgoal

if its g-value is infinite, is guaranteed to be in OPEN . Now consider any
state u ∈ Q. Then v(u) > ε c∗(πΓ

opt(sstart, u)) according to the definition
of Q. Thus, u ∈ OPEN unless u = sgoal with g(u) = ∞. However, if
g(u) = ∞, then according to lemma 4, v(u) = g(u) = ∞ and according to
theorem 1, either v(u) = g(u) ≤ ε h(sstart, u) ≤ ε c∗(πΓ

opt(sstart, u)) or v(u) =
g(u) = mins′|u∈SUCCS(s′)(v(s′) + clow(paths′,u)) ≤ mins′|u∈SUCCS(s′)(v(s′) +
ε c(paths′,u)) = gε(u). Therefore, if g(u) = ∞, then u /∈ Q. This shows that
Q ⊆ OPEN.

Consequently, if any state s has g(s) + ε h(s, sgoal) ≤ g(u) + ε h(u, sgoal)
∀u ∈ OPEN, it is also true that g(s) + ε h(s, sgoal) ≤ g(u) + ε h(u, sgoal)
∀u ∈ Q, and g(s) ≤ ε c∗(πΓ

opt(sstart, s)) from Theorem 3. This proves that
the theorem holds during the next execution of line 17, and proves the whole
theorem by induction.

Theorem 5 At line 17, for any state s ∈ CLOSED, c(πΓ
bp(sstart, s)) ≤ g(s) ≤

ε c∗(πΓ
opt(sstart, s)).

Proof: The fact that c(πΓ
bp(sstart, s)) ≤ g(s) follows from theorem 2.

To prove that g(s) ≤ ε c∗(πΓ
opt(sstart, s)) if s ∈ CLOSED, consider s at the

time it is being expanded (line 22). We distinguish two different scenarios.
First, suppose the first element of k(s) is 0. Then according to lemma 6,
g(s) ≤ ε h(sstart, s) ≤ ε c∗(πΓ

opt(sstart, s)).

12

Now suppose the first element of k(s) is 1. Because k(s) =
arg min

s′∈OPEN k(s′) since this is how s was selected on line 18, it follows
that any other state s′ in OPEN has k(s′) ≥ k(s). This implies that the
first element of k(s′) is also 1 and the second element of k(s′) is at least as
large as k(s). That is, g(s)+ ε h(s, sgoal) ≤ g(s′)+ ε h(s′, sgoal) for every state
s′ ∈ OPEN. From theorem 4 it then follows that g(s) ≤ ε c∗(πΓ

opt(sstart, s)).
Since the g-values and v-values of states in CLOSED do not change ac-

cording to lemma 3, the theorem holds.

Theorem 6 Suppose on line 23 R* always generates all of the states that
lie at distance ∆ from s. Then upon termination, R* returns a path whose
cost is no more g(sgoal) which, in turn, is no more than ε times the cost of
an optimal path from sstart to sgoal. That is, c(πΓ

bp(sstart, sgoal)) ≤ g(sgoal) ≤
ε c∗(sstart, sgoal).

Proof: The fact that c(πΓ
bp(sstart, sgoal)) ≤ g(sgoal) follows from theo-

rem 2. To prove that g(sgoal) ≤ ε c∗(sstart, sgoal) we first show that g(sgoal) ≤
ε c∗(πΓ

opt(sstart, sgoal)) and then show that either g(sgoal) ≤ ε c∗(sstart, sgoal)
or Γ must contain a path πΓ(sstart, sgoal) such that c∗(πΓ(sstart, sgoal)) =
c∗(sstart, sgoal), which also implies the desired inequality.

We distinguish two scenarios. Suppose sgoal has never been inserted
into OPEN during the execution of R*. Then its g-value remains to be
equal to ∞ and its priority remains to be equal to [1;∞] as they were
set initially. According to the termination condition of the while loop, it
holds that either OPEN = ∅ or min

s′∈OPEN k(s′) > k(sgoal). In the for-
mer case, min

s′∈OPEN g(s′) + ε h(s′, sgoal) = ∞ = g(sgoal) + ε h(sgoal, sgoal)
using our convention that min operator over an empty set returns infin-
ity. In the latter case, the first elements of the priorities of the states in
OPEN are 1s and the second elements are infinite, implying again that
min

s′∈OPEN g(s′)+ ε h(s′, sgoal) = ∞ = g(sgoal)+ ε h(sgoal, sgoal). Thus, from
theorem 4, it follows that g(sgoal) ≤ ε c∗(πΓ

opt(sstart, sgoal)).
Now suppose sgoal has been inserted into OPEN during the execution of

R*. Then the only way for it to have been removed from OPEN without
being reinserted immediately afterwards is by being expanded. In this case,
it must have been added to CLOSED on line 22. The fact that g(sgoal) ≤
ε c∗(πΓ

opt(sstart, sgoal)) then follows from theorem 5.
We now prove that either g(sgoal) ≤ ε c∗(sstart, sgoal) or Γ must contain a

path πΓ(sstart, sgoal) such that c∗(πΓ(sstart, sgoal)) = c∗(sstart, sgoal). We prove

13

by contradiction and assume that g(sgoal) > ε c∗(sstart, sgoal) and Γ does not
contain a path πΓ(sstart, sgoal) such that c∗(πΓ(sstart, sgoal)) = c∗(sstart, sgoal).
This means that there must exist a pair of states si ∈ Γ and si+1 ∈ Γ such
that si+1 ∈ SUCCS(si), both si, si+1 ∈ πopt(sstart, sgoal) and si has been
expanded but si+1 has not. This is so because at least sstart gets expanded
whenever sstart 6= sgoal.

At the time R* terminates, k(sgoal) = [1, g(sgoal)], because otherwise
g(sgoal) ≤ ε h(sstart, sgoal) ≤ ε c∗(sstart, sgoal) according to lemma 6.

Since the while loop terminated while si+1 was still in OPEN , it must
have been the case that k(sgoal) < k(si+1). Thus, k(si+1) = [1, g(si+1) +
ε h(si+1, sgoal)] and consequently,

k(sgoal) < k(si+1)

g(sgoal) < g(si+1) + ε h(si+1, sgoal)

According to theorem 1, either g(si+1) ≤ ε h(sstart, si+1) or g(si+1) =
mins′|si+1∈SUCCS(s′)(v(s′) + clow(paths′,si+1

)) (or both). In the former case we
get the following contradiction,

g(sgoal) < ε (h(sstart, si+1) + h(si+1, sgoal))

≤ ε (c∗(sstart, si+1) + c∗(si+1, sgoal))

= ε c∗(sstart, sgoal)

In the latter case we get a similar contradiction,

14

g(sgoal) < mins′|si+1∈SUCCS(s′)(v(s′) + clow(paths′,si+1
)) + ε h(si+1, sgoal)

≤ v(si) + clow(pathsi,si+1
) + ε h(si+1, sgoal)

= g(si) + clow(pathsi,si+1
) + ε h(si+1, sgoal)

≤ g(si) + ε c∗(si, si+1) + ε h(si+1, sgoal)

≤ ε c∗(πΓ
opt(sstart, si)) + ε c∗(si, si+1) + ε h(si+1, sgoal)

= ε c∗(sstart, si) + ε c∗(si, si+1) + ε h(si+1, sgoal)

= ε c∗(sstart, si+1) + ε h(si+1, sgoal)

≤ ε (c∗(sstart, si+1) + c∗(si+1, sgoal))

= ε c∗(sstart, sgoal)

5 Analysis of the Confidence on ε-

suboptimality

For the purpose of this analysis, we will assume that all edges in the graph
have unit costs and each state s has M states lying at distance ∆ edges
from it. We will also assume that every time K states are generated by
search on line 23, they have not been encountered previously by search. This
assumption is correct when the search-space is a tree with a single or multiple
goal states. The tree model of a search-space has been commonly used for
the statistical analysis of A*-like searches [2, 3, 1]. Our assumption is also
approximately correct if K is negligibly small in comparison to the number
of states that lie at distance ∆ from state s that is being expanded.

Let us introduce the following tree, denoted by ΓM . The root of the tree
is sstart and the successors of each node s′ in the tree are all M successors
lying at distance ∆ edges from state s′ in the original graph. Note that ΓM

may have two states that are the same state in the original graph but are
treated as two different states in ΓM , because of the way it is constructed.
More generally, two states that have different predecessors in ΓM are treated
as different states independently of whether they are really the same state in
the original graph.

15

We define Nl,ε to be the number of distinct paths πΓM
(sstart, v) in ΓM such

that they satisfy two conditions: (a) a goal state lies within ∆ edges from v
in the original graph and (b) c∗(πΓM

(sstart, v))+c∗(v, sgoal) ≤ ε c∗(sstart, sgoal).

Note that any path πΓM
(sstart, v) is given as a sequence of states from the

tree ΓM : {s0 = sstart, s1, . . . , sk = v} such that si ∈ ΓM for 0 ≤ i ≤ k and
si is a predecessor of si+1 in ΓM for 0 ≤ i ≤ k − 1. Two paths πΓM

1 (sstart, v)
and πΓM

2 (sstart, v) are considered to be distinct if the sequence of states that
appear on these paths differ from each other in any way.

We define a K random walk on any graph G starting with any state sstart

as a process of iteratively building a tree ΓK of depth m in the following way:
its root is state sstart; the successors of any state s′ ∈ ΓK are K randomly
selected successors of state s′ in G. ith step of a K random walk is defined
to be a process of generating all states in ΓK that will reside at the depth of
i from the root of ΓK . Thus, after the 0th step of the K random walk, ΓK

consists of only sstart; after the 1st step of the K random walk, ΓK consists
of sstart and K randomly chosen successors of sstart from the graph G; after
the 2nd step, ΓK is grown further to contain an additional K2 states, that
are randomly chosen K successors of K states added in the previous step.

The first two theorems are independent of the algorithm proposed in our
paper but will be used in the proofs of subsequent theorems.

Theorem 7 Consider a tree with constant branching factor of M and Nl

goal states at depth l distributed uniformly. A K random walk starting at the
root sstart of this tree generates at least one goal state sgoal at lth step with

the probability of 1−∏Nl−1
i=0

M l−Kl−i
M l−i

if Nl ≤ M l −K l and 1 otherwise.

Proof: Suppose l steps of the K random walk construct a tree ΓK which
is clearly a subset of the original tree. Let t be the number of goal states
at level l (leaves) of ΓK . Then P (t > 0) = 1 − P (t = 0), where P (t = 0)
is the probability that ΓK does not have any goal states as leaves. ΓK has
K l leaves, whereas the original tree has M l states at level l and out of them
there are Nl goal states. We now will derive a formula for P (t = 0).

Let us use L to denote the set of leaf states of ΓK and G to denote the set
of goal states at level l of the original tree. The event t = 0 then corresponds
to the event of having L ∩ G = ∅. Suppose first that Nl > M l − K l. Then
the event L∩G = ∅ is impossible since Nl is larger than the number of leaves
in the original tree, M l, minus the number of leaves in ΓK , K l, meaning that

16

at least one of the goal states will have to be a leaf in ΓK . Consequently,
P (t > 0) = 1− P (t = 0) = 1− 0 = 1, which is consistent with the theorem.

Now suppose that Nl ≤ M l −K l. Then, P (t = 0) =
∑

L,G s.t. L∩G=∅ P (L∧
G) =

∑
L,G s.t. L∩G=∅ P (G|L)P (L). Since we assume that goal states at depth

l are distributed uniformly, all configurations of Nl goal states at level l are

equally probable and therefore P (G|L) = P (G) = 1/
(

M l

Nl

)
. Thus,

P (t = 0) =
∑

L,G s.t. L∩G=∅
1

(Ml

Nl
)
P (L) = 1

(Ml

Nl
)

∑
L,G s.t. L∩G=∅ P (L)

= 1

(Ml

Nl
)

∑
L

∑
G s.t. L∩G=∅ P (L) = 1

(Ml

Nl
)

∑
L

(
M l−Kl

Nl

)
P (L)

=
(Ml−Kl

Nl
)

(Ml

Nl
)

∑
L P (L) =

(Ml−Kl

Nl
)

(Ml

Nl
)

=
∏Nl−1

i=0
M l−Kl−i

M l−i

(The formula for P (t = 0) above actually corresponds to hypergeometric
distribution: the probability that by selecting at random Nl goal states out
of M l states, none of K l leaves of ΓK are selected.) From this, the theorem
follows by computing P (t > 0) = 1− P (t = 0).

Theorem 8 Consider a tree with constant branching factor of M and N≤l

goal states distributed uniformly in between levels m and l (including the
levels m and l) of the tree. A K random walk starting at the root sstart

of this tree generates at least one goal state sgoal at less than or equal to l
steps with the probability of 1 if K = M and N≤l > 0, the probability of at

least 1 − e−
Kl

l−m+1 if K < M and N≤l > M l, and the probability of at least

min(1−∏N≤l−1
i=0

M l−Kl−i
M l−i

, 1− e−
Kl−1 (M−K)

l−m) otherwise.

Proof:
Let P≤l(t > 0) denote the probability that the K random walk generates

at least one goal state at level l or before and P≤l(t = 0) = 1 − P≤l(t > 0)
denote the probability that none of the goal states are generated by it.

Let us first write out the formula for P≤l(t = 0). Since goal states are
assumed to be distributed uniformly, the probabilities for generating goal
states at each level are completely independent. Thus, considering the fact
that goal states lie at levels m to l, we get

17

P≤l(t = 0) = P (no goal states generated at level m)∗
P (no goal states generated at level m+1) ∗ . . . ∗
P (no goal states generated at level l)

We will examine four possibilities: (a) K = M and N≤l > 0, (b) K =
M and N≤l = 0, (c) K < M and N≤l ≤ M l and (d) K < M and N≤l > M l.

Let us first consider case (a): K = M and N≤l > 0. Because of the latter
condition, there exists level j, m ≤ j ≤ l such that the number of goal states
at this level, Nj, is non-zero. Then, Nj > 0 = M j − M j = M j − Kj and
therefore, according to theorem 7, P (no goal states generated at level j) =
1 − P (at least one goal state generated at level j) = 1 − 1 = 0. Hence,
P≤l(t > 0) = 1 − P≤l(t = 0) = 1 − 0 = 1, which is consistent with the
statement of the theorem.

Let us now consider case (b): K = M and N≤l = 0. Then, clearly the
probability of generating one or more states at any level less than or equal to
l is 0. That is, P≤l(t > 0) = 0. This is consistent with the theorem, according

to which, P≤l(t > 0) ≥ min(1−∏N≤l−1
i=0

M l−Kl−i
M l−i

, 1−e−
Kl−1 (M−K)

l−m) = 1−1 = 0.

Let us now consider case (c): K < M and N≤l ≤ M l. This falls into
the last case of our theorem, and therefore we need to prove that P≤l(t >

0) ≥ min(1−∏N≤l−1
i=0

M l−Kl−i
M l−i

, 1−e−
Kl−1 (M−K)

l−m), or alternatively, P≤l(t = 0) ≤

max(
∏N≤l−1

i=0
M l−Kl−i

M l−i
, e−

Kl−1 (M−K)
l−m).

We distinguish two scenarios. First, suppose there exists some
level j, m ≤ j ≤ l, such that the number of goal states
at this level, Nj > M j − Kj. Then, according to theorem 7,
P (at least one goal state generated at level j) = 1. Therefore, P≤l(t = 0) =

0, which is no more than max(
∏N≤l−1

i=0
M l−Kl−i

M l−i
, e−

Kl−1 (M−K)
l−m) since the second

term is positive (in fact, the first term is also guaranteed to be non-negative
because the whole product is equal to zero whenever N≤l > M l −K l).

Now suppose that at each level j, m ≤ j ≤ l, the number of goal states
Nj ≤ M j −Kj. Then, according to theorem 7,

18

P≤l(t = 0) = P (no goal states generated at level m)∗
P (no goal states generated at level m+1) ∗ . . . ∗
P (no goal states generated at level l)

=
∏N0−1

i=0
Mm−Km−i

Mm−i
∗∏N1−1

i=0
Mm+1−Km+1−i

Mm+1−i
∗ . . . ∗∏Nl−1

i=0
M l−Kl−i

M l−i

=
∏l

j=m

∏Nj−1
i=0

Mj−Kj−i
Mj−i

Now let us write out
∏N≤l−1

i=0
M l−Kl−i

M l−i
using the fact that N≤l =

∑l
j=m Nj:

∏N≤l−1
i=0

M l−Kl−i
M l−i

=
∏∑l

j=m
Nj−1

i=0
M l−Kl−i

M l−i

=
∏Nl−1

i=0
M l−Kl−i

M l−i
∗∏Nl+Nl−1−1

i=Nl

M l−Kl−i
M l−i

∗∏Nl+Nl−1+Nl−2−1
i=Nl+Nl−1

M l−Kl−i
M l−i

∗ . . . ∗∏∑l

t=m
Nt−1

i=
∑l

t=m+1
Nt

M l−Kl−i
M l−i

=
∏l

j=m

∏∑l

t=j
Nt−1

i=
∑l

t=j+1
Nt

M l−Kl−i
M l−i

=
∏l

j=m

∏Nj−1
i=0

M l−Kl−i−
∑l

t=j+1
Nt

M l−i−
∑l

t=j+1
Nt

We thus need to show that

l∏
j=m

Nj−1∏
i=0

Mj −Kj − i

Mj − i
≤ max(

l∏
j=m

Nj−1∏
i=0

M l −Kl − i−
∑l

t=j+1
Nt

M l − i−
∑l

t=j+1
Nt

, e
−Kl−1 (M−K)

l−m) (2)

We prove by contradiction. Suppose the inequality 2 does not hold. That
is,

P≤l(t = 0) =

l∏
j=m

Nj−1∏
i=0

Mj −Kj − i

Mj − i
>

l∏
j=m

Nj−1∏
i=0

M l −Kl − i−
∑l

t=j+1
Nt

M l − i−
∑l

t=j+1
Nt

(3)

and

19

P≤l(t = 0) =

l∏
j=m

Nj−1∏
i=0

Mj −Kj − i

Mj − i
> e

−Kl−1 (M−K)
l−m (4)

From inequality 3 follows that there exists some j, i such that m ≤ j ≤ l,
j ≤ i ≤ Nj − 1 and

M j −Kj − i

M j − i
>

M l −K l − i−∑l
t=j+1 Nt

M l − i−∑l
t=j+1 Nt

(5)

Then

Mj−Kj−i
Mj−i

>
M l−Kl−i−

∑l

t=j+1
Nt

M l−i−
∑l

t=j+1
Nt

1− Kj

Mj−i
> 1− Kl

M l−i−
∑l

t=j+1
Nt

Kj

Mj−i
< Kl

M l−i−
∑l

t=j+1
Nt

Kj < Kl (Mj−i)

M l−i−
∑l

t=j+1
Nt

//Mj − i > 0 from i ≤ Nj − 1 ≤ Mj −Kj − 1 < Mj

The term M l − i−∑l
t=j+1 Nt is also strictly positive because

M l − i−∑l
t=j+1 Nt ≥ M l −Nj + 1−∑l

t=j+1 Nt = M l −∑l
t=j Nt + 1

≥ M l −∑l
t=m Nt + 1 = M l −N≤l + 1

≥ M l −M l + 1 > 0

Consequently,

Kj < Kl (Mj−i)

M l−i−
∑l

t=j+1
Nt

Kj (M l − i−∑l
t=j+1 Nt) < K l (M j − i)

Kj M l −Kj i−Kj ∑l
t=j+1 Nt < K l M j −K l i

Kj M l −Kj i−Kj ∑l
t=j+1 Nt −K l M j + K l i < 0

Kj M l −K l M j + K l i−Kj i−Kj ∑l
t=j+1 Nt < 0

20

Since K l ≥ Kj for any j such that m ≤ j ≤ l, we have K l i − Kj i ≥ 0
and therefore,

Kj M l −K l M j −Kj ∑l
t=j+1 Nt < 0

M l −K l−j M j <
∑l

t=j+1 Nt
(6)

The last line in inequality 6 clearly does not hold for j = l. We therefore
assume that m ≤ j ≤ l − 1. As a result,

∑l
t=j+1 Nt > M l (1− (K

M
)l−j)

≥ M l (1− (K
M

)l−(l−1))

= M l (1− K
M

)

(7)

This means that there must exist s, m ≤ s ≤ l − 1, such that Ns >
M l

l−m
(1− K

M
). Otherwise,

∑l
t=j+1 Nt ≤ (l − j) M l

l−m
(1− K

M
) ≤ (l −m) M l

l−m
(1−

K
M

) = M l (1− K
M

).
Then, according to theorem 7, P (no goal states generated at level s) is

equal to 0 if Ns > M s −Ks and otherwise:

P (no goal states generated at level s) =
∏Ns−1

i=0
Ms−Ks−i

Ms−i

≤ ∏ Ml

l−m
(1−K

M
)−1

i=0
Ms−Ks−i

Ms−i

=
∏ Ml

l−m
(1−K

M
)−1

i=0 (1− Ks

Ms−i
)

Since M l

l−m
(1− K

M
) < Ns ≤ M s−Ks, the variable i can not be larger than

or equal to M s. Therefore,

0 < M s − i ≤ M s

Ks

Ms−i
≥ Ks

Ms

1− Ks

Ms−i
≤ 1− Ks

Ms

Thus,

21

P (no goal states generated at level s) ≤ ∏ Ml

l−m
(1−K

M
)−1

i=0 (1− Ks

Ms−i
)

≤ ∏ Ml

l−m
(1−K

M
)−1

i=0 (1− (K
M

)s)

≤ ∏ Ml

l−m
(1−K

M
)−1

i=0 (1− (K
M

)l−1)

= (1− (K
M

)l−1)
Ml

l−m
(1−K

M
)

= e
Ml

l−m
(1−K

M
) ln(1−(K

M
)l−1)

The last line was obtained by taking a logarithm and then exponent of
the right hand side. Now let us apply Taylor series expansion to the term
ln(1 − (K

M
)l−1). If we let x denote the fraction −(K

M
)l−1, then, as long as

K < M , ln(1 + x) can be re-written as:

ln(1 + x) = x− x2

2
+ x3

3
− x4

4
+ . . .

Moreover, because x is negative, all the terms on the right hand side are
negative. Therefore,

ln(1 + x) ≤ x

ln(1− (K
M

)l−1) ≤ −(K
M

)l−1

e
Ml

l−m
(1−K

M
) ln(1−(K

M
)l−1) ≤ e

Ml

l−m
(1−K

M
) (−(K

M
)l−1)

e
Ml

l−m
(1−K

M
) ln(1−(K

M
)l−1) ≤ e−

Kl−1 (M−K)
l−m

Thus, P (no goal states generated at level s) ≤ e−
Kl−1 (M−K)

l−m . And since
P≤l(t = 0) ≤ P (no goal states generated at level s) we get P≤l(t = 0) ≤
e−

Kl−1 (M−K)
l−m , which contradicts inequality 4.

Finally, let us now consider case (d): K < M and N≤l > M l. We need to

prove that P≤l(t > 0) ≥ 1− e−
Kl

l−m+1 , or alternatively, P≤l(t = 0) ≤ e−
Kl

l−m+1 .
The fact that N≤l =

∑l
t=m Nt > M l means that there must exist s,

m ≤ s ≤ l, such that Ns > M l

l−m+1
.

22

Then, according to theorem 7, P (no goal states generated at level s) is
equal to 0 if Ns > M s −Ks and otherwise:

P (no goal states generated at level s) =
∏Ns−1

i=0
Ms−Ks−i

Ms−i

≤ ∏ Ml

l−m+1
−1

i=0
Ms−Ks−i

Ms−i

=
∏ Ml

l−m+1
−1

i=0 (1− Ks

Ms−i
)

Since M l

l−m+1
< Ns ≤ M s − Ks, the variable i can not be larger than or

equal to M s. Therefore, as we have shown before 1 − Ks

Ms−i
≤ 1 − Ks

Ms , and
thus,

P (no goal states generated at level s) ≤ ∏ Ml

l−m+1
−1

i=0 (1− Ks

Ms−i
)

≤ ∏ Ml

l−m+1
−1

i=0 (1− (K
M

)s)

≤ ∏ Ml

l−m+1
−1

i=0 (1− (K
M

)l)

= (1− (K
M

)l)
Ml

l−m+1

= e
Ml

l−m+1
ln(1−(K

M
)l)

The last line was obtained again by taking a logarithm and then exponent
of the right hand side. Once again we apply Taylor series expansion to the
term ln(1 + x), where x now is −(K

M
)l and is less than 1 in magnitude. As

before, x is negative and therefore ln(1 + x) ≤ x. As a result,

ln(1− (K
M

)l) ≤ −(K
M

)l

e
Ml

l−m+1
ln(1−(K

M
)l) ≤ e

Ml

l−m+1
(−(K

M
)l)

e
Ml

l−m+1
ln(1−(K

M
)l) ≤ e−

Kl

l−m+1

Thus, P (no goal states generated at level s) ≤ e−
Kl

l−m+1 . And since
P≤l(t = 0) ≤ P (no goal states generated at level s) we get P≤l(t = 0) ≤
e−

Kl

l−m+1 .

23

Theorem 9 The probability that a particular run of R* results in a
path whose cost is no more than ε2 times the cost l of an opti-
mal path (that is, c(πΓ

bp(sstart, sgoal)) ≤ ε2 c∗(sstart, sgoal)) is 1 if K =

M or l ≤ ∆. Otherwise, it is at least 1 − e−
KH

H−L+2 if Nl,ε > MH and

min(1−∏Nl,ε−1
i=0

MH−KH−i
MH−i

, 1− e−
KH−1 (M−K)

H−L+1) if Nl,ε ≤ MH , where L = b l
∆
c

and H = b ε l
∆
c.

Proof: The case of K = M follows directly from theorem 6.
Now let us consider the case l ≤ ∆. First, let us show that sstart gets

expanded. This is so because during the first while loop test on line 17 sstart

is the only state in OPEN and therefore the only reason for it not to have been
expanded is if the test failed. This is impossible, however, since during the
test min

s′∈OPEN k(s′) = k(sstart) = [0; ε h(sstart, sgoal)] and k(sgoal) = [1;∞]
if sstart 6= sgoal and k(sgoal) = k(sstart) otherwise. Thus, it must be the case
that k(sgoal) ≥ min

s′∈OPEN k(s′).
Now, because sstart is guaranteed to be expanded, sgoal is generated on

line 25 during the first expansion, namely the expansion of sstart. R* ter-
minates when either k(sgoal) < min

s′∈OPEN k(s′) or OPEN = ∅. Therefore,
sgoal must be expanded at the time R* terminates. Consequently, from the-
orem 5, it follows that c(πΓ

bp(sstart, sgoal)) ≤ g(sgoal) ≤ ε c∗(πΓ
opt(sstart, sgoal)) =

ε c∗(sstart, sgoal) ≤ ε2 c∗(sstart, sgoal).
To prove the other cases of the theorem we need to derive a lower bound

on the probability P (c(πΓ
bp(sstart, sgoal)) ≤ ε2 c∗(sstart, sgoal)). To derive this

bound, we actually compute a lower bound on the probability that the graph
Γ contains at least one path πΓ(sstart, sgoal) such that c∗(πΓ(sstart, sgoal)) ≤
ε c∗(sstart, sgoal). This bound will result in the required bound because ac-
cording to theorem 5 c(πΓ

bp(sstart, sgoal)) ≤ ε c∗(πΓ
opt(sstart, sgoal)) and therefore

c(πΓ
bp(sstart, sgoal)) ≤ ε c∗(πΓ(sstart, sgoal)) ≤ ε2 c∗(sstart, sgoal).
The derivation of the lower bound on the probability that the graph

Γ contains at least one path πΓ(sstart, sgoal) such that c∗(πΓ(sstart, sgoal)) ≤
ε c∗(sstart, sgoal), consists of several steps.

First, consider a path πΓM
(sstart, s) in ΓM tree from state sstart to state s

such that it satisfies two conditions: (a) a goal state lies within ∆ edges from
s in the original graph; (b) c∗(πΓM

(sstart, s)) + c∗(s, sgoal) ≤ ε c∗(sstart, sgoal).
The latter condition is equivalent to saying that the cost of the path from

24

sstart to sgoal that passes through the states in ΓM in the same order they

appear in the path πΓM
(sstart, s) and follows an optimal path in between any

two consecutive states in ΓM and from s to sgoal is no more than ε times the
cost of an optimal path from sstart to sgoal in the original graph. The number
of such paths is Nl,ε, according to the definition of Nl,ε.

Now let us analyze the following tree Γ′ of depth : the root of the tree
is sstart; for each non-leaf state s in Γ′, its successors are the same as in Γ,
generated at random on line 23, if s was expanded by R*, and its successors
are a new set of successors generated according to line 23, if s was not
expanded by R*. The process of generating Γ′ is a K random walk on
the tree ΓM . We will first compute a lower bound on the probability that Γ′

contains at least one of the paths πΓM
(sstart, s) satisfying conditions (a) and

(b). Because of the condition (b), any such path terminates at level that is
somewhere in between L − 1 and H. The path must terminate at the level
higher than or equal to L− 1 because any path that terminates at the level
lower than L−1 will have c∗(πΓM

(sstart, s)) < ∆ (b l
∆
c−1) ≤ l−∆. Therefore,

sgoal can not lie within ∆ edges from s for otherwise c∗(πΓM
(sstart, s)) +

c∗(s, sgoal) would have been less than l which is already the cost of an optimal
path from sstart to sgoal. The path must also terminate at the level that is
smaller than or equal to H because any path that terminates at the level
higher than H will have c∗(πΓM

(sstart, s)) ≥ ∆ (b ε l
∆
c+ 1) > ε l−∆ + ∆ = ε l.

This contradicts the condition (b).
Thus, any path πΓM

(sstart, s) satisfying conditions (a) and (b) terminates
at level that is somewhere in between L − 1 and H. Therefore, given our
assumption, that during the search we do not encounter previously generated
samples, according to theorem 8, a lower bound on the probability that Γ′

contains one of such paths can be given as 1 − e−
KH

H−L+2 if Nl,ε > MH and

min(1−∏Nl,ε−1
i=0

MH−KH−i
MH−i

, 1− e−
KH−1 (M−K)

H−L+1) if Nl,ε ≤ MH .
We now show that that if the tree Γ′ contains one or more of paths

πΓM
(sstart, s) satisfying conditions (a) and (b), then the path returned by R*

is ε2 suboptimal. Consequently, the lower bound for the tree Γ′ is also a lower
bound for R* to find an ε2 suboptimal solution.

We prove by contradiction. Suppose Γ′ contains one or more of paths
πΓM

(sstart, s) = {s0 = sstart, s1, . . . si, . . . , sk = s} satisfying conditions (a)
and (b), but the path returned by R* is not ε2 suboptimal. That is, at the
time R* terminates c(πΓ

bp(sstart, sgoal)) > ε2 c∗(sstart, sgoal).

25

Let us now consider a pair si, si+1 from the path πΓM
(sstart, s) such that

si has been expanded but si+1 has not been expanded. First, let us show
that such pair must exist. That is, it is impossible for sstart not to have
been expanded and it is also impossible for all the states on the path to have
been expanded. The former scenario is impossible because during the first
while loop test on line 17 sstart is the only state in OPEN and therefore the
only reason for it not to have been expanded is if the test failed. This is
impossible, however, since during the test min

s′∈OPEN k(s′) = k(sstart) =
[0; ε h(sstart, sgoal)] and k(sgoal) = [1;∞] if sstart 6= sgoal and k(sgoal) = k(sstart)
otherwise. Thus, it must be the case that k(sgoal) ≥ min

s′∈OPEN k(s′).

It is also impossible for all the states on the path πΓM
(sstart, s) to

have been expanded for the following reasons. If sgoal = sstart then
c(πΓ

bp(sstart, sgoal)) = 0 = ε2 c∗(sstart, sgoal) which contradicts our initial as-
sumption. If sgoal 6= sstart, then R* would have generated sgoal as a successor
of s and consequently,

g(sgoal) = v(s) + clow(paths,sgoal
) //theorem 1

= g(s) + clow(paths,sgoal
) //lemma 3

≤ g(s) + ε c∗(s, sgoal) //lemma 1

≤ ε c∗(πΓ
opt(sstart, s)) + ε c∗(s, sgoal) //theorem 5

≤ ε c∗(πΓM
(sstart, s)) + ε c∗(s, sgoal)

= ε (c∗(πΓM
(sstart, s)) + c∗(s, sgoal))

≤ ε2 c∗(sstart, sgoal) //condition(b)

From theorem 2 it then follows that c(πΓ
bp(sstart, sgoal)) ≤ ε2 c∗(sstart, sgoal)

which contradicts our initial assumption. Thus, it must be the case that
there exists a pair si, si+1 from the path πΓM

(sstart, s) such that si has been
expanded but si+1 has not been expanded.

We now consider two cases. First, suppose at the time R* terminates,
k(sgoal) = [0; g(sgoal)]. Then, sgoal ∈ CLOSED since initially k(sgoal) =
[1; g(sgoal)]; whenever a key of a state is modified, the state is inserted into
OPEN ; and sgoal /∈ OPEN due to the termination condition of the while loop.
Thus, at the time sgoal was selected for expansion, according to lemma 6,
g(sgoal) ≤ ε h(sstart, sgoal) ≤ ε c∗(sstart, sgoal) and from theorem 2 it follows
that c(πΓ

bp(sstart, sgoal)) ≤ ε c∗(sstart, sgoal) ≤ ε2 c∗(sstart, sgoal). However, this

26

contradicts our initial assumption since a g-value of a state that was expanded
remains constant according to lemma 3.

Now suppose at the time R* terminates, k(sgoal) = [1; g(sgoal)]. Since the
while loop terminated while si+1 was still in OPEN , it must have been the
case that k(sgoal) < k(si+1). Thus, k(si+1) = [1, g(si+1) + ε h(si+1, sgoal)] and
consequently,

k(sgoal) < k(si+1)

g(sgoal) < g(si+1) + ε h(si+1, sgoal)

c(πΓ
bp(sstart, sgoal)) < g(si+1) + ε h(si+1, sgoal) //theorem 2

According to theorem 1, either g(si+1) ≤ ε h(sstart, si+1) or g(si+1) =
mins′|si+1∈SUCCS(s′)(v(s′) + clow(paths′,si+1

)) ≤ v(si) + clow(pathsi,si+1
) (or

both). In the former case we get the following contradiction,

c(πΓ
bp(sstart, sgoal)) < ε (h(sstart, si+1) + h(si+1, sgoal))

≤ ε (c∗(πΓM
(sstart, si+1)) + c∗(πΓM

(si+1, s)) + c∗(s, sgoal))

= ε (c∗(πΓM
(sstart, s)) + c∗(s, sgoal))

≤ ε2 c∗(sstart, sgoal)

In the latter case we get a similar contradiction using theorem 5 and
condition (b),

27

c(πΓ
bp(sstart, sgoal)) < v(si) + clow(pathsi,si+1

) + ε h(si+1, sgoal)

= g(si) + clow(pathsi,si+1
) + ε h(si+1, sgoal)

≤ g(si) + ε c∗(si, si+1) + ε h(si+1, sgoal)

≤ ε c∗(πΓ
opt(sstart, si)) + ε c∗(si, si+1) + ε h(si+1, sgoal)

≤ ε c∗(πΓM
(sstart, si)) + ε c∗(si, si+1) + ε h(si+1, sgoal)

= ε c∗(πΓM
(sstart, si+1)) + ε h(si+1, sgoal)

≤ ε c∗(πΓM
(sstart, si+1)) + ε (c∗(πΓM

(si+1, s)) + h(s, sgoal))

= ε (c∗(πΓM
(sstart, s)) + h(s, sgoal))

≤ ε (c∗(πΓM
(sstart, s)) + c∗(s, sgoal))

≤ ε2 c∗(sstart, sgoal)

References

[1] J. Gaschnig. Performance measurement and analysis of certain search
algorithms. Tech. Rep. CMU-CS-79-124, Carnegie Mellon University,
1979.

[2] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[3] I. Pohl. Practical and theoretical considerations in heuristic search algo-
rithms. In E. W. Elcock and D. Michie, editors, Machine Intelligence 8,
pages 55–72. New York: Wiley, 1977.

28

